Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Sci Rep ; 14(1): 5136, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429345

RESUMO

The interspecific transmission of pathogens can occur frequently in the environment. Among wild bees, the main spillover cases are caused by pathogens associated with Apis mellifera, whose colonies can act as reservoirs. Due to the limited availability of data in Italy, it is challenging to accurately assess the impact and implications of this phenomenon on the wild bee populations. In this study, a total of 3372 bees were sampled from 11 Italian regions within the BeeNet project, evaluating the prevalence and the abundance of the major honey bee pathogens (DWV, BQCV, ABPV, CBPV, KBV, Nosema ceranae, Ascosphaera apis, Crithidia mellificae, Lotmaria passim, Crithidia bombi). The 68.4% of samples were positive for at least one pathogen. DWV, BQCV, N. ceranae and CBPV showed the highest prevalence and abundance values, confirming them as the most prevalent pathogens spread in the environment. For these pathogens, Andrena, Bombus, Eucera and Seladonia showed the highest mean prevalence and abundance values. Generally, time trends showed a prevalence and abundance decrease from April to July. In order to predict the risk of infection among wild bees, statistical models were developed. A low influence of apiary density on pathogen occurrence was observed, while meteorological conditions and agricultural management showed a greater impact on pathogen persistence in the environment. Social and biological traits of wild bees also contributed to defining a higher risk of infection for bivoltine, communal, mining and oligolectic bees. Out of all the samples tested, 40.5% were co-infected with two or more pathogens. In some cases, individuals were simultaneously infected with up to five different pathogens. It is essential to increase knowledge about the transmission of pathogens among wild bees to understand dynamics, impact and effects on pollinator populations. Implementing concrete plans for the conservation of wild bee species is important to ensure the health of wild and human-managed bees within a One-Health perspective.


Assuntos
Nosema , Onygenales , Trypanosomatina , Humanos , Animais , Abelhas , Fatores Sociais , Crithidia , Itália/epidemiologia
2.
Sci Rep ; 14(1): 1831, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246935

RESUMO

Ascosphaera apis is a worldwide pathogenic fungi of honeybees that can cause a decline in bee populations. In this study, we investigated the antifungal activity of non-thermal plasma on fungal growth. Spore inactivation after exposure to gas plasma by liquid phase and plasma activated water (PAW) and pathogenicity of A. apis in vivo were also examined. The results demonstrated that the mycelial growth of fungi was completely inhibited after argon plasma treatment. Both gas plasma and PAW exposures resulted in a significant decrease of A. apis spore numbers, maximum reduction of 1.71 and 3.18-fold, respectively. Germinated fungal spores on potato dextrose agar were also reduced after plasma treatment. SEM analysis revealed a disruption in the morphological structure of the fungal spores. The pathogenicity of A. apis on honeybee larvae was decreased after spores treated by gas plasma and PAW with a disease inhibition of 63.61 ± 7.28% and 58.27 ± 5.87%, respectively after 7 days of cultivation. Chalkbrood in honey bees have limited control options and our findings are encouraging. Here, we demonstrate a possible alternative control method using non-thermal plasma for chalkbrood disease in honeybees.


Assuntos
Onygenales , Abelhas , Animais , Larva , Antifúngicos , Argônio , Esporos Fúngicos , Água
3.
J Wildl Dis ; 60(1): 64-76, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823517

