Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.998
Filtrar
1.
Sci Rep ; 14(1): 8620, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616188

RESUMO

Scientists and researchers have been searching for drugs targeting the main protease (Mpro) of SARS-CoV-2, which is crucial for virus replication. This study employed a virtual screening based on molecular docking to identify benzoylguanidines from an in-house chemical library that can inhibit Mpro on the active site and three allosteric sites. Molecular docking was performed on the LaSMMed Chemical Library using 88 benzoylguanidine compounds. Based on their RMSD values and conserved pose, three potential inhibitors (BZG1, BZG2, and BZG3) were selected. These results indicate that BZG1 and BZG3 may bind to the active site, while BZG2 may bind to allosteric sites. Molecular dynamics data suggest that BZG2 selectively targets allosteric site 3. In vitro tests were performed to measure the proteolytic activity of rMpro. The tests showed that BZG2 has uncompetitive inhibitory activity, with an IC50 value of 77 µM. These findings suggest that benzoylguanidines possess potential as Mpro inhibitors and pave the way towards combating SARS-Cov-2 effectively.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Guanidina , Simulação de Acoplamento Molecular , Guanidinas/farmacologia , Ensaios Enzimáticos , Bibliotecas de Moléculas Pequenas
2.
Elife ; 122024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619227

RESUMO

Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.


Assuntos
Ácido 2-Aminoadípico/análogos & derivados , Arabidopsis , Oxigenases de Função Mista , Guanidina/farmacologia , Homoarginina , Guanidinas , Isoformas de Proteínas
3.
Parasit Vectors ; 17(1): 183, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600549

RESUMO

BACKGROUND: Clothianidin-based indoor residual spraying (IRS) formulations have become available for malaria control as either solo formulations of clothianidin or a mixture of clothianidin with the pyrethroid deltamethrin. While both formulations have been successfully used for malaria control, studies investigating the effect of the pyrethroid in IRS mixtures may help improve our understanding for development of future IRS products. It has been speculated that the irritant effect of the pyrethroid in the mixture formulation may result in shorter mosquito contact times with the treated walls potentially leading to a lower impact. METHODS: We compared contact irritancy expressed as the number of mosquito take-offs from cement surfaces treated with an IRS formulation containing clothianidin alone (SumiShield® 50WG) to clothianidin-deltamethrin mixture IRS formulations against pyrethroid-resistant Anopheles gambiae sensu lato under controlled laboratory conditions using a modified version of the World Health Organisation cone bioassay. To control for the pyrethroid, comparison was made with a deltamethrin-only formulation. Both commercial and generic non-commercial mixture formulations of clothianidin and deltamethrin were tested. RESULTS: The clothianidin solo formulation did not show significant contact irritancy relative to the untreated control (3.5 take-offs vs. 3.1 take-offs, p = 0.614) while all deltamethrin-containing IRS induced significant irritant effects. The number of take-offs compared to the clothianidin solo formulation (3.5) was significantly higher with the commercial clothianidin-deltamethrin mixture (6.1, p = 0.001), generic clothianidin-deltamethrin mixture (7.0, p < 0.001), and deltamethrin-only (8.2, p < 0.001) formulations. The commercial clothianidin-deltamethrin mixture induced similar contact irritancy as the generic clothianidin-deltamethrin mixture (6.1 take-offs vs. 7.0 take-offs, p = 0.263) and deltamethrin-only IRS (6.1 take-offs vs. 8.2, p = 0.071), showing that the irritant effect in the mixture was attributable to its deltamethrin component. CONCLUSIONS: This study provides evidence that the enhanced contact irritancy of the pyrethroid in clothianidin-deltamethrin IRS mixtures can shorten mosquito contact times with treated walls compared to the clothianidin solo formulation. Further trials are needed to directly compare the efficacy of these formulation types under field conditions and establish the impact of this enhanced contact irritancy on the performance of IRS mixture formulations containing pyrethroids.


