Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.182
Filtrar
1.
Vet Res ; 55(1): 48, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594744

RESUMO

Actinobacillus pleuropneumoniae (APP) is a bacterium frequently associated with porcine pleuropneumonia. The acute form of the disease is highly contagious and often fatal, resulting in significant economic losses for pig farmers. Serotype diversity and antimicrobial resistance (AMR) of APP strains circulating in north Italian farms from 2015 to 2022 were evaluated retrospectively to investigate APP epidemiology in the area. A total of 572 strains isolated from outbreaks occurring in 337 different swine farms were analysed. The majority of isolates belonged to serotypes 9/11 (39.2%) and 2 (28.1%) and serotype diversity increased during the study period, up to nine different serotypes isolated in 2022. The most common resistances were against tetracycline (53% of isolates) and ampicillin (33%), followed by enrofloxacin, florfenicol and trimethoprim/sulfamethoxazole (23% each). Multidrug resistance (MDR) was common, with a third of isolates showing resistance to more than three antimicrobial classes. Resistance to the different classes and MDR varied significantly depending on the serotype. In particular, the widespread serotype 9/11 was strongly associated with florfenicol and enrofloxacin resistance and showed the highest proportion of MDR isolates. Serotype 5, although less common, showed instead a concerning proportion of trimethoprim/sulfamethoxazole resistance. Our results highlight how the typing of circulating serotypes and the analysis of their antimicrobial susceptibility profile are crucial to effectively manage APP infection and improve antimicrobial stewardship.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Suínos , Tianfenicol/análogos & derivados , Suínos , Animais , Sorogrupo , Testes de Sensibilidade Microbiana/veterinária , Enrofloxacina , Fazendas , Estudos Retrospectivos , Pleuropneumonia/epidemiologia , Pleuropneumonia/veterinária , Pleuropneumonia/microbiologia , Antibacterianos/farmacologia , Sulfametoxazol/farmacologia , Trimetoprima/farmacologia , Itália/epidemiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/epidemiologia , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Sorotipagem/veterinária
2.
Environ Sci Technol ; 58(15): 6753-6762, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38526226

RESUMO

Pharmaceutical residues in sediments are concerning as ubiquitous emerging contaminants. Pyrite is the most abundant sulfide minerals in the estuarine and coastal sediments, making it a major sink for pharmaceutical pollutants such as sulfamethoxazole (SMX). However, research on the adsorption and redox behaviors of SMX on the pyrite surface is limited. Here, we investigated the impact of the nonphotochemical process of pyrite on the fate of coexisting SMX. Remarkably, sulfur vacancies (SVs) on pyrite promoted the generation of nonradical species (hydrogen peroxide, H2O2 and singlet oxygen, 1O2), thereby exhibiting prominent SMX degradation performance under darkness. Nonradical 1O2 contributed approximately 73.1% of the total SMX degradation. The SVs with high surrounding electron density showed an advanced affinity for adsorbing O2 and then initiated redox reactions in the sediment electron-storing geobattery pyrite, resulting in the extensive generation of H2O2 through a two-electron oxygen reduction pathway. Surface Fe(III) (hydro)oxides on pyrite facilitated the decomposition of H2O2 to 1O2 generation. Distinct nonradical products were observed in all investigated estuarine and coastal samples with the concentrations of H2O2 ranging from 1.96 to 2.94 µM, while the concentrations of 1O2 ranged from 4.63 × 10-15 to 8.93 × 10-15 M. This dark-redox pathway outperformed traditional photochemical routes for pollutant degradation, broadening the possibilities for nonradical species use in estuarine and coastal sediments. Our study highlighted the SV-triggered process as a ubiquitous yet previously overlooked source of nonradical species, which offered fresh insights into geochemical processes and the dynamics of pollutants in regions of frequent redox oscillations and sulfur-rich sediments.