RESUMO

Ophidiomycosis, also known as snake fungal disease, is caused by Ophidiomyces ophidiicola and is a threat to snake conservation worldwide. Ophidiomycosis has been reported throughout much of the eastern US, and outbreaks have been associated with local population declines of already strained populations. Previous studies report significant variability in ophidiomycosis among species sampled, with higher prevalence typically observed in Nerodia spp. Although ophidiomycosis can lead to morbidity and mortality in affected individuals, little is known about disease dynamics in free-ranging populations. Herein, we examine how individual-specific factors (e.g., life stage [immature, mature], contaminant status, sex, hemograms) may be associated with ophidiomycosis status in the brown watersnake (Nerodia taxispilota). During 2018-19, we sampled 97 N. taxispilota from five locations along the Savannah River in South Carolina and Georgia, US. Ophidiomyces ophidiicola DNA was detected in 66 snakes for a prevalence of 68% (95% confidence interval, 59-77). Mature snakes had a significantly higher risk of apparent ophidiomycosis (skin lesions present and quantitative PCR [qPCR], positive) relative to immature snakes. Snakes classified as having possible (skin lesions present, but qPCR negative) or apparent ophidiomycosis exhibited a relative azurophilia and heterophilia compared with individuals classified as negative (P≤0.037). Nerodia taxispilota in this region appear to have a high prevalence of apparent ophidiomycosis (22%; 95% CI, 14-31), similar to previous reports from the southeastern US. Additional epidemiologic investigations are warranted to further elucidate other individual-specific and environmental factors that may dictate disease risk and outcomes in affected populations.


Assuntos
Colubridae , Micoses , Onygenales , Humanos , Animais , Serpentes/microbiologia , Georgia/epidemiologia , Micoses/veterinária
4.
J Invertebr Pathol ; 202: 108028, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065241

RESUMO

Monitoring of metabolite changes could provide valuable insights into disturbances caused by an infection and furthermore, could be used to define the status of an organism as healthy or diseased and define what could be defensive elements against the infection. The present investigation conducted a gas chromatography-mass spectrometry (GC/MS) for haemolymph of larval honey bees (Apis mellifera L.) infected with the fungal pathogen Ascosphaera apis in comparison with control haemolymph non-infected insects. Results revealed that the pathogen caused a general disturbance of metabolites detected in the haemolymph of the honey bee. The majority of metabolites identified before and after infection were fatty acid esters. The disease caused an elevation in levels of methyl oleate, methyl palmitate, and methyl stearate, respectively. Further, the disease drove to the disappearance of methyl palmitoleate, and methyl laurate. Conversely, methyl linolelaidate, and ethyl oleate were identified only in infected larvae. A high reduction in diisooctyl phthalate was recorded after the infection. Interestingly, antimicrobial activities were confirmed for haemolymph of infected honey bee larvae. In spite of the presence of some previously known bioactive compounds in healthy larvae there were no antimicrobial activities.


Assuntos
Onygenales , Abelhas , Animais , Larva/microbiologia , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas
5.
Chem Biodivers ; 21(2): e202301602, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102075

RESUMO

Compound 3, a trimeric anthranilic acid peptide, and another three metabolites were isolated from an organic extract from the culture medium of Malbranchea flocciformis ATCC 34530. The chemical structure proposed previously for 3 was unequivocally assigned via synthesis and X-ray diffraction analysis. Tripeptide 3 showed insulinotropic properties by decreasing the postprandial peak in healthy and hyperglycemic mice. It also increased glucose-induced insulin secretion in INS-1E at 5 µM, specifically at higher glucose concentrations. These results revealed that 3 might act as an insulin sensitizer and a non-classical insulin secretagogue. Altogether, these findings are in harmony with the in vivo oral glucose tolerance test and acute oral hypoglycemic assay. Finally, the chemical composition of the extract was established by the Global Natural Products Social Molecular Network platform. Phylogenetic analysis using the internal transcribed spacer region revealed that M. flocciformis ATCC 34530 is related to the Malbrancheaceae.


