Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 942
Filtrar
1.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611811

RESUMO

Lactic acid bacteria (LAB) play an important role in the ripening of cheeses and contribute to the development of the desired profile of aroma and flavor compounds. Therefore, it is very important to monitor the dynamics of bacterial proliferation in order to obtain an accurate and reliable number of their cells at each stage of cheese ripening. This work aimed to identify and conduct a quantitative assessment of the selected species of autochthonous lactic acid bacteria from raw cow's milk cheese by the development of primers and probe pairs based on the uniqueness of the genetic determinants with which the target microorganisms can be identified. For that purpose, we applied real-time quantitative PCR (qPCR) protocols to quantify Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis subsp. cremoris cells in cheese directly after production and over three-month and six-month ripening periods. While L. lactis subsp. cremoris shows good acidification ability and the ability to produce antimicrobial compounds, L. delbrueckii subsp. bulgaricus has good proteolytic ability and produces exo-polysaccharides, and S. thermophilus takes part in the formation of the diacetyl flavor compound by metabolizing citrate to develop aroma, they all play an important role in the cheese ripening. The proposed qPCR protocols are very sensitive and reliable methods for a precise enumeration of L. delbrueckii subsp. bulgaricus, S. thermophilus, and L. lactis subsp. cremoris in cheese samples.


Assuntos
Queijo , Lactobacillales , Lactobacillus delbrueckii , Lactococcus lactis , Lactococcus , Animais , Bovinos , Feminino , Lactobacillales/genética , Leite , Reação em Cadeia da Polimerase em Tempo Real , Lactobacillus delbrueckii/genética , Lactococcus lactis/genética
2.
Gut Microbes ; 16(1): 2337317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38619316

RESUMO

The diet during pregnancy, or antenatal diet, influences the offspring's intestinal health. We previously showed that antenatal butyrate supplementation reduces injury in adult murine offspring with dextran sulfate sodium (DSS)-induced colitis. Potential modulators of butyrate levels in the intestine include a high fiber diet or dietary supplementation with probiotics. To test this, we supplemented the diet of pregnant mice with high fiber, or with the probiotic bacteria Lactococcus lactis subspecies cremoris or Lactobacillus rhamnosus GG. We then induced chronic colitis with DSS in their adult offspring. We demonstrate that a high fiber antenatal diet, or supplementation with Lactococcus lactis subspecies cremoris during pregnancy diminished the injury from DSS-induced colitis in offspring. These data are evidence that antenatal dietary interventions impact offspring gut health and define the antenatal diet as a therapeutic modality to enhance offspring intestinal health.


Assuntos
Colite , Microbioma Gastrointestinal , Lactococcus lactis , Lactococcus , Feminino , Gravidez , Animais , Camundongos , Lactococcus lactis/genética , Suplementos Nutricionais , Butiratos
3.
Vet Microbiol ; 292: 110048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479301

RESUMO

The optrA gene encodes an ABC-F protein which confers cross-resistance to oxazolidinones and phenicols. Insertion sequence ISVlu1, a novel ISL3-family member, was recently reported to be involved in the transmission of optrA in Vagococcus lutrae. However, the role of ISVlu1 in mobilizing resistance genes has not yet fully explored. In this study, two complete and three truncated copies of ISVlu1 were found on plasmid pBN62-optrA from Lactococcus garvieae. Analysis of the genetic context showed that both optrA and the phenicols resistance gene fexA were flanked by the complete or truncated ISVlu1 copies. Moreover, three different-sized ISVlu1-based translocatable units (TUs) carrying optrA and/or fexA, were detected from pBN62-optrA. Sequence analysis revealed that the TU-optrA was generated by homologous recombination while TU-fexA and TU-optrA+fexA were the products of illegitimate recombinations. Importantly, conjugation assays confirmed that pBN62-optrA was able to successfully transfer into the recipient Enterococcus faecalis JH2-2. To our knowledge, this is the first report about an optrA-carrying plasmid in L. garvieae which could horizontally transfer into other species. More importantly, the ISVlu1-flanked genetic structures containing optrA and/or fexA were also observed in bacteria of different species, which underlines that ISVlu1 is highly active and plays a vital role in the transfer of some important resistance genes, such as optrA and fexA.