Assuntos
Poluentes Ambientais , Ferro , Oxigênio Singlete , Compostos Férricos/química , Sulfametoxazol , Peróxido de Hidrogênio , Sulfetos/química , Enxofre , Oxirredução , Preparações Farmacêuticas
3.
Huan Jing Ke Xue ; 45(2): 837-843, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471922

RESUMO

The Yellow River water of an urban area located in the middle and lower reaches of the Yellow River was taken as the research object, in which the seasonal and along-range distribution of total culturable bacteria, typical antibiotic resistant bacteria (amoxicillin resistant bacteria and sulfamethoxazole-resistant bacteria), and their corresponding typical resistance genes ï¼»ß-lactam resistance gene (blaCTX-M) and sulfamamide resistance genes (sulI and sulⅡ), as well as intⅠ1 were investigated. The results showed that the total culturable bacteria, ß-lactam-resistant bacteria and sulfonamide-resistant bacteria in the Yellow River Basin were significantly affected by temperature and human activities. The composition and quantity of their genera had obvious spatiotemporal distribution characteristics, in which Bacillus and Pseudomonas were dominant in the composition and number of bacteria. The abundance of resistance genes decreased with the decrease in temperature. The proportion of ß-lactam resistance genes in the total genes was higher than that of sulfanilamide genes, and sulI was the dominant gene in sulfanilamide genes. Correlation analysis showed that class Ⅰ integron played an important role in accelerating the spread of resistance genes. This study offers insight into the status quo of water resistance pollution in the Yellow River and provides theoretical support for the risk assessment of resistance genes in the middle and lower reaches of the Yellow River Basin.


Assuntos
Rios , Água , Humanos , Rios/microbiologia , Antibacterianos/análise , Bactérias/genética , Sulfametoxazol , China
4.
Huan Jing Ke Xue ; 45(2): 898-908, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471928

RESUMO

Magnetic phosphorous biochar (MPBC) was prepared from Camellia oleifera shells using phosphoric acid activation and iron co-deposition. The materials were characterized and analyzed through scanning electron microscopy (SEM), X-ray diffractometry (XRD), specific surface area and pore size analysis (BET), Fourier infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). MPBC had a high surface area (1 139.28 m2·g-1) and abundant surface functional groups, and it could achieve fast solid-liquid separation under the action of an external magnetic field. The adsorption behavior and influencing factors of sulfamethoxazole (SMX) in water were investigated. The adsorbent showed excellent adsorption properties for SMX under acidic and neutral conditions, and alkaline conditions and the presence of CO32- had obvious inhibition on adsorption. The adsorption process conformed to the quasi-second-order kinetics and Langmuir model. The adsorption rate was fast, and the maximum adsorption capacity reached 356.49 mg·g-1. The adsorption process was a spontaneous exothermic reaction, and low temperature was beneficial to the adsorption. The adsorption mechanism was mainly the chemisorption of pyrophosphate surface functional groups (C-O-P bond) between the SMX molecule and MPBC and also included hydrogen bonding, π-π electron donor-acceptor (π-πEDA) interaction, and a pore filling effect. The development of MPBC adsorbent provides an effective way for resource utilization of waste Camellia oleifera shells and treatment of sulfamethoxazole wastewater.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Fósforo , Cinética , Fenômenos Magnéticos
5.
Bioprocess Biosyst Eng ; 47(4): 475-482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480583

RESUMO

Use of white-rot fungi for enzyme-based bioremediation of wastewater is of high interest. These fungi produce considerable amounts of extracellular ligninolytic enzymes during solid-state fermentation on lignocellulosic materials such as straw and sawdust. We used pure sawdust colonized by Pleurotus ostreatus, Trametes versicolor, and Ganoderma lucidum for extraction of ligninolytic enzymes in aqueous suspension. Crude enzyme suspensions of the three fungi, with laccase activity range 12-43 U/L and manganese peroxidase activity range 5-55 U/L, were evaluated for degradation of 11 selected pharmaceuticals spiked at environmentally relevant concentrations. Sulfamethoxazole was removed significantly in all treatments. The crude enzyme suspension from P. ostreatus achieved degradation of wider range of pharmaceuticals when the enzyme activity was increased. Brief homogenization of the colonized sawdust was also observed to be favorable, resulting in significant reductions after a short exposure of 5 min. The highest reduction was observed for sulfamethoxazole which was reduced by 84% compared to an autoclaved control without enzyme activity and for trimethoprim which was reduced by 60%. The compounds metoprolol, lidocaine, and venlafaxine were reduced by approximately 30% compared to the control. Overall, this study confirmed the potential of low-cost lignocellulosic material as a substrate for production of enzymes from white-rot fungi. However, monitoring over time in bioreactors revealed a rapid decrease in enzymatic ligninolytic activity.