Assuntos
Hipoglicemiantes , Insulina , Onygenales , ortoaminobenzoatos , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Filogenia , Insulina/metabolismo , Glucose
6.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003547

RESUMO

piRNAs are a class of small non-coding RNAs that play essential roles in modulating gene expression and abundant biological processes. To decode the piRNA-regulated larval response of western honeybees (Apis mellifera) to Ascosphaera apis infection, the expression pattern of piRNAs in Apis mellifera ligustica larval guts after A. apis inoculation was analyzed based on previously obtained high-quality small RNA-seq datasets, followed by structural characterization, target prediction, regulatory network investigation, and functional dissection. Here, 504, 657, and 587 piRNAs were respectively identified in the 4-, 5-, and 6-day-old larval guts after inoculation with A. apis, with 411 ones shared. These piRNAs shared a similar length distribution and first base bias with mammal piRNAs. Additionally, 96, 103, and 143 DEpiRNAs were detected in the 4-, 5-, and 6-day-old comparison groups. Targets of the DEpiRNAs were engaged in diverse pathways such as the phosphatidylinositol signaling system, inositol phosphate metabolism, and Wnt signaling pathway. These targets were involved in three energy metabolism-related pathways, eight development-associated signaling pathways, and seven immune-relevant pathways such as the Jak-STAT signaling pathway. The expression trends of five randomly selected DEpiRNAs were verified using a combination of RT-PCR and RT-qPCR. The effective overexpression and knockdown of piR-ame-945760 in A. apis-infected larval guts were achieved by feeding a specific mimic and inhibitor. Furthermore, piR-ame-945760 negatively regulated the expression of two target immune mRNAs, SOCS5 and ARF1, in the larval gut during the A. apis infection. These findings indicated that the overall expression level of piRNAs was increased and the expression pattern of piRNAs in larval guts was altered due to the A. apis infection, DEpiRNAs were putative regulators in the A. apis-response of A. m. ligustica worker larvae. Our data provide not only a platform for the functional investigation of piRNAs in honeybees, especially in bee larvae, but also a foundation for illuminating the piRNA-involved mechanisms underlying the host response to the A. apis infection.


Assuntos
Onygenales , RNA de Interação com Piwi , Abelhas/genética , Animais , Larva/genética , Larva/metabolismo , Via de Sinalização Wnt , Mamíferos
7.
PLoS One ; 18(8): e0289159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535588

RESUMO

Ophidiomycosis (snake fungal disease) is an infectious disease caused by the fungus Ophidiomyces ophidiicola to which all snake species appear to be susceptible. Significant variation has been observed in clinical presentation, progression of disease, and response to treatment, which may be due to genetic variation in the causative agent. Recent phylogenetic analysis based on whole-genome sequencing identified that O. ophidiicola strains from the United States formed a clade distinct from European strains, and that multiple clonal lineages of the clade are present in the United States. The purpose of this study was to design a qPCR-based genotyping assay for O. ophidiicola, then apply that assay to swab-extracted DNA samples to investigate whether the multiple O. ophidiicola clades and clonal lineages in the United States have specific geographic, taxonomic, or temporal predilections. To this end, six full genome sequences of O. ophidiicola representing different clades and clonal lineages were aligned to identify genomic areas shared between subsets of the isolates. Eleven hydrolysis-based Taqman primer-probe sets were designed to amplify selected gene segments and produce unique amplification patterns for each isolate, each with a limit of detection of 10 or fewer copies of the target sequence and an amplification efficiency of 90-110%. The qPCR-based approach was validated using samples from strains known to belong to specific clades and applied to swab-extracted O. ophidiicola DNA samples from multiple snake species, states, and years. When compared to full-genome sequencing, the qPCR-based genotyping assay assigned 75% of samples to the same major clade (Cohen's kappa = 0.360, 95% Confidence Interval = 0.154-0.567) with 67-77% sensitivity and 88-100% specificity, depending on clade/clonal lineage. Swab-extracted O. ophidiicola DNA samples from across the United States were assigned to six different clonal lineages, including four of the six established lineages and two newly defined groups, which likely represent recombinant strains of O. ophidiicola. Using multinomial logistic regression modeling to predict clade based on snake taxonomic group, state of origin, and year of collection, state was the most significant predictor of clonal lineage. Furthermore, clonal lineage was not associated with disease severity in the most intensely sampled species, the Lake Erie watersnake (Nerodia sipedon insularum). Overall, this assay represents a rapid, cost-effective genotyping method for O. ophidiicola that can be used to better understand the epidemiology of ophidiomycosis.