Assuntos
Antibacterianos , Oxazolidinonas , Animais , Suínos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Lactococcus/genética , Enterococcus faecalis , Genes Bacterianos/genética , Testes de Sensibilidade Microbiana/veterinária
4.
World J Microbiol Biotechnol ; 40(4): 132, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470533

RESUMO

Lactococcus garvieae (L. garvieae) is a pathogenic bacterium that is Gram-positive and catalase-negative (GPCN), and it is capable of growing in a wide range of environmental conditions. This bacterium is associated with significant mortality and losses in fisheries, and there are concerns regarding its potential as a zoonotic pathogen, given its presence in cattle and dairy products. While we have identified and characterized virulent strains of L. garvieae through phenotyping and molecular typing studies, their impact on mammary tissue remains unknown. This study aims to investigate the pathogenicity of strong and weak virulent strains of L. garvieae using in vivo mouse models. We aim to establish MAC-T cell model to examine potential injury caused by the strong virulent strain LG41 through the TLR2/NLRP3/NF-kB pathway. Furthermore, we assess the involvement of NLRP3 inflammasome-mediated pyroptosis in dairy mastitis by silencing NLRP3. The outcomes of this study will yield crucial theoretical insights into the potential mechanisms involved in mastitis in cows caused by the L. garvieae-induced inflammatory response in MAC-T cells.


Assuntos
Inflamassomos , Mastite , Humanos , Feminino , Animais , Bovinos , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Linfócitos T/metabolismo , Lactococcus/metabolismo , Mastite/microbiologia , Mastite/veterinária , Inflamação
5.
J Hazard Mater ; 469: 134059, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503209

RESUMO

Heavy metal exposure is closely associated with gut microbe function and tolerance. However, intestinal microbe responses in children to different copper ion (Cu2+) concentrations have not yet been clarified. Here, in vitro cultivation systems were established for fecal microbe control and Cu2+-treated groups in healthy children. 16S rDNA high-throughput sequencing, meta-transcriptomics and metabolomics were used here to identify toxicity resistance mechanisms at microbiome levels. The results showed that Lactobacillus sp. and Lactococcus sp. exerted protective effects against Cu2+ toxicity, but these effects were limited by Cu2+ concentration. When the Cu2+ concentration was ≥ 4 mg/L, the abundance of Lactobacillus sp. and Lactococcus sp. significantly decreased, and the pathways of antioxidant activity and detoxification processes were enriched at 2 mg/L Cu2+, and beneficial metabolites accumulated. However, at high concentrations of Cu2+ (≥4 mg/L), the abundance of potential pathogen increased, and was accompanied by a downregulation of genes in metabolism and detoxification pathways, which meant that the balance of gut microbiota was disrupted and toxicity resistance decreased. From these observations, we identified some probiotics that are tolerant to heavy metal Cu2+, and warn that only when the concentration limit of Cu2+ in food is 2 mg/L, then a balanced gut microbiota can be guaranteed in children, thereby providing protection for their health.


Assuntos
Lactobacillus , Microbiota , Criança , Humanos , Lactobacillus/genética , Cobre/toxicidade , Lactococcus , Íons
6.
Microbiol Spectr ; 12(4): e0398923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38451091

RESUMO

Bacteria have evolved diverse defense mechanisms to counter bacteriophage attacks. Genetic programs activated upon infection characterize phage-host molecular interactions and ultimately determine the outcome of the infection. In this study, we applied ribosome profiling to monitor protein synthesis during the early stages of sk1 bacteriophage infection in Lactococcus cremoris. Our analysis revealed major changes in gene expression within 5 minutes of sk1 infection. Notably, we observed a specific and severe downregulation of several pyr operons which encode enzymes required for uridine monophosphate biosynthesis. Consistent with previous findings, this is likely an attempt of the host to starve the phage of nucleotides it requires for propagation. We also observed a gene expression response that we expect to benefit the phage. This included the upregulation of 40 ribosome proteins that likely increased the host's translational capacity, concurrent with a downregulation of genes that promote translational fidelity (lepA and raiA). In addition to the characterization of host-phage gene expression responses, the obtained ribosome profiling data enabled us to identify two putative recoding events as well as dozens of loci currently annotated as pseudogenes that are actively translated. Furthermore, our study elucidated alterations in the dynamics of the translation process, as indicated by time-dependent changes in the metagene profile, suggesting global shifts in translation rates upon infection. Additionally, we observed consistent modifications in the ribosome profiles of individual genes, which were apparent as early as 2 minutes post-infection. The study emphasizes our ability to capture rapid alterations of gene expression during phage infection through ribosome profiling. IMPORTANCE: The ribosome profiling technology has provided invaluable insights for understanding cellular translation and eukaryotic viral infections. However, its potential for investigating host-phage interactions remains largely untapped. Here, we applied ribosome profiling to Lactococcus cremoris cultures infected with sk1, a major infectious agent in dairy fermentation processes. This revealed a profound downregulation of genes involved in pyrimidine nucleotide synthesis at an early stage of phage infection, suggesting an anti-phage program aimed at restricting nucleotide availability and, consequently, phage propagation. This is consistent with recent findings and contributes to our growing appreciation for the role of nucleotide limitation as an anti-viral strategy. In addition to capturing rapid alterations in gene expression levels, we identified translation occurring outside annotated regions, as well as signatures of non-standard translation mechanisms. The gene profiles revealed specific changes in ribosomal densities upon infection, reflecting alterations in the dynamics of the translation process.