Assuntos
Pleurotus , Trametes , Lacase/química , Lignina/metabolismo , Fermentação , Sulfametoxazol/metabolismo , Preparações Farmacêuticas/metabolismo , Biodegradação Ambiental
6.
Chemosphere ; 353: 141586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452980

RESUMO

Heterogeneous activation of peroxomonosulfate (PMS) has been extensively studied for the degradation of antibiotics. The cobalt ferrite spinel exhibits good activity in the PMS activation, but suffers from the disadvantage of low PMS utilization efficiency. Herein, the nanocomposites including FeS, CoS2, CoFe2O4 and Fe2O3 were synthesized by hydrothermal method and used for the first time to activate PMS for the removal of sulfamethoxazole (SMX). The nanocomposites showed superior catalytic activity in which the SMX could be completely removed at 40 min, 0.1 g L-1 nanocomposites and 0.4 mM PMS with the first order kinetic constant of 0.2739 min-1. The PMS utilization efficiency was increased by 29.4% compared to CoFe2O4. Both radicals and non-radicals contributed to the SMX degradation in which high-valent metal oxo dominated. The mechanism analysis indicated that sulfur modification, on one hand, enhanced the adsorption of nanocomposites for PMS, and promoted the redox cycles of Fe2+/Fe3+ and Co2+/Co3+ on the other hand. This study provides new way to enhance the catalytic activity and PMS utilization efficiency of spinel cobalt ferrite.


Assuntos
Óxido de Alumínio , Cobalto , Compostos Férricos , Óxido de Magnésio , Nanocompostos , Sulfametoxazol , Peróxidos
7.
J Hazard Mater ; 469: 133911, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430597

RESUMO

The activation of peracetic acid (PAA) by activated carbon (AC) is a promising approach for reducing micropollutants in groundwater. However, to harness the PAA/AC system's potential and achieve sustainable and low-impact groundwater remediation, it is crucial to quantify the individual contributions of active species. In this study, we developed a combined degradation kinetic and adsorption mass transfer model to elucidate the roles of free radicals, electron transfer processes (ETP), and adsorption on the degradation of antibiotics by PAA in groundwater. Our findings reveal that ETP predominantly facilitated the activation of PAA by modified activated carbon (AC600), contributing to ∼61% of the overall degradation of sulfamethoxazole (SMX). The carbonyl group (CO) on the surface of AC600 was identified as a probable site for the ETP. Free radicals contributed to ∼39% of the degradation, while adsorption was negligible. Thermodynamic and activation energy analyses indicate that the degradation of SMX within the PAA/AC600 system requires a relatively low energy input (27.66 kJ/mol), which is within the lower range of various heterogeneous Fenton-like reactions, thus making it easily achievable. These novel insights enhance our understanding of the AC600-mediated PAA activation mechanism and lay the groundwork for developing efficient and sustainable technologies for mitigating groundwater pollution. ENVIRONMENTAL IMPLICATION: The antibiotics in groundwater raises alarming environmental concerns. As groundwater serves as a primary source of drinking water for nearly half the global population, the development of eco-friendly technologies for antibiotic-contaminated groundwater remediation becomes imperative. The innovative PAA/AC600 system demonstrates significant efficacy in degrading micropollutants, particularly sulfonamide antibiotics. By integrating degradation kinetics and adsorption mass transfer models, this study sheds light on the intricate mechanisms involved, emphasizing the potential of carbon materials as sustainable tools in the ongoing battle for clean and safe groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antibacterianos , Ácido Peracético , Oxirredução , Carvão Vegetal , Adsorção , Elétrons , Peróxido de Hidrogênio , Sulfametoxazol
8.
J Hazard Mater ; 469: 133964, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452680

RESUMO

High frequent detection of sulfamethoxazole (SMX) in wastewater cannot be effectively removed by constructed wetlands (CWs) with a traditional river sand substrate. The role of emerging substrate of hematite in promoting SMX removal and the effect of influent SMX loads remain unclear. The removal efficiency of SMX in hematite CWs was significantly higher than that in river sand CWs by 12.7-13.8% by improving substrate adsorption capacity, plant uptake and microbial degradation. With increasing influent SMX load, the removal efficiency of SMX in hematite CWs slightly increased, and the removal pathways varied significantly. The contribution of plant uptake was relatively small (< 0.1%) under different influent SMX loads. Substrate adsorption (37.8%) primarily contributed to SMX removal in hematite CWs treated with low-influent SMX. Higher influent SMX loads decreased the contribution of substrate adsorption, and microbial degradation (67.0%) became the main removal pathway. Metagenomic analyses revealed that the rising influent load increased the abundance of SMX-degrading relative bacteria and the activity of key enzymes. Moreover, the abundance of high-risk ARGs and sulfonamide resistance genes in hematite CWs did not increase with the increasing influent load. This study elucidates the potential improvements in CWs with hematite introduction under different influent SMX loads.