Assuntos
Colubridae , Onygenales , Animais , Filogenia , Genótipo
8.
Arch Razi Inst ; 78(2): 701-708, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37396737

RESUMO

Cancer is the uncontrolled growth of malignant cells and is universally estimated to be a common cause of death. No decisive treatment has been identified to cure cancer; therefore, scientists have focused on developing safe and effective treatments. The activity of natural compounds isolated from living organisms, such as fungi, has been investigated in cancer cells. This study aimed to isolate and analyze natural products, as secondary metabolites (SM), of the fungus Gymnoascus dankaliensis (G. dankaliensis) and identify their activity against SR and HCT-18 (HRT-18) cell lines. G. dankaliensis was isolated from dung samples and identified using a molecular method. The internal transcribed spacer region was amplified from the isolated genomic DNA and sequenced afterward. The isolate was grown on a rice medium as a solid-state fermentation medium to extract natural metabolite products using the ethyl acetate extraction method. The GC-MS analyzed the compound of the natural extract, and the activity of the natural extract was identified against SR and HCT-18 cell lines. The results revealed the ability of G. dankaliensis to produce a natural product as an SM composed of five compounds. The growth of the treated SR and HCT-8 cell lines with the natural extract was inhibited after incubation for 27 h, with the IC50 being 3.57 and 8.61 µg/mL on the HCT-18 and SR cell lines, respectively. In conclusion, the natural extract isolated from the SM of G. dankaliensis showed activity against cancer cells, affecting the SR and HCT-18 cell lines, compared to the control. These results revealed that the product is a promising anticancer treatment.


Assuntos
Neoplasias , Onygenales , Animais
9.
Appl Environ Microbiol ; 89(5): e0216822, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098892

RESUMO

Host range and specificity are key concepts in the study of infectious diseases. However, both concepts remain largely undefined for many influential pathogens, including many fungi within the Onygenales order. This order encompasses reptile-infecting genera (Nannizziopsis, Ophidiomyces, and Paranannizziopsis) formerly classified as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). The reported hosts of many of these fungi represent a narrow range of phylogenetically related animals, suggesting that many of these disease-causing fungi are host specific, but the true number of species affected by these pathogens is unknown. For example, to date, Nannizziopsis guarroi (the causative agent of yellow fungus disease) and Ophidiomyces ophiodiicola (the causative agent of snake fungal disease) have been documented only in lizards and snakes, respectively. In a 52-day reciprocal-infection experiment, we tested the ability of these two pathogens to infect currently unreported hosts, inoculating central bearded dragons (Pogona vitticeps) with O. ophiodiicola and corn snakes (Pantherophis guttatus) with N. guarroi. We confirmed infection by documenting both clinical signs and histopathological evidence of fungal infection. Our reciprocity experiment resulted in 100% of corn snakes and 60% of bearded dragons developing infections with N. guarroi and O. ophiodiicola, respectively, demonstrating that these fungal pathogens have a broader host range than previously thought and that hosts with cryptic infections may play a role in pathogen translocation and transmission. IMPORTANCE Our experiment using Ophidiomyces ophiodiicola and Nannizziopsis guarroi is the first to look more critically at these pathogens' host range. We are the first to identify that both fungal pathogens can infect both corn snakes and bearded dragons. Our findings illustrate that both fungal pathogens have a more general host range than previously known. Additionally, there are significant implications concerning the spread of snake fungal disease and yellow fungus disease in popular companion animals and the increased chance of disease spillover into other wild and naive populations.