Assuntos
Bacteriófagos , Lactococcus , Biossíntese de Proteínas , Perfil de Ribossomos , Regulação para Baixo , Bacteriófagos/genética , Bacteriófagos/metabolismo , RNA Mensageiro/metabolismo , Nucleotídeos/metabolismo , Uridina Monofosfato/metabolismo
7.
Microb Cell Fact ; 23(1): 40, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321474

RESUMO

BACKGROUND: In recent years, biosafety and green food safety standards have increased the demand for immune enhancers and adjuvants. In the present study, recombinant food-grade Lactococcus lactis (r-L. lactis-Tα1-IFN) expressing thymosin Tα1 and chicken interferon fusion protein was constructed. RESULTS: The in vitro interactions with macrophages revealed a mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate both macrophage J774-Dual™ NF-κB and interferon regulator (IRF) signaling pathways. In vitro interactions with chicken peripheral blood mononuclear cells (PBMCs) demonstrated that a mixture of recombinant r-L. lactis-Tα1-IFN significantly enhanced the expression levels of interferon (IFN)-γ, interleukin (IL)-10, CD80, and CD86 proteins in chicken PBMCs. Animal experiments displayed that injecting a lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate the proliferation of T cells and antigen-presenting cells in chicken PBMCs. Moreover, 16S analysis of intestinal microbiota demonstrated that injection of the lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly improve the structure and composition of chicken intestinal microbiota, with a significant increase in probiotic genera, such as Lactobacillus spp. Results of animal experiments using the lysis mixture of recombinant r-L. lactis-Tα1-IFN as an immune adjuvant for inactivated chicken Newcastle disease vaccine showed that the serum antibody titers of the experimental group were significantly higher than those of the vaccine control group, and the expression levels of cytokines IFN-γ and IL-2 were significantly higher than those of the vaccine control group. CONCLUSION: These results indicate that food-safe recombinant r-L. lactis-Tα1-IFN has potential as a vaccine immune booster and immune adjuvant. This study lays the foundation for the development of natural green novel animal immune booster or immune adjuvant.


Assuntos
Lactococcus lactis , Timosina , Vacinas , Animais , Interferons/metabolismo , Lactococcus , Leucócitos Mononucleares , Adjuvantes Imunológicos/metabolismo , Proteínas Recombinantes/metabolismo , Timosina/metabolismo , Vacinas/metabolismo , Galinhas , Lactococcus lactis/metabolismo
8.
Microbiol Spectr ; 12(1): e0133423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38019021

RESUMO

IMPORTANCE: Weaning is a crucial step in piglet management to improve pork production. During the weaning phase, disruption of epithelial barrier function and intestinal inflammation can lead to decreased absorption of nutrients and diarrhea. Therefore, maintaining a healthy intestine, epithelial barrier function, and gut microbiota composition in this crucial phase is strategic for optimal weaning in pigs. We isolated a lysate of Lactococcus petauri GB97 (LPL97) from healthy porcine feces and evaluated its anti-inflammatory activities, barrier integrity, and gut microbial changes in LPS-induced murine macrophages and DSS-induced colitis mice. We found that LPL97 regulated the immune response by downregulating the TLR4/NF-κB/MAPK signaling pathway both in vitro and in vivo. Furthermore, LPL97 alleviated the disruption of intestinal epithelial integrity and gut microbiota dysbiosis in colitis mice. This study indicates that LPL97 has the potential to be developed as an alternative feed additive to antibiotics for the swine industry.