Assuntos
Compostos Férricos , Sulfametoxazol , Áreas Alagadas , Sulfametoxazol/análise , Areia , Águas Residuárias , Antibacterianos/análise
9.
Chemosphere ; 354: 141675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484989

RESUMO

This study aimed to investigate adsorption effects of electron scavengers (H2O2 and S2O82-) on oxidation performance for mineralization of sulfamethoxazole (SMX) in radiation treatment using catalysts (Al2O3, TiO2). Hydrogen peroxide (H2O2, 1 mM) as an electron scavenger showed weak adsorption onto catalysts (0.012 mmol g-1-Al2O3 and 0.004 mmol g-1-TiO2, respectively), leading to an increase in TOC removal efficiency of SMX within the absorbed dose of 30 kGy by 12.3% with Al2O3 and by 8.0% with TiO2. The weak adsorption of H2O2 onto the catalyst allowed it to act as an electron scavenger, promoting indirect decomposition reactions. However, high adsorption of S2O82- (1 mM) onto Al2O3 (0.266 mmol g-1-Al2O3) showed a decrease in TOC removal efficiency of SMX from 76.2% to 30.2% within the absorbed dose of 30 kGy. The high adsorption of S2O82- onto the catalyst inhibited direct decomposition reaction by reducing adsorption of SMX on catalysts. TOC removal efficiency for Al2O3 without electron scavengers in an acidic condition was higher than that in a neutral or alkaline condition. However, TOC removal efficiency for Al2O3 with S2O82- was higher in a neutral condition than in other pH conditions. This indicates that the pH of a solution plays a critical role in the catalytic oxidation performance by determining surface charges of catalysts and yield of reactive radicals produced from water radiolysis. In the radiocatalytic system, H2O2 enhances the oxidation performance of catalysts (Al2O3 and TiO2) over a wide pH range (3-11). Meanwhile, S2O82- is not suitable with Al2O3 in acidic conditions because of its strong adsorption onto Al2O3 in this study.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/química , Peróxido de Hidrogênio/química , Adsorção , Elétrons , Poluentes Químicos da Água/análise , Oxirredução , Catálise
10.
Sci Total Environ ; 924: 171597, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461980

RESUMO

Sulfamethoxazole (SMX) is a common antibiotic pollutant in aquatic environments, which is highly persistent under various conditions and significantly contributes to the spread of antibiotic resistance. Biodegradation is the major pathway to eliminate antibiotics in the natural environment. The roles of bacteria and eukaryotes in the biodegradation of antibiotics have received considerable attention; however, their successions and co-occurrence patterns during the biodegradation of antibiotics remain unexplored. In this study, 13C-labled SMX was amended to sediment samples from Zhushan Bay (ZS), West Shore (WS), and Gonghu Bay (GH) in Taihu Lake to explore the interplay of bacterial and eukaryotic communities during a 30-day incubation period. The cumulative SMX mineralization on day 30 ranged from 5.2 % to 19.3 %, which was the highest in WS and the lowest in GH. The bacterial community showed larger within-group interactions than between-group interactions, and the positive interactions decreased during incubation. However, the eukaryotic community displayed larger between-group interactions than within-group interactions, and the positive interactions increased during incubation. The proportion of negative interactions between bacteria and eukaryotes increased during incubation. Fifty genera (including 46 bacterial and 4 eukaryotic genera) were identified as the keystone taxa due to their dominance in the co-occurrence network and tolerance to SMX. The cumulative relative abundance of these keystone taxa significantly increased during incubation and was consistent with the SMX mineralization rate. These taxa closely cooperated and played vital roles in co-occurrence networks and microbial community interactions, signifying their crucial role in SMX mineralization. These findings broadened our understanding of the complex interactions of microorganisms under SMX exposure and their potential functions during SMX mineralization, providing valuable insights for in situ bioremediation.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/metabolismo , Lagos/microbiologia , Antibacterianos/metabolismo , Bactérias/metabolismo , Poluentes Químicos da Água/análise
11.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542893