Assuntos
Lagartos , Micoses , Onygenales , Animais , Lagartos/microbiologia , Micoses/veterinária , Micoses/microbiologia , Serpentes/microbiologia
10.
Fungal Genet Biol ; 167: 103797, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37100376

RESUMO

Life-threatening infections caused by fungi in the order Onygenales have been rising over the last few decades. Increasing global temperature due to anthropogenic climate change is one potential abiotic selection pressure that may explain the increase in infections. The generation of genetically novel offspring with novel phenotypes through the process of sexual recombination could allow fungi to adapt to changing climate conditions. The basic structures associated with sexual reproduction have been identified in Histoplasma, Blastomyces, Malbranchea, and Brunneospora. However, for Coccidioides and Paracoccidioides, the actual structural identification of these processes has yet to be identified despite having genetic evidence that suggests sexual recombination is occurring in these organisms. This review highlights the importance of assessing sexual recombination in the order Onygenales as a means of understanding the mechanisms these organisms might employ to enhance fitness in the face of a changing climate and provides details regarding the known reproductive mechanisms in the Onygenales.


Assuntos
Amor , Onygenales , Biodiversidade , Mudança Climática , Temperatura , Onygenales/genética , Fungos , Reprodução/genética
11.
J Am Vet Med Assoc ; 261(S1): S109-S113, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921022

RESUMO

OBJECTIVE: To determine the environmental persistence of Nannizziopsis guarroi on clinically relevant solid and aqueous substrates. SAMPLE: 2 molecularly confirmed isolates of N guarroi obtained from clinical cases of dermatomycosis in bearded dragons (Pogona vitticeps). PROCEDURES: 3 concentrations (1 McFarland, 1:10 McFarland, and 1:100 McFarland) of fungal suspension were exposed to 7 sterilized solid substrates (fabric aquarium liner, wood mulch, sand, hard plastic, glass, cotton, and stainless steel) and 2 sterilized aqueous substrates (distilled water, saline solution [0.9% NaCl]). Biological replicates were performed for the contamination of the solid substrates. On days 1, 3, and 14 after contamination, the substrates were sampled for fungal culture with technical repeat. Fungal cultures were incubated at room temperature for 10 days and then evaluated for fungal growth. RESULTS: Data from wood mulch were not evaluated because of plate contamination. Overall, the ability to culture N guarroi from solid substrates was isolate, time, and fungal concentration dependent. Viable fungus was isolated from fabric aquarium liner and glass on day 1 and days 1 and 3, respectively. N guarroi was cultured from all other solid substrates at day 14 from at least 1 isolate and/or fungal concentration. Viable N guarroi was isolated from both aqueous substrates at day 14, regardless of isolate or fungal concentration. CLINICAL RELEVANCE: The environmental persistence of N guarroi should be considered when treating lizards infected with this fungus. Fomites may contribute to the contagious nature of this pathogen and environmental disinfection should be performed to reduce transmission.


Assuntos
Chrysosporium , Lagartos , Onygenales , Animais
12.
J Wildl Dis ; 59(2): 322-331, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996061

RESUMO

Emergent fungal pathogens in herpetofauna are a concern in both wild and captive populations. We diagnosed dermatomycosis by Paranannizziopsis australasiensis in two panther chameleons (Furcifer pardalis) and suspected it in eight others captured from an established free-living nonnative population in Florida, USA. Chameleons developed skin lesions following recent exposure to cold weather conditions while housed in captivity, approximately 10 mo after capture and 12 wk after being placed in outdoor enclosures. Affected animals were treated with oral voriconazole and terbinafine until most cases resolved; however, medications were ultimately discontinued. Paranannizziopsis australasiensis has not previously been described in chameleons, nor in animals originating from a free-ranging population in the USA. Although the source of P. australasiensis infection is uncertain, we discuss several scenarios related to the pet trade and unique situation of chameleon "ranching" present in the USA.