Assuntos
Colite , Microbioma Gastrointestinal , Lactococcus , Suínos , Animais , Camundongos , Inflamação , Colite/induzido quimicamente , Fezes , Modelos Animais de Doenças
9.
J Biol Chem ; 300(1): 105578, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110036

RESUMO

In Gram-positive bacteria, cell wall polysaccharides (CWPS) play critical roles in bacterial cell wall homeostasis and bacterial interactions with their immediate surroundings. In lactococci, CWPS consist of two components: a conserved rhamnan embedded in the peptidoglycan layer and a surface-exposed polysaccharide pellicle (PSP), which are linked together to form a large rhamnose-rich CWPS (Rha-CWPS). PSP, whose structure varies from strain to strain, is a receptor for many bacteriophages infecting lactococci. Here, we examined the first two steps of PSP biosynthesis, using in vitro enzymatic tests with lipid acceptor substrates combined with LC-MS analysis, AlfaFold2 modeling of protein 3D-structure, complementation experiments, and phage assays. We show that the PSP repeat unit is assembled on an undecaprenyl-monophosphate (C55P) lipid intermediate. Synthesis is initiated by the WpsA/WpsB complex with GlcNAc-P-C55 synthase activity and the PSP precursor GlcNAc-P-C55 is then elongated by specific glycosyltransferases that vary among lactococcal strains, resulting in PSPs with diverse structures. Also, we engineered the PSP biosynthesis pathway in lactococci to obtain a chimeric PSP structure, confirming the predicted glycosyltransferase specificities. This enabled us to highlight the importance of a single sugar residue of the PSP repeat unit in phage recognition. In conclusion, our results support a novel pathway for PSP biosynthesis on a lipid-monophosphate intermediate as an extracellular modification of rhamnan, unveiling an assembly machinery for complex Rha-CWPS with structural diversity in lactococci.


Assuntos
Parede Celular , Lactococcus , Polissacarídeos Bacterianos , Ramnose , Proteínas de Bactérias/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Glicosiltransferases/metabolismo , Lactococcus/classificação , Lactococcus/citologia , Lactococcus/metabolismo , Lactococcus/virologia , Lipídeos , Peptidoglicano/metabolismo , Polissacarídeos Bacterianos/metabolismo , Conformação Proteica , Ramnose/metabolismo , Especificidade por Substrato , Bacteriófagos/fisiologia
10.
Medicina (Kaunas) ; 59(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893449

RESUMO

Background and Objectives: Milk is healthy and includes several vital nutrients and microbiomes. Probiotics in milk and their derivatives modulate the immune system, fight inflammation, and protect against numerous diseases. The present study aimed to isolate novel bacterial species with probiotic potential for neuroinflammation. Materials and Methods: Six milk samples were collected from lactating dairy cows. Bacterial isolates were obtained using standard methods and were evaluated based on probiotic characteristics such as the catalase test, hemolysis, acid/bile tolerance, cell adhesion, and hydrophobicity, as well as in vitro screening. Results: Nine morphologically diverse bacterial isolates were found in six different types of cow's milk. Among the isolates, PO3 displayed probiotic characteristics. PO3 was a Gram-positive rod cell that grew in an acidic (pH-2) salty medium containing bile salt and salinity (8% NaCl). PO3 also exhibited substantial hydrophobicity and cell adhesion. The sequencing comparison of the 16S rRNA genes revealed that PO3 was Lactococcus raffinolactis with a similarity score of 99.3%. Furthermore, PO3 was assessed for its neuroanti-inflammatory activity on human oligodendrocyte (HOG) cell lines using four different neuroimmune markers: signal transducer and activator of transcription (STAT-3), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and GLAC in HOG cell lines induced by MOG. Unlike the rest of the evaluated neuroimmune markers, STAT-3 levels were elevated in the MOG-treated HOG cell lines compared to the untreated ones. The expression level of STAT-3 was attenuated in both PO3-MOG-treated and only PO3-treated cell lines. On the contrary, in PO3-treated cell lines, MBP, GFAP, and GLAC were significantly expressed at higher levels when compared with the MOG-treated cell lines. Conclusions: The findings reported in this article are to be used as a foundation for further in vivo research in order to pave the way for the possible use of probiotics in the treatment of neuroinflammatory diseases, including multiple sclerosis.