Assuntos
Anopheles , Guanidinas , Inseticidas , Malária , Neonicotinoides , Nitrilas , Piretrinas , Tiazóis , Animais , Inseticidas/farmacologia , Irritantes/farmacologia , Controle de Mosquitos , Piretrinas/farmacologia , Malária/prevenção & controle , Resistência a Inseticidas , Mosquitos Vetores
4.
Front Cell Infect Microbiol ; 14: 1376725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590440

RESUMO

In China, porcine reproductive and respiratory syndrome virus (PRRSV) vaccines are widely used. These vaccines, which contain inactivated and live attenuated vaccines (LAVs), are produced by MARC-145 cells derived from the monkey kidney cell line. However, some PRRSV strains in MARC-145 cells have a low yield. Here, we used two type 2 PRRSV strains (CH-1R and HuN4) to identify the genes responsible for virus yield in MARC-145 cells. Our findings indicate that the two viruses have different spread patterns, which ultimately determine their yield. By replacing the viral envelope genes with a reverse genetics system, we discovered that the minor envelope proteins, from GP2a to GP4, play a crucial role in determining the spread pattern and yield of type 2 PRRSV in MARC-145 cells. The cell-free transmission pattern of type 2 PRRSV appears to be more efficient than the cell-to-cell transmission pattern. Overall, these findings suggest that GP2a to GP4 contributes to the spread pattern and yield of type 2 PRRSV.


Assuntos
Guanidinas , Piperazinas , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Linhagem Celular
5.
Pestic Biochem Physiol ; 200: 105808, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582580

RESUMO

Growing evidences have shown that the decline in honey bee populations is mainly caused by the combination of multiple stressors. However, the impacts of parasitic Nosema ceranae to host fitness during long-term pesticide exposure-induced stress is largely unknown. In this study, the effects of chronic exposure to a sublethal dose of dinotefuran, in the presence or absence of N. ceranae, was examined in terms of survival, food consumption, detoxification enzyme activities and gut microbial community. The interaction between dinotefuran and Nosema ceranae on the survival of honey bee was synergistic. Co-exposure to dinotefuran and N. ceranae led to less food consumption and greater changes of enzyme activities involved in defenses against oxidative stress. Particularly, N. ceranae and dinotefuran-N. ceranae co-exposure significantly impacted the gut microbiota structure and richness in adult honey bees, while dinotefuran alone did not show significant alternation of core gut microbiota compared to the control group. We herein demonstrated that chronical exposure to dinotefuran decreases honey bee's survival but is not steadily associated with the gut microbiota dysbiosis; by contrast, N. ceranae parasitism plays a dominant role in the combination in influencing the gut microbial community of the host honey bee. Our findings provide a comprehensive understanding of combinatorial effects between biotic and abiotic stressors on one of the most important pollinators, honey bees.


Assuntos
Microbioma Gastrointestinal , Guanidinas , Nitrocompostos , Nosema , Abelhas , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
6.
J Agric Food Chem ; 72(10): 5153-5164, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427964

RESUMO

Being a destructive pest worldwide, the whitefly Bemisia tabaci has evolved resistance to neonicotinoid insecticides. The third-generation neonicotinoid dinotefuran has commonly been applied to the control of the whitefly, but its underlying mechanism is currently unknown. On the base of our transcriptome data, here we aim to investigate whether the cytochrome P450 CYP6EM1 underlies dinotefuran resistance in the whitefly. Compared to the susceptible strain, the CYP6EM1 gene was found to be highly expressed in both laboratory and field dinotefuran-resistant populations. Upon exposure to dinotefuran, the mRNA levels of CYP6EM1 were increased. These results demonstrate the involvement of this gene in dinotefuran resistance. Loss and gain of functional studies in vivo were conducted through RNAi and transgenic Drosophila melanogaster assays, confirming the role of CYP6EM1 in conferring such resistance. In a metabolism assay in vitro, the CYP6EM1 protein could metabolize 28.11% of dinotefuran with a possible dinotefuran-dm-NNO metabolite via UPLC-QTOF/MS. Docking of dinotefuran to the CYP6EM1 protein showed a good binding affinity, with an energy of less than -6.0 kcal/mol. Overall, these results provide compelling evidence that CYP6EM1 plays a crucial role in the metabolic resistance of B. tabaci to dinotefuran. Our work provides new insights into the mechanism underlying neonicotinoid resistance and applied knowledge that can contribute to sustainable control of a global pest such as whitefly.