RESUMO

A disposable electrochemical sensor based on silver nanoparticle-embedded cellulose hydrogel composites was developed for sensitive detection of sulfamethoxazole residues in meat samples. Scanning electron microscopy confirmed the porous structure of the cellulose matrix anchored with 20-50 nm silver nanoparticles (AgNPs). Fourier transform infrared spectroscopy and X-ray diffraction verified that the metallic AgNPs coordinated with the amorphous cellulose chains. At an optimum 0.5% loading, the nanocomposite sensor showed a peak-to-peak separation of 150 mV, diffusion-controlled charge transfer kinetics, and an electron transfer coefficient of 0.6 using a ferro/ferricyanide redox probe. Square-wave voltammetry was applied for sensing sulfamethoxazole based on its two-electron oxidation peak at 0.72 V vs. Ag/AgCl in Britton-Robinson buffer of pH 7.0. A linear detection range of 0.1-100 µM sulfamethoxazole was obtained with a sensitivity of 0.752 µA/µM and limit of detection of 0.04 µM. Successful recovery between 86 and 92% and less than 6% RSD was achieved from spiked meat samples. The key benefits of the proposed disposable sensor include facile fabrication, an antifouling surface, and a reliable quantification ability, meeting regulatory limits. This research demonstrates the potential of novel cellulose-silver nanocomposite materials towards developing rapid, low-cost electroanalytical devices for decentralized on-site screening of veterinary drug residues to ensure food safety.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Sulfametoxazol , Nanopartículas Metálicas/química , Hidrogéis , Carne , Celulose , Técnicas Eletroquímicas/métodos
12.
ACS Appl Mater Interfaces ; 16(7): 8250-8265, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38326106

RESUMO

Pillararene cross-linked gelatin hydrogels were designed and synthesized to control the uptake and release of antibiotics using light. A suite of characterization techniques ranging from spectroscopy (FT-IR, 1H and 13C NMR, and MAS NMR), X-ray crystallographic analysis, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) was employed to investigate the physicochemical properties of hydrogels. The azobenzene-modified sulfamethoxazole (Azo-SMX) antibiotic was noncovalently incorporated into the hydrogel via supramolecular host-guest interactions to afford the A-hydrogel. While in its ground state, the Azo-SMX guest has a trans configuration structure and forms a thermodynamically stable inclusion complex with the pillar[5]arene motif in the hydrogel matrix. When the A-hydrogel was exposed to 365 nm UV light, Azo-SMX underwent a photoisomerization reaction. This changed the structure of Azo-SMX from trans to cis, and the material was released into the environment. The Azo-SMX released from the hydrogel was effective against both Gram-positive and Gram-negative bacteria. Importantly, the A-hydrogel exhibited a striking difference in antibacterial activity when applied to bacterial colonies in the presence and absence of UV light, highlighting the switchable antibacterial activity of A-hydrogel aided by light. In addition, all hydrogels containing pillar[5]arenes have demonstrated biocompatibility and effectiveness as scaffolds for biological and medical purposes.


Assuntos
Antibacterianos , Gelatina , Antibacterianos/farmacologia , Sulfametoxazol/farmacologia , Hidrogéis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Bactérias Gram-Negativas , Bactérias Gram-Positivas
13.
Sci Total Environ ; 918: 170546, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309340

RESUMO

The neurotoxic effects and mechanisms of low-dose and long-term sulfamethoxazole (SMZ) exposure remain unknown. This study exposed zebrafish to environmental SMZ concentrations and observed behavioral outcomes. SMZ exposure increased hyperactivity and altered the transcript levels of 17 genes associated with neurological function. It impaired intestinal function by reducing the number of intestinal goblet cells and lipid content. Metabolomic results indicated that the contents of several lipids and amino acids in the gut were altered, which might affect the expression levels of neurological function-related genes. Metagenomic results demonstrated that SMZ exposure substantially altered the composition of the gut microbiome. Zebrafish receiving a transplanted fecal microbiome from the SMZ group were also found to exhibit abnormal behavior, suggesting that the gut microbiome is an important target for SMZ exposure-induced neurobehavioral abnormalities. Multi-omics correlation analysis revealed that gut micrometabolic function was related to differential gut metabolite levels, which may affect neurological function through the gut-brain-axis. Reduced abundance of Lefsonia and Microbacterium was strongly correlated with intestinal metabolic function and may be the key bacterial genera in neurobehavioral changes. This study confirms for the first time that SMZ-induced neurotoxicity in zebrafish is closely mediated by alterations in the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Peixe-Zebra/genética , Sulfametoxazol/toxicidade , Metagenoma
14.
Sci Total Environ ; 918: 170857, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38340847