Assuntos
Lactação , Probióticos , Animais , Bovinos , Feminino , Humanos , RNA Ribossômico 16S/genética , Probióticos/uso terapêutico , Oligodendroglia , Bactérias , Lactococcus/genética
11.
Microb Cell Fact ; 22(1): 178, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689693

RESUMO

BACKGROUND: γ-aminobutyric acid (GABA) is a bioactive compound produced by lactic acid bacteria (LAB). The diversity of GABA production in the Lactococcus genus is poorly understood. Genotypic and phenotypic approaches were therefore combined in this study to shed light on this diversity. A comparative genomic study was performed on the GAD-system genes (gadR, gadC and gadB) involved in GABA production in 36 lactococci including L. lactis and L. cremoris species. In addition, 132 Lactococcus strains were screened for GABA production in culture medium supplemented with 34 mM L-glutamic acid with or without NaCl (0.3 M). RESULTS: Comparative analysis of the nucleotide sequence alignments revealed the same genetic organization of the GAD system in all strains except one, which has an insertion sequence element (IS981) into the PgadCB promoter. This analysis also highlighted several deletions including a 3-bp deletion specific to the cremoris species located in the PgadR promoter, and a second 39-bp deletion specific to L. cremoris strains with a cremoris phenotype. Phenotypic analysis revealed that GABA production varied widely, but it was higher in L. lactis species than in L. cremoris, with an exceptional GABA production of up to 14 and 24 mM in two L. lactis strains. Moreover, adding chloride increased GABA production in some L. cremoris and L. lactis strains by a factor of up to 16 and GAD activity correlated well with GABA production. CONCLUSIONS: This genomic analysis unambiguously characterized the cremoris phenotype of L. cremoris species and modified GadB and GadR proteins explain why the corresponding strains do not produce GABA. Finally, we found that glutamate decarboxylase activity revealing GadB protein amount, varied widely between the strains and correlated well with GABA production both with and without chloride. As this protein level is associated to gene expression, the regulation of GAD gene expression was identified as a major contributor to this diversity.


Assuntos
Cloretos , Lactococcus , Fenótipo , Meios de Cultura , Ácido gama-Aminobutírico
12.
J Aquat Anim Health ; 35(3): 187-198, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37749801

RESUMO

OBJECTIVE: The first objective of the study aimed to detect the presence of Lactococcus petauri, L. garvieae, and L. formosensis in fish (n = 359) and environmental (n = 161) samples from four lakes near an affected fish farm in California during an outbreak in 2020. The second objective was to compare the virulence of the Lactococcus spp. in Rainbow Trout Oncorhynchus mykiss and Largemouth Bass Micropterus salmoides. METHODS: Standard bacterial culture methods were used to isolate Lactococcus spp. from brain and posterior kidney of sampled fish from the four lakes. Quantitative PCR (qPCR) was utilized to detect Lactococcus spp. DNA in fish tissues and environmental samples from the four lakes. Laboratory controlled challenges were conducted by injecting fish intracoelomically with representative isolates of L. petauri (n = 17), L. garvieae (n = 2), or L. formosensis (n = 4), and monitored for 14 days postchallenge (dpc). RESULT: Lactococcus garvieae was isolated from the brains of two Largemouth Bass in one of the lakes. Lactococcus spp. were detected in 14 fish (8 Bluegills Lepomis macrochirus and 6 Largemouth Bass) from 3 out of the 4 lakes using a qPCR assay. Of the collected environmental samples, all 4 lakes tested positive for Lactococcus spp. in the soil samples, while 2 of the 4 lakes tested positive in the water samples through qPCR. Challenged Largemouth Bass did not show any signs of infection postinjection throughout the challenge period. Rainbow Trout infected with L. petauri showed clinical signs within 3 dpc and presented a significantly higher cumulative mortality (62.4%; p < 0.0001) at 14 dpc when compared to L. garvieae (0%) and L. formosensis (7.5%) treatments. CONCLUSION: The study suggests that qPCR can be used for environmental DNA monitoring of Lactococcus spp. and demonstrates virulence diversity between the etiological agents of piscine lactococcosis.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Positivas , Oncorhynchus mykiss , Animais , Virulência , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/veterinária , Infecções por Bactérias Gram-Positivas/microbiologia , Lagos , Lactococcus/genética , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia
13.
J Fish Dis ; 46(9): 929-942, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37309584