Assuntos
Guanidinas , Hemípteros , Inseticidas , Animais , Hemípteros/metabolismo , Drosophila melanogaster/metabolismo , Resistência a Inseticidas/genética , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Inseticidas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo
7.
Parasit Vectors ; 17(1): 117, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454517

RESUMO

BACKGROUND: Indoor residual spraying (IRS) capitalizes on the natural behavior of mosquitoes because Aedes aegypti commonly seeks indoor resting sites after a blood meal. This behavior allows mosquitoes to be exposed to insecticide-treated surfaces and subsequently killed. Combinations of deltamethrin and clothianidin with different modes of action have shown promise in IRS, effectively targeting both susceptible and pyrethroid-resistant malaria vectors. However, the effects of this approach on Aedes mosquitoes remain unclear. The present study tested the effects of deltamethrin-clothianidin mixture treatment on behavioral responses and life history traits of Taiwanese and Indonesian populations of Ae. aegypti. METHODS: We adopted an excito-repellent approach to explore the behavioral responses of pyrethroid-resistant Ae. aegypti populations from Indonesia and Taiwan to a deltamethrin-clothianidin mixture used in contact irritancy and non-contact repellency treatments. We further evaluated the life history traits of surviving mosquitoes (i.e., delayed mortality after 7-day post-treatment, longevity, fecundity, and egg hatching) and investigated the potential transgenerational hormetic effects of insecticide exposure (i.e., development rate and survival of immatures and adult mosquitos). RESULTS: All tested field populations of Ae. aegypti displayed strong contact irritancy responses; the percentage of escape upon insecticide exposure ranged from 38.8% to 84.7%. However, repellent effects were limited, with the escape percentage ranging from 4.3% to 48.9%. We did not observe immediate knockdown or mortality after 24 h, and less than 15% of the mosquitoes exhibited delayed mortality after a 7-day exposure period. However, the carryover effects of insecticide exposure on the survival of immature mosquitoes resulted in approximately 25% higher immature mortality than that in the control. By contrast, we further documented stimulated survivor reproduction and accelerated transgenerational immature development resulting from the sublethal effects of the insecticide mixture. In particular, the number of eggs laid by treated (both treatments) female mosquitoes increased by at least 60% compared with that of eggs laid by control female mosquitoes. CONCLUSIONS: IRS with deltamethrin-clothianidin effectively deters Aedes mosquitoes from entering residential areas and thereby reduces mosquito bites. However, the application rate (deltamethrin: 25 mg/m2; clothianidin: 200 mg/m2) may be insufficient to effectively kill Aedes mosquitoes. Insecticide response appears to vary across mosquito species; their behavioral and physiological responses to sublethal doses have crucial implications for mosquito control programs.


Assuntos
Aedes , Guanidinas , Inseticidas , Traços de História de Vida , Neonicotinoides , Nitrilas , Piretrinas , Tiazóis , Feminino , Animais , Inseticidas/farmacologia , Aedes/fisiologia , Indonésia , Resistência a Inseticidas , Óvulo , Piretrinas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores
8.
Parasit Vectors ; 17(1): 98, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429846

RESUMO

BACKGROUND: For decades, various agrochemicals have been successfully repurposed for mosquito control. However, preexisting resistance caused in larval and adult populations by unintentional pesticide exposure or other cross-resistance mechanisms poses a challenge to the efficacy of this strategy. A better understanding of larval adaptation to the lethal and sublethal effects of residual pesticides in aquatic habitats would provide vital information for assessing the efficacy of repurposed agrochemicals against mosquitoes. METHODS: We reared field-collected mosquito larvae in water containing a concentration of agrochemical causing 100% mortality in susceptible mosquitoes after 24 h (lethal concentration). Using this experimental setup, we tested the effect of lethal concentrations of a pyrrole (chlorfenapyr, 0.10 mg/l), a pyrethroid (deltamethrin, 1.5 mg/l), and three neonicotinoids including imidacloprid (0.075 mg/l), acetamiprid (0.15 mg/l), and clothianidin (0.035 mg/l) on mortality rates, growth, and survival in third-instar larvae of the two sibling species Anopheles gambiae and Anopheles coluzzii collected from Yaoundé, Cameroon. RESULTS: We found that An. gambiae and An. coluzzii larvae were susceptible to chlorfenapyr and were killed within 24 h by a nominal concentration of 0.10 mg/l. Consistent with strong resistance, deltamethrin induced low mortality in both species. Lethal concentrations of acetamiprid, imidacloprid, and clothianidin strongly inhibited survival, growth, and emergence in An. coluzzii larvae. By contrast, depending on the active ingredient and the population tested, 5-60% of immature stages of An. gambiae were able to grow and emerge in water containing a lethal concentration of neonicotinoids, suggesting cross-resistance to this class of insecticides. CONCLUSIONS: These findings corroborate susceptibility profiles observed in adults and suggest that unintentional pesticide exposure or other cross-resistance processes could contribute to the development of resistance to neonicotinoids in some Anopheles populations.