RESUMO

Sulfonamide antibiotics, extensively used in human and veterinary therapy, accumulate in agroecosystem soils through livestock manure and sewage irrigation. However, the interaction between sulfonamides and rice plants remains unclear. This study investigated the transformation behavior and toxicity of sulfamethoxazole (SMX) and its main metabolite, N4-acetyl-sulfamethoxazole (NASMX) in rice. SMX and NASMX were rapidly taken up by roots and translocated acropetally. NASMX showed higher accumulating capacity, with NASMX concentrations up to 20.36 ± 1.98 µg/g (roots) and 5.62 ± 1.17 µg/g (shoots), and with SMX concentrations up to 15.97 ± 2.53 µg/g (roots) and 3.22 ± 0.789 µg/g (shoots). A total of 18 intermediate transformation products of SMX were identified by nontarget screening using Orbitrap-HRMS, revealing pathways such as deamination, hydroxylation, acetylation, formylation, and glycosylation. Notably, NASMX transformed back into SMX in rice, a novel finding. Transcriptomic analysis highlights the involvements of cytochrome P450 (CYP450), acetyltransferase (ACEs) and glycosyltransferases (GTs) in these biotransformation pathways. Moreover, exposure to SMX and NASMX disrupts TCA cycle, amino acid, linoleic acid, nucleotide metabolism, and phenylpropanoid biosynthesis pathways of rice, with NASMX exerting a stronger impact on metabolic networks. These findings elucidate the sulfonamides' metabolism, phytotoxicity mechanisms, and contribute to assessing food safety and human exposure risk amid antibiotic pollution.


Assuntos
Oryza , Sulfametoxazol , Humanos , Sulfametoxazol/toxicidade , Sulfametoxazol/química , Oryza/metabolismo , Antibacterianos/química , Sulfonamidas , Solo/química , Sulfanilamida
15.
Sci Total Environ ; 922: 171186, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408670

RESUMO

Hydrological droughts are expected to increase in frequency and severity in many regions due to climate change. Over the last two decades, several droughts occurred in Europe, including the 2018-drought, which showed major adverse impacts for nature and different sectoral uses (e.g. irrigation, drinking water). While drought impacts on water quantity are well studied, little understanding exists on the impacts on water quality, particularly regarding pharmaceutical concentrations in surface waters. This study investigates the impact of the 2018-drought on concentrations of four selected pharmaceuticals (carbamazepine, sulfamethoxazole, diclofenac and metoprolol) in surface waters in Europe, with a major focus on the Elbe and Rhine rivers. Monitoring data were analysed for the period of 2010-2020 to estimate the spatiotemporal patterns of pharmaceuticals and assess the concentration responses in rivers during the 2018-drought compared to reference years. Our results indicate an overall deterioration in water quality, which can be attributed to the extremely low flow and higher water temperatures (∼ + 1.5 °C and + 2.0 °C in Elbe and Rhine, respectively) during the 2018-drought. Our results show an increase in the concentrations of carbamazepine, sulfamethoxazole, and metoprolol, but reduced concentrations of diclofenac during the 2018-drought. Significant increases in carbamazepine concentrations (+45 %) were observed at 3/6 monitoring stations in the upstream part of the Elbe, which was mainly attributed to less dilution of chemical loads from wastewater treatment plants under drought conditions. However, reduced diclofenac concentrations could be attributed to increased degradation processes under higher water temperatures (R2 = 0.60). Moreover, the rainfed-dominated Elbe exhibited more severe water quality deterioration than the snowmelt-dominated Rhine river, as the Elbe's reduction in dilution capacity was larger. Our findings highlight the need to account for the impacts of climate change and associated increases in droughts in water quality management plans, to improve the provision of water of good quality for ecosystems and sectoral needs.