RESUMO

The isolation and characterization of bacterial species Lactococcus garvieae, previously unreported in whiteleg shrimp, Penaeus vannamei, has now been identified in the species. The pathogen was recovered from an affected shrimp farm in southern Taiwan. Bacterial characterization first identified the isolate as Gram-positive cocci, and biochemical profiles demonstrated that the causative agent of mortality was 97% L. garvieae. The bacterial cell DNA resulted in amplification of 1522 bp with 99.6% confirmation by PCR analysis. The phylogenetic tree revealed 100% evolutionary similarity among previously isolated strains. Experimental infection further confirmed higher susceptibility of whiteleg shrimp to L. garvieae in waters of lower salinity, particularly 5 ppt, than in higher salinity. Histopathological analysis showed severely damaged hepatopancreas with necrotized, elongated, collapsed tubules, dislodged membranes and granuloma formation in infected shrimp. Transmission electron microscopy observation indicated a hyaluronic acid capsular layer surrounding bacterial cell which is a virulence factor of L. garvieae and likely responsible for immunosuppression and higher mortality of shrimp cultured in lower salinity. Collectively, these findings report the first isolation of L. garvieae from whiteleg shrimp and shed new light on the disease that threatens the highly valuable species and accentuates the need for finding a solution.


Assuntos
Doenças dos Peixes , Penaeidae , Animais , Penaeidae/microbiologia , Filogenia , Salinidade , Doenças dos Peixes/microbiologia , Bactérias , Lactococcus , Água
14.
J Fish Dis ; 46(8): 841-848, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37126651

RESUMO

The emergence of antibiotic-resistant pathogenic strains of Lactococcus garvieae serotype II isolated from fish in Japan has become a growing concern in recent years. The data on drug susceptibility and its associated resistance mechanism are limited. Therefore, the present study was conducted to determine the minimum inhibitory concentrations (MICs) of chemotherapeutic agents against 98 pathogenic strains of emerging Lactococcus garvieae serotype II isolated from fish from six different prefectures in Japan from 2018 to 2021. The tested strains were resistant to erythromycin, lincomycin and tiamulin. PCR amplification revealed the presence of erm(B) in all erythromycin-resistant strains, while a conjugation experiment confirmed that these strains carried erm(B) that could be transferred to recipient Enterococcus faecalis OG1RF with frequencies from 10-4 to 10-6 per donor cells. Nucleotide sequencing of the representative isolated plasmid pkh2101 from an erythromycin-resistant strain showed that it was a 26,850 bp molecule with an average GC content of 33.49%, comprising 31 CDSs, 13 of which remained without any functional annotation. Comparative genomic analysis suggested that pkh2101 shared the highest similarity (97.57% identity) with the plasmid pAMbeta1, which was previously isolated clinically from Enterococcus faecalis DS-5. This study provides potential evidence that the plasmid harbouring erm(B) could be a source of antibiotic resistance transmission in emerging L. garvieae infection in aquaculture.


Assuntos
Doenças dos Peixes , Animais , Japão , Sorogrupo , Plasmídeos/genética , Lactococcus/genética , Eritromicina , Genômica
15.
Food Res Int ; 168: 112789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120235

RESUMO

In the Shennongjia region of China, two types of zha-chili with distinct flavors exist: the first type (P zha-chili) uses a significant amount of chili pepper but no potato, while the other (PP zha-chili) contains a smaller amount of chili pepper but a proportion of potato. In order to investigate the bacterial diversity and sensory properties of these two types of zha-chili, this study employed a combination of amplicon sequencing, culture-based methods, and sensory technology. The results of the study showed statistically significant differences (P < 0.05) in bacterial diversity and communities between the two types of zha-chili. In particular, four dominant lactic acid bacteria (LAB) genera - Lactiplantibacillus, Lactococcus, Leuconostoc, and Weissella - were significantly enriched in PP zha-chili. The findings suggest that the proportions of chili pepper and potato can influence the bacterial diversity and content of LAB, with a higher proportion of chili pepper potentially inhibiting the growth of harmful species within the Enterobacteriaceae family. The study also used culture-based methods to identify the most dominant bacteria in the zha-chili samples as Lactiplantibacillus plantarum group, Companilactobacillus alimentarius, and Lacticaseibacillus paracasei. Correlation analysis indicated that LAB likely plays a significant role in shaping the aroma profile of zha-chili, with Levilactobacillus, Leuconostoc, Lactiplantibacillus, and Lactococcus showing correlation with E-nose sensory indices. However, these LAB were not significantly correlated with the taste properties of zha-chili. The study provides new insights into the influence of chili pepper and potato on the microbial diversity and flavor properties of zha-chili, and also presents potential LAB isolates for future research on zha-chili.