Assuntos
Dermatomicoses , Lagartos , Onygenales , Animais , Florida/epidemiologia , Dermatomicoses/epidemiologia , Dermatomicoses/veterinária , Dermatomicoses/microbiologia
13.
Emerg Infect Dis ; 29(3): 635-639, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823688

RESUMO

A 65-year-old man with HIV sought treatment for fever, weight loss, and productive cough after returning to the United States from Liberia. Fungal cultures grew Emergomyces pasteurianus, and the patient's health improved after beginning voriconazole. We describe the clinical case and review the literature, treatment, and susceptibilities for E. pasteurianus.


Assuntos
Micoses , Onygenales , Humanos , Estados Unidos , Idoso , Micoses/microbiologia , Libéria , Voriconazol
14.
Am J Vet Res ; 84(1)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36469441

RESUMO

OBJECTIVE: To evaluate the pharmacokinetics of terbinafine administered to western pond turtles (Actinemys marmorata) via oral gavage and bioencapsulated in earthworms. ANIMALS: 7 western pond turtles. PROCEDURES: A randomized complete crossover single-dose pharmacokinetic study was performed. Compounded terbinafine (25 mg/mL; 30 mg/kg) was administered through oral gavage (OG) directly into the stomach or bioencapsulated (BEC) into an earthworm vehicle. Blood (0.2 mL) was drawn from the jugular vein at 0, 0.5, 1, 2, 4, 8, 12, 24, 48, 72, and 120 hours after administration. Plasma terbinafine levels were measured using high-performance liquid chromatography. RESULTS: Peak plasma terbinafine concentrations of 786.9 ± 911 ng/mL and 1,022.2 ± 911 were measured at 1.8 ± 2.8 and 14.1 ± 12.3 hours after OG and BEC administration, respectively. There was a significant (P = .031) increase in area under the curve with BEC compared to OG. Using steady-state predictions, with once-daily terbinafine administration, 3/7 and 7/7 turtles had plasma concentrations persistently greater than the minimum inhibitory concentration (MIC) for Emydomyces testavorans for the OG and BEC administration routes of administration, respectively. With administration every 48 hours, 3/7 turtles for the OG phase and 6/7 turtles for the BEC phase had concentrations greater than the E. testavorans MIC throughout the entire dosing interval. CLINICAL RELEVANCE: Administration of terbinafine (30 mg/kg) every 24 or 48 hours via earthworm bioencapsulation in western pond turtles may be appropriate for the treatment of shell lesions caused by E. testavorans. Clinical studies are needed to assess the efficacy of treatment.


Assuntos
Onygenales , Tartarugas , Animais , Terbinafina , Antifúngicos/farmacocinética , Área Sob a Curva , Administração Oral
15.
J Clin Microbiol ; 60(10): e0105722, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36094192

RESUMO

The detection of antibodies against Histoplasma capsulatum remains a frequently relied-on approach to diagnose histoplasmosis. We retrospectively assessed the performances of complement fixation (CF) and immunodiffusion (ID) assays for anti-Histoplasma antibody detection in patients with culture-confirmed histoplasmosis at Mayo Clinic (Rochester, MN) over a 10-year period (2011 to 2020). Among 67 culture-confirmed patients who also had H. capsulatum CF/ID testing ordered, 51 (67.1%) were immunocompromised, 34 (50.7%) had localized disease, and 51 (76.1%) presented with <3 months of symptoms before testing. H. capsulatum CF and/or ID testing was positive in 47 (70.1%) patients, with both assays being positive in 39 cases. CF was positive in 44 (65.7%) patients, with reactivity against both H. capsulatum mycelial and yeast antigens in 30 (68.2%) cases, whereas 11 (25%) and 3 (6.8%) individuals had antibodies to the CF yeast or mycelial antigen only, respectively. H. capsulatum ID was positive in 42 (62.7%) patients, with the presence of the M-band only or the H- and M-bands in 27 (64.3%) and 15 (35.7%) cases, respectively. Among 18 serially tested patients, 12 remained ID and/or CF positive at the final time point (median, 154 days; range, 20 to 480 days). Serial CF testing showed that antibodies to the mycelial antigen serorevert to negative more frequently (6/11) than antibodies to the yeast antigen (2/13). There was no statistically significant difference in antibody positivity relative to patient immune status, degree of disease dissemination, or symptom duration. Serologic testing remains a valuable asset to support the diagnosis of histoplasmosis, particularly when direct detection methods fail to identify an infection.