Assuntos
Secas , Ecossistema , Diclofenaco , Metoprolol , Rios , Europa (Continente) , Carbamazepina , Sulfametoxazol , Preparações Farmacêuticas
16.
Bioresour Technol ; 397: 130482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403169

RESUMO

This study conducted an analysis of the variations in nitrogen metabolism pathways within constructed wetlands (CWs) using zeolite (CW-Z), ceramsite (CW-C), and lava (CW-L) under high concentration sulfamethoxazole (SMX) stress. The introduction of SMX hindered the formation of hydrogen bonds on the substrate surfaces; however, these surfaces still maintained a dense and thick biofilm. CW-Z exhibited superior removal efficiencies for ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) compared to CW-C and CW-L, with removal rates of 92.54 ± 2.88 % and 89.39 ± 6.74 %, respectively. Interestingly, the proportion of genes involved in nitrification, denitrification and nitrate reduction genes in CW-C (36.05 %) were higher than that in CW-C (29.81 %) and CW-L (29.70 %) but the interactions among nitrogen functional bacteria in CW-Z were much more complex. Further analysis of the nitrogen metabolism pathway indicated that under CW-Z enhanced dissimilatory nitrate reduction SMX stress, while CW-L enhanced assimilatory nitrate reduction process compared to CW-C.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Desnitrificação , Nitratos/análise , Sulfametoxazol , Áreas Alagadas , Compostos Orgânicos , Nitrogênio/análise
17.
Mar Pollut Bull ; 200: 116122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340373

RESUMO

The misuse of antibiotics has brought potential ecological risks to marine ecosystems, especially under a changing climate. Laboratory experiments were conducted to understand the impact of rising temperatures and antibiotic sulfamethoxazole (SMX) abuse on marine diatom Phaeodactylum tricornutum. Temperatures of 21 and 24 °C were optimal for the growth and photosynthetic characteristics of P. tricornutum. When exposed to higher temperatures (≥27 °C), the growth and photosynthesis were inhibited. High concentrations of SMX (≥100 mg/L) caused rapid and acute toxicological effects on the phytoplankton. In contrast, low concentrations of SMX (1 mg/L) exhibited hormesis. When P. tricornutum was exposed to SMX at high temperatures, the stress on the phytoplankton was even more pronounced. This suggests that the combination of rising temperatures and antibiotic pollution may have a more significant negative impact on marine phytoplankton than either stressor alone. Neglecting the interaction between these stressors may lead to underestimating their combined effects on marine ecosystems.


Assuntos
Diatomáceas , Sulfametoxazol/toxicidade , Temperatura , Ecossistema , Fotossíntese , Fitoplâncton , Antibacterianos/toxicidade
18.
J Antimicrob Chemother ; 79(4): 883-890, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38416407

RESUMO

OBJECTIVE: To develop and validate an UPLC-MS/MS assay for simultaneous determination of the total concentration of ceftazidime, ciprofloxacin, flucloxacillin, piperacillin, tazobactam, sulfamethoxazole, N-acetyl sulfamethoxazole and trimethoprim, and the protein-unbound concentration of flucloxacillin, in human plasma to be used for research and clinical practice. METHODS: Sample pretreatment included protein precipitation with methanol. For the measurement of protein-unbound flucloxacillin, ultrafiltration was performed at physiological temperature. For all compounds, a stable isotopically labelled internal standard was used. Reliability of the results was assessed by participation in an international quality control programme. RESULTS: The assay was successfully validated according to the EMA guidelines over a concentration range of 0.5-100 mg/L for ceftazidime, 0.05-10 mg/L for ciprofloxacin, 0.4-125 mg/L for flucloxacillin, 0.2-60 mg/L for piperacillin, 0.15-30 mg/L for tazobactam, 1-200 mg/L for sulfamethoxazole and N-acetyl sulfamethoxazole, 0.05-10 mg/L for trimethoprim and 0.10-50 mg/L for unbound flucloxacillin. For measurement of total concentrations, the within- and between-day accuracy ranged from 90.0% to 109%, and 93.4% to 108%, respectively. Within- and between-day precision (variation coefficients, CVs) ranged from 1.70% to 11.2%, and 0.290% to 5.30%, respectively. For unbound flucloxacillin, within-day accuracy ranged from 103% to 106% and between-day accuracy from 102% to 105%. The within- and between-day CVs ranged from 1.92% to 7.11%. Results of the international quality control programme showed that the assay is reliable. CONCLUSIONS: The method provided reliable, precise and accurate measurement of seven commonly prescribed antibiotics, including the unbound concentration of flucloxacillin. This method is now routinely applied in research and clinical practice.