Assuntos
Capsicum , Lactobacillales , Weissella , Bactérias , Enterobacteriaceae , Leuconostoc , Lactococcus
16.
J Fish Dis ; 46(8): 829-839, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37092800

RESUMO

Lactococcosis, caused by members of the genus Lactococcus, represents a devastating disease inducing mass mortalities and economic losses in many fish species worldwide. The present work aimed to compare the whole genome sequences of three different serotypes of Lactococcus garvieae isolated from diseased cultured striped jack (Pseudocaranx dentex) in Ehime prefecture, Japan. The three serotypes showed different virulence in the challenge test using Japanese amberjack (Seriola quinqueradiata). The genome sequencing revealed that two of the strains (serotype I and serotype III) were identified as L. garvieae, while the third strain (serotype II) was identified as L. formosensis. The chromosome sizes of the three serotypes ranged from 1.9 to 2.0 Mb; the GC content ranges were 38.2 to 38.9%; and the numbers of predicted protein-coding sequences (CDSs) were from 1922 to 1959. Only the serotype II harbours two plasmids, sizes of around 14 kb and 9 kb. The detected virulence factors varied among the different serotypes with some shared factors like adherence, anti-phagocytosis, secretion system, toxin (haemolysin), serum resistance, antimicrobial resistance and others. The genomes also contained factors responsible for resistance to toxic compounds. The genome of the serotype III tended to encode more prophage regions than the other serotypes.


Assuntos
Doenças dos Peixes , Animais , Sorogrupo , Doenças dos Peixes/microbiologia , Peixes , Lactococcus/genética , Japão
17.
Int J Food Microbiol ; 395: 110183, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37001480

RESUMO

Interaction between Listeria monocytogenes and resident background microbiota may occur in food processing environments and may influence the survival of this pathogen in a factory environment. Therefore the aim of this study was to characterize the growth performance of microbiota isolated from the processing environments of frozen sliced mushrooms, and to investigate the competitive performance of L. monocytogenes when co-cultured with accompanying environmental microbiota. Acinetobacter, Enterobacteriaceae, Lactococcus and Pseudomonas were the most prominent background microbiota isolated from the processing environment of frozen sliced mushrooms. All individual microbiota strains were able to grow and form biofilm in filter-sterilized mushroom medium, with the mannitol-consumers Raoultella and Ewingella as top performers, reaching up to 9.6 and 9.8 log CFU/mL after 48 h incubation at room temperature. When L. monocytogenes mushroom isolates were co-cultured with the microbiota strains, L. monocytogenes counts ranged from 7.6 to 8.9 log CFU/mL after 24 h of incubation, while counts of the microbiota strains ranged from 5.5 to 9.0 log CFU/mL. Prolonged incubation up to 48 h resulted in further increase of L. monocytogenes counts when co-cultured with non-acidifying species Pseudomonas and Acinetobacter reaching 9.1 to 9.2 log CFU/mL, while a decrease of L. monocytogenes counts reaching 5.8 to 7.7 log CFU/mL was observed in co-culture with Enterobacteriaceae and acidifying Lactococcus representatives. In addition, L. monocytogenes grew also in spent mushroom media of the microbiota strains, except in acidified spent media of Lactococcus strains. These results highlight the competitive ability of L. monocytogenes during co-incubation with microbiota in fresh and in spent mushroom medium, indicative of its invasion and persistence capacity in food processing factory environments.