Assuntos
Histoplasmose , Onygenales , Humanos , Histoplasma , Histoplasmose/diagnóstico , Estudos Retrospectivos , Saccharomyces cerevisiae , Anticorpos Antifúngicos , Imunodifusão , Antígenos de Fungos
16.
Emerg Infect Dis ; 28(9): 1929-1931, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997528

RESUMO

Nannizziopsis spp., fungi responsible for emerging diseases, are rarely involved in human bone and joint infections. We present a rare case of septic arthritis with necrotizing cellulitis caused by N. obscura in a patient in France who had undergone kidney transplant. Rapid, aggressive medical and surgical management led to a favorable outcome.


Assuntos
Artrite Infecciosa , Fasciite Necrosante , Onygenales , Artrite Infecciosa/diagnóstico , Artrite Infecciosa/tratamento farmacológico , Artrite Infecciosa/microbiologia , França , Humanos
17.
J Invertebr Pathol ; 194: 107804, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933037

RESUMO

Ascosphaera (Eurotiomycetes: Onygenales) is a diverse genus of fungi that is exclusively found in association with bee nests and comprises both saprophytic and entomopathogenic species. To date, most genomic analyses have been focused on the honeybee pathogen A. apis, and we lack a genomic understanding of how pathogenesis evolved more broadly in the genus. To address this gap we sequenced the genomes of the leaf-cutting bee pathogen A. aggregata as well as three commensal species: A. pollenicola, A. atra and A. acerosa. De novo annotation and comparison of the assembled genomes was carried out, including the previously published genome of A. apis. To identify candidate virulence genes in the pathogenic species, we performed secondary metabolite-oriented analyses and clustering of biosynthetic gene clusters (BGCs). Additionally, we captured single copy orthologs to infer their phylogeny and created codon-aware alignments to determine orthologs under selective pressure in our pathogenic species. Our results show several shared BGCs between A. apis, A. aggregata and A. pollenicola, with antifungal resistance related genes present in the bee pathogens and commensals. Genes involved in metabolism and protein processing exhibit signatures of enrichment and positive selection under a fitted branch-site model. Additional known virulence genes in A. pollenicola, A. acerosa and A. atra are identified, supporting previous hypotheses that these commensals may be opportunistic pathogens. Finally, we discuss the importance of such genes in other fungal pathogens, suggesting a common route to evolution of pathogenicity in Ascosphaera.


Assuntos
Ascomicetos , Onygenales , Animais , Antifúngicos , Ascomicetos/genética , Abelhas , Genômica , Onygenales/genética , Filogenia
18.
Sci Rep ; 12(1): 12303, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853982

RESUMO

The ascomycete fungus Ophidiomyces ophiodiicola (Oo) is the causative agent of ophidiomycosis (Snake Fungal Disease), which has been detected globally. However, surveillance efforts in the central U.S., specifically Texas, have been minimal. The threatened and rare Brazos water snake (Nerodia harteri harteri) is one of the most range restricted snakes in the U.S. and is sympatric with two wide-ranging congeners, Nerodia erythrogaster transversa and Nerodia rhombifer, in north central Texas; thus, providing an opportunity to test comparative host-pathogen associations in this system. To accomplish this, we surveyed a portion of the Brazos river drainage (~ 400 river km) over 29 months and tested 150 Nerodia individuals for the presence of Oo via quantitative PCR and recorded any potential signs of Oo infection. We found Oo was distributed across the entire range of N. h. harteri, Oo prevalence was 46% overall, and there was a significant association between Oo occurrence and signs of infection in our sample. Models indicated adults had a higher probability of Oo infection than juveniles and subadults, and adult N. h. harteri had a higher probability of infection than adult N. rhombifer but not higher than adult N. e. transversa. High Oo prevalence estimates (94.4%) in adult N. h. harteri has implications for their conservation and management owing to their patchy distribution, comparatively low genetic diversity, and threats from anthropogenic habitat modification.