Assuntos
Anopheles , Guanidinas , Inseticidas , Nitrilas , Nitrocompostos , Piretrinas , Tiazóis , Animais , Água , Resistência a Inseticidas , Mosquitos Vetores , Camarões/epidemiologia , Neonicotinoides/farmacologia , Inseticidas/farmacologia , Larva
9.
Malar J ; 23(1): 65, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431623

RESUMO

BACKGROUND: Neonicotinoids are potential alternatives for controlling pyrethroid-resistant mosquitoes, but their efficacy against malaria vector populations of sub-Saharan Africa has yet to be investigated. The aim of the present study was to test the efficacy of four neonicotinoids against adult populations of the sibling species Anopheles gambiae and Anopheles coluzzii sampled along an urban-to-rural gradient. METHODS: The lethal toxicity of three active ingredients for adults of two susceptible Anopheles strains was assessed using concentration-response assays, and their discriminating concentrations were calculated. The discriminating concentrations were then used to test the susceptibility of An. gambiae and An. coluzzii mosquitoes collected from urban, suburban and rural areas of Yaoundé, Cameroon, to acetamiprid, imidacloprid, clothianidin and thiamethoxam. RESULTS: Lethal concentrations of neonicotinoids were relatively high suggesting that this class of insecticides has low toxicity against Anopheles mosquitoes. Reduced susceptibility to the four neonicotinoids tested was detected in An. gambiae populations collected from rural and suburban areas. By contrast, adults of An. coluzzii that occurred in urbanized settings were susceptible to neonicotinoids except acetamiprid for which 80% mortality was obtained within 72 h of insecticide exposure. The cytochrome inhibitor, piperonyl butoxide (PBO), significantly enhanced the activity of clothianidin and acetamiprid against An. gambiae mosquitoes. CONCLUSIONS: These findings corroborate susceptibility profiles observed in larvae and highlight a significant variation in tolerance to neonicotinoids between An. gambiae and An. coluzzii populations from Yaoundé. Further studies are needed to disentangle the role of exposure to agricultural pesticides and of cross-resistance mechanisms in the development of neonicotinoid resistance in some Anopheles species.


Assuntos
Anopheles , Guanidinas , Inseticidas , Malária , Piretrinas , Tiazóis , Animais , Inseticidas/farmacologia , Camarões , Resistência a Inseticidas , Mosquitos Vetores , Neonicotinoides/farmacologia , Piretrinas/farmacologia
10.
J Agric Food Chem ; 72(14): 7672-7683, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530782

RESUMO

Agrochemical residues and nitrous oxide (N2O) emissions have caused considerable threats to agricultural soil ecology. Nanoscale zerovalent iron (nZVI) and nitrification inhibitors might be complementary to each other to diminish soil agrochemical residues and N2O emissions and enhance soil bacterial community diversities. Compared to the control, the nZVI application declined soil paclobutrazol residues by 5.9% but also decreased the bacterial community co-occurrence network node. Combined nZVI and Dicyandiamide applications significantly decreased soil N2O emission rates and paclobutrazol residues but promoted Shannon diversity of the bacterial community. The increased soil pH, ammonium nitrogen, and Actinobacteriota could promote soil paclobutrazol dissipation. The nZVI generated double-edged sword effects of positively decreasing paclobutrazol residues and N2O emissions but negatively influencing soil multifunctionalities. The nZVI and Dicyandiamide could be complementary to each other in diminishing soil agrochemical residues and N2O emission rates but promoting soil bacterial community diversities simultaneously.