Assuntos
Agaricales , Listeria monocytogenes , Microbiota , Microbiologia de Alimentos , Manipulação de Alimentos , Pseudomonas , Enterobacteriaceae , Lactococcus , Contagem de Colônia Microbiana
18.
Int J Food Microbiol ; 394: 110188, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36989928

RESUMO

In this study, PDO Provola dei Nebrodi cheese was deeply characterized for its bacterial community and chemical composition. Four dairy factories (A-D) were monitored from milk to ripened cheese. Wooden vat biofilms were dominated by thermophilic rod LAB (4.6-6.5 log CFU/cm2). Bulk milk showed consistent levels of total mesophilic microorganisms (TMM) (5.0-6.0 log CFU/mL) and, after curdling, a general increase was recorded. The identification of the dominant LAB in wooden vat biofilms and ripened cheeses showed that the majority of wooden vat LAB were lactococci and Streptococcus thermophilus, while cheese LAB mainly belonged to Lacticaseibacillus paracasei and Enterococcus. Illumina sequencing identified 22 taxonomic groups; streptococci, lactococci, lactobacilli and other LAB constituted the majority of the total relative abundance % of the wooden vat (69.01-97.58 %) and cheese (81.57-99.87 %) bacterial communities. Regarding chemical composition, the effect of dairy factories was significant only for protein content. Inside cheese color was lighter and yellower than surface. Differences in fatty acids regarded only myristic acid and total amount of monounsaturated fatty acids. The sensory evaluation indicated some differences among cheeses produced in the four dairies regarding color, homogeneity of structure, overall intensity, salty, spicy, and hardness. The integrated approach applied in this study showed that PDO Provola dei Nebrodi cheese characteristics are quite stable among the dairy factories analyzed and this has to be unavoidably imputed to the application of the same cheese making protocol among different dairies.


Assuntos
Queijo , Animais , Queijo/microbiologia , Streptococcus , Lactobacillus , Streptococcus thermophilus/metabolismo , Enterococcus , Lactococcus , Leite/microbiologia
19.
J Fish Dis ; 46(7): 731-741, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36943008

RESUMO

Lactococcosis, caused by the Gram-positive bacterium Lactococcus garvieae, is a major concern in rainbow trout (Oncorhynchus mykiss) farms, which are regularly affected by outbreaks especially during the summer/fall months. In these farms, unvaccinated healthy and symptomatic fish can coexist with vaccinated fish. In the present study, innate (leukogram, serum lysozyme activity, peroxidase activity, antiprotease activity, bactericidal activity, total IgM and total proteins), and specific immune parameters (serum antibodies to L. garvieae) were assessed in unvaccinated adult rainbow trout naturally exposed to the pathogen, with or without evidence of clinical signs, or subjected to vaccination. Blood was drawn from all three groups, and blood smears were prepared. Bacteria were found in the blood smears of 70% of the symptomatic fish but not in any of the asymptomatic fish. Symptomatic fish showed lower blood lymphocytes and higher thrombocytes than asymptomatic fish (p ≤ .05). Serum lysozyme and bactericidal activity did not vary substantially among groups; however, serum antiprotease and peroxidase activity were significantly lower in the unvaccinated symptomatic group than in the unvaccinated and vaccinated asymptomatic groups (p ≤ .05). Serum total proteins and total immunoglobulin (IgM) levels in vaccinated asymptomatic rainbow trout were significantly higher than in unvaccinated asymptomatic and symptomatic groups (p ≤ .05). Similarly, vaccinated asymptomatic fish produced more specific IgM against L. garvieae than unvaccinated asymptomatic and symptomatic fish (p ≤ .05). This preliminary study provides basic knowledge on the immunological relationship occurring between the rainbow trout and L. garvieae, potentially predicting health outcomes. The approach we proposed could facilitate infield diagnostics, and several non-specific immunological markers could serve as reliable indicators of the trout's innate ability to fight infection.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Positivas , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/microbiologia , Infecções por Bactérias Gram-Positivas/prevenção & controle , Infecções por Bactérias Gram-Positivas/veterinária , Infecções por Bactérias Gram-Positivas/microbiologia , Muramidase , Doenças dos Peixes/microbiologia , Lactococcus , Anticorpos Antibacterianos , Imunoglobulina M , Peroxidases
20.
J Neonatal Perinatal Med ; 16(1): 187-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36872796

RESUMO

Lactococcus garvieae is a gram-positive cocci that has primarily been described as a pathogen in various fish species, but has increasingly been reported to cause endocarditis and other infections in humans [1]. Neonatal infection caused by Lactococcus garvieae has not been previously reported. Here we describe a premature neonate who developed a urinary tract infection with this organism and was successfully treated with vancomycin therapy.


Assuntos
Endocardite Bacteriana , Infecções por Bactérias Gram-Positivas , Doenças do Recém-Nascido , Infecções Urinárias , Animais , Recém-Nascido , Humanos , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Lactococcus , Infecções Urinárias/diagnóstico , Infecções Urinárias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...