Assuntos
Colubridae , Dermatomicoses , Onygenales , Animais , Dermatomicoses/microbiologia , Humanos , Serpentes/microbiologia , Simpatria
19.
PLoS Biol ; 20(6): e3001676, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737674

RESUMO

Snake fungal disease (SFD; ophidiomycosis), caused by the pathogen Ophidiomyces ophiodiicola (Oo), has been documented in wild snakes in North America and Eurasia, and is considered an emerging disease in the eastern United States of America. However, a lack of historical disease data has made it challenging to determine whether Oo is a recent arrival to the USA or whether SFD emergence is due to other factors. Here, we examined the genomes of 82 Oo strains to determine the pathogen's history in the eastern USA. Oo strains from the USA formed a clade (Clade II) distinct from European strains (Clade I), and molecular dating indicated that these clades diverged too recently (approximately 2,000 years ago) for transcontinental dispersal of Oo to have occurred via natural snake movements across Beringia. A lack of nonrecombinant intermediates between clonal lineages in Clade II indicates that Oo has actually been introduced multiple times to North America from an unsampled source population, and molecular dating indicates that several of these introductions occurred within the last few hundred years. Molecular dating also indicated that the most common Clade II clonal lineages have expanded recently in the USA, with time of most recent common ancestor mean estimates ranging from 1985 to 2007 CE. The presence of Clade II in captive snakes worldwide demonstrates a potential mechanism of introduction and highlights that additional incursions are likely unless action is taken to reduce the risk of pathogen translocation and spillover into wild snake populations.


Assuntos
Dermatomicoses , Onygenales , Animais , Dermatomicoses/epidemiologia , Dermatomicoses/microbiologia , Genética Populacional , Serpentes/genética , Estados Unidos
20.
J Zhejiang Univ Sci B ; 23(5): 365-381, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35557038

RESUMO

Ascosphaera apis spores containing a dark-colored pigment infect honeybee larvae, resulting in a large-scale collapse of the bee colony due to chalkbrood disease. However, little is known about the pigment or whether it plays a role in bee infection caused by A. apis. In this study, the pigment was isolated by alkali extraction, acid hydrolysis, and repeated precipitation. Ultraviolet (UV) analysis revealed that the pigment had a color value of 273, a maximum absorption peak at 195 nm, and a high alkaline solubility (7.67%) and acid precipitability. Further chemical structure analysis of the pigment, including elemental composition, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, mass spectrometry, and nuclear magnetic resonance (NMR), proved that it was a eumelanin with a typical indole structure. The molecular formula of melanin is C10H6O4N2, and its molecular weight is 409 Da. Melanin has hydroxyl, carboxyl, amino, and phenolic groups that can potentially chelate to metal ions. Antioxidant function analyses showed that A. apis melanin had a high scavenging activity against superoxide, hydroxyl, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, and a high reducing ability to Fe3+. Indirect immunofluorescence assay (IFA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses showed that A. apis melanin was located on the spore wall. The spore wall localization, antioxidant activity, and metal ion chelating properties of fungal melanin have been suggested to contribute to spore pathogenicity. However, further infection experiments showed that melanin-deficient spores did not reduce the mortality of bee larvae, indicating that melanin does not increase the virulence of A. apis spores. This study is the first report on melanin produced by A. apis, providing an important background reference for further study on its role in A. apis.


Assuntos
Antioxidantes , Onygenales , Animais , Antioxidantes/farmacologia , Larva , Melaninas , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...