Assuntos
Guanidinas , Óxido Nitroso , Solo , Triazóis , Solo/química , Óxido Nitroso/química , Nitrificação , Agricultura , Bactérias/genética , Fertilizantes/análise , Agroquímicos/farmacologia , Nitrogênio/química
11.
ACS Appl Mater Interfaces ; 16(14): 17163-17181, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530408

RESUMO

The progress of the pillar[5]arene chemistry allowed us to set out a new concept on application of the supramolecular assemblies to create antimicrobial films with variable surface morphologies and biological activities. Antibacterial films were derived from the substituted pillar[5]arenes containing nine pharmacophoric guanidine fragments and one thioalkyl substituent. Changing the only thioalkyl fragment in the macrocycle structure made it possible to control the biological activity of the resulting antibacterial coating. Pretreatment of the surface with aqueous solution of the amphiphilic pillar[5]arenes reduced the biofilm thickness by 56 ± 10% of Gram-positive Staphylococcus aureus in the case of the pillar[5]arene containing a thiooctyl fragment and by 52 ± 7% for the biofilm of Gram-negative Klebsiella pneumoniae in the case of pillar[5]arene containing a thiooctadecyl fragment. Meanwhile, the cytotoxicity of the synthesized macrocycles was examined at a concentration of 50 µg/mL, which was significantly lower than that of bis-guanidine-based antimicrobial preparations.


Assuntos
Antibacterianos , Anti-Hipertensivos , Antibacterianos/farmacologia , Biofilmes , Guanidina/farmacologia , Guanidinas
12.
Crit Rev Toxicol ; 54(3): 194-213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470098

RESUMO

Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.


Assuntos
Guanidinas , Inseticidas , Tiazinas , Tiazóis , Animais , Humanos , Tiametoxam , Inseticidas/toxicidade , Oxazinas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Medição de Risco , Mamíferos
13.
Sci Rep ; 14(1): 7178, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531959

RESUMO

Polyhexamethylene guanidine phosphate (PHMG-p) is a major component in humidifier disinfectants, which cause life-threatening lung injuries. However, to our knowledge, no published studies have investigated associations between PHMG-p dose and lung damage severity with long-term follow-up. Therefore, we evaluated longitudinal dose-dependent changes in lung injuries using repeated chest computed tomography (CT). Rats were exposed to low (0.2 mg/kg, n = 10), intermediate (1.0 mg/kg, n = 10), and high (5.0 mg/kg, n = 10) doses of PHMG-p. All rats underwent repeated CT scans after 10 and 40 weeks following the first exposure. All CT images were quantitatively analyzed using commercial software. Inflammation/fibrosis and tumor counts underwent histopathological evaluation. In both radiological and histopathologic results, the lung damage severity increased as the PHMG-p dose increased. Moreover, the number, size, and malignancy of the lung tumors increased as the dose increased. Bronchiolar-alveolar hyperplasia developed in all groups. During follow-up, there was intergroup variation in bronchiolar-alveolar hyperplasia progression, although bronchiolar-alveolar adenomas or carcinomas usually increase in size over time. Thirty-three carcinomas were detected in the high-dose group in two rats. Overall, lung damage from PHMG-p and the number and malignancy of lung tumors were shown to be dose-dependent in a rat model using repeated chest CT scans during a long-term follow-up.


Assuntos
Carcinoma , Lesão Pulmonar , Neoplasias Pulmonares , Ratos , Animais , Seguimentos , Carcinógenos , Hiperplasia , Guanidinas , Carcinogênese
14.
BMJ Glob Health ; 9(3)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519096

RESUMO

BACKGROUND: Indoor residual spraying (IRS) using neonicotinoid-based insecticides (clothianidin and combined clothianidin with deltamethrin) was deployed in two previously unsprayed districts of Côte d'Ivoire in 2020 and 2021 to complement standard pyrethroid insecticide-treated nets. This retrospective observational study uses health facility register data to assess the impact of IRS on clinically reported malaria case incidence. METHODS: Health facility data were abstracted from consultation registers for the period September 2018 to April 2022 in two IRS districts and two control districts that did not receive IRS. Malaria cases reported by community health workers (CHWs) were obtained from district reports and District Health Information Systems 2. Facilities missing complete data were excluded. Controlled interrupted time series models were used to estimate the effect of IRS on monthly all-ages population-adjusted confirmed malaria cases and cases averted by IRS. Models controlled for transmission season, precipitation, vegetation, temperature, proportion of cases reported by CHWs, proportion of tested out of suspected cases and non-malaria outpatient visits. RESULTS: An estimated 10 988 (95% CI 5694 to 18 188) malaria cases were averted in IRS districts the year following the 2020 IRS campaign, representing a 15.9% reduction compared with if IRS had not been deployed. Case incidence in IRS districts dropped by 27.7% (incidence rate ratio (IRR) 0.723, 95% CI 0.592 to 0.885) the month after the campaign. In the 8 months after the 2021 campaign, 14 170 (95% CI 13 133 to 15 025) estimated cases were averted, a 24.7% reduction, and incidence in IRS districts dropped by 37.9% (IRR 0.621, 95% CI 0.462 to 0.835) immediately after IRS. Case incidence in control districts did not change following IRS either year (p>0.05) and the difference in incidence level change between IRS and control districts was significant both years (p<0.05). CONCLUSION: Deployment of clothianidin-based IRS was associated with a reduction in malaria case rates in two districts of Côte d'Ivoire following IRS deployment in 2020 and 2021.