Assuntos
Antibacterianos , Floxacilina , Humanos , Ceftazidima , Cromatografia Líquida/métodos , Monitoramento de Medicamentos/métodos , Reprodutibilidade dos Testes , 60705 , Espectrometria de Massas em Tandem/métodos , Piperacilina , Tazobactam , Ciprofloxacina , Trimetoprima , Sulfametoxazol , Cromatografia Líquida de Alta Pressão/métodos
19.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396892

RESUMO

Fluoroquinolones are potentially active against Elizabethkingia anophelis. Rapidly increased minimum inhibitory concentrations (MICs) and emerging point mutations in the quinolone resistance-determining regions (QRDRs) following exposure to fluoroquinolones have been reported in E. anophelis. We aimed to investigate point mutations in QRDRs through exposure to levofloxacin (1 × MIC) combinations with different concentrations (0.5× and 1 × MIC) of minocycline, rifampin, cefoperazone/sulbactam, or sulfamethoxazole/trimethoprim in comparison with exposure to levofloxacin alone. Of the four E. anophelis isolates that were clinically collected, lower MICs of levofloxacin were disclosed in cycle 2 and 3 of induction and selection in all levofloxacin combination groups other than levofloxacin alone (all p = 0.04). Overall, no mutations were discovered in parC and parE throughout the multicycles inducted by levofloxacin and all its combinations. Regarding the vastly increased MICs, the second point mutations in gyrA and/or gyrB in one isolate (strain no. 1) occurred in cycle 2 following exposure to levofloxacin plus 0.5 × MIC minocycline, but they were delayed appearing in cycle 5 following exposure to levofloxacin plus 1 × MIC minocycline. Similarly, the second point mutation in gyrA and/or gyrB occurred in another isolate (strain no. 3) in cycle 4 following exposure to levofloxacin plus 0.5 × MIC sulfamethoxazole/trimethoprim, but no mutation following exposure to levofloxacin plus 1 × MIC sulfamethoxazole/trimethoprim was disclosed. In conclusion, the rapid selection of E. anophelis mutants with high MICs after levofloxacin exposure could be effectively delayed or postponed by antimicrobial combination with other in vitro active antibiotics.


Assuntos
Flavobacteriaceae , Levofloxacino , Minociclina , Levofloxacino/farmacologia , Minociclina/farmacologia , DNA Girase/genética , Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Sulfametoxazol , Trimetoprima , Farmacorresistência Bacteriana/genética
20.
Environ Sci Pollut Res Int ; 31(11): 16426-16436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316739

RESUMO

Wastewater-based epidemiology (WBE) has been already proposed by several authors for estimating the consumption of drugs, mainly the illicit ones. However, not much information is available about the actual reliability of this tool given the absence of comparison with the actual consumption. This work aims to evaluate the reliability of the WBE as a tool for estimating the consumption of pharmaceuticals in urban area. Measured consumption back-calculated with a WBE approach was compared with prescription of pharmaceutical products as "control." Moreover, seasonal influence on (i) pharmaceutical consumption, (ii) load of pharmaceutical products in the sewer system, and (iii) reliability of WBE was evaluated. Ciprofloxacin, sulfamethoxazole, metoprolol, carbamazepine, and citalopram were estimated by WBE with a difference respect to the "control" value lower than 0.2 order of magnitude while only trimethoprim and sotalol exceeded the 0.5 order of magnitude of difference but below the 1 order of magnitude. Sedatives were the best represented by WBE (on average 0.15 order of magnitude of difference compared to prescription data). However, further studies are suggested to fully estimate the influence of the type of APs on the reliability of the WBE. Seasonal patterns were found for the load of ciprofloxacin in the sewer and for the consumption of sulfamethoxazole and trimethoprim by population but seasonal changes did not have a significant impact (p > 0.05) on the reliability of WBE. Despite some gaps remained to optimize the reliability of the tool, WBE can be considered a valid method to estimate the consumption of prescribed drugs from the analysis of the sewer system.


Assuntos
Vigilância Epidemiológica Baseada em Águas Residuárias , Poluentes Químicos da Água , Estações do Ano , Águas Residuárias , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Ciprofloxacina , Sulfametoxazol , Trimetoprima , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...