Assuntos
Guanidinas , Inseticidas , Malária , Tiazóis , Humanos , Incidência , Controle de Mosquitos , Côte d'Ivoire/epidemiologia , Neonicotinoides , Malária/epidemiologia , Malária/prevenção & controle , Instalações de Saúde
15.
Antiviral Res ; 224: 105853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430970

RESUMO

While clinical trials have illuminated both the virological and clinical efficacy of baloxavir for influenza and post-treatment viral resistance, these aspects warrant further study in real-world settings. In response, we executed a prospective, observational study of the Japanese 2022-2023 influenza season. A cohort of 73 A(H3N2)-diagnosed outpatients-36 treated with baloxavir, 20 with oseltamivir, and 17 with other neuraminidase inhibitors (NAIs)-were analyzed. Viral samples were collected before and after administering an antiviral on days 1, 5, and 10, respectively. Cultured viruses were amplified using RT-PCR and sequenced to detect mutations. Fever and other symptoms were tracked via self-reporting diaries. In the baloxavir cohort, viral detection was 11.1% (4/36) and 0% (0/36) on day 5 and day 10, respectively. Two isolates from day 5 (5.6%, 2/36) manifested I38T/M-substitutions in the polymerase acidic protein (PA). For oseltamivir and other NAIs, viral detection rates were 60.0% (12/20) and 52.9% (9/17) on day 5, and 16.7% (3/18) and 6.3% (1/16) on day 10, respectively. No oseltamivir-resistant neuraminidase mutations were identified after treatment. Median fever durations for the baloxavir, oseltamivir, and other NAI cohorts were 27.0, 38.0, and 36.0 h, respectively, with no significant difference. Two patients harboring PA I38T/M-substitutions did not exhibit prolonged fever or other symptoms. These findings affirm baloxavir's virological and clinical effectiveness against A(H3N2) in the 2022-2023 season and suggest limited clinical influence of post-treatment resistance emergence.


Assuntos
Dibenzotiepinas , Influenza Humana , Morfolinas , Triazinas , Humanos , Influenza Humana/tratamento farmacológico , Oseltamivir/uso terapêutico , Oseltamivir/farmacologia , Neuraminidase/genética , Neuraminidase/uso terapêutico , Vírus da Influenza A Subtipo H3N2/genética , Pacientes Ambulatoriais , Estações do Ano , Estudos Prospectivos , Antivirais/uso terapêutico , Antivirais/farmacologia , Piridonas/uso terapêutico , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Febre/tratamento farmacológico
16.
J Hazard Mater ; 469: 133930, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452673

RESUMO

Dinotefuran, a neonicotinoid insecticide, may impact nontarget organisms such as Decapoda P. vannamei shrimp with nervous systems similar to insects. Exposing shrimp to low dinotefuran concentrations (6, 60, and 600 µg/L) for 21 days affected growth, hepatosomatic index, and survival. Biomarkers erythromycin-N-demethylase, alanine aminotransferase, and catalase increased in all exposed groups, while glutathione S-transferase is the opposite; aminopyrin-N-demethylase, malondialdehyde, and aspartate aminotransferase increased at 60 and 600 µg/L. Concentration-dependent effects on gut microbiota altered the abundance of bacterial groups, increased potentially pathogenic and oxidative stress-resistant phenotypes, and decreased biofilm formation. Gram-positive/negative microbiota changed significantly. Metabolite differences between the exposed and control groups were identified using mass spectrometry and KEGG pathway enrichment. N-acetylcystathionine showed potential as a reliable dinotefuran metabolic marker. Weighted correlation network analysis (WGCNA) results indicated high connectivity of cruecdysone in the metabolite network and significant enrichment at 600 µg/L dinotefuran. The WGCNA results revealed a highly significant negative correlation between two key metabolites, caldine and indican, and the gut microbiota within co-expression modules. Overall, the risk of dinotefuran exposure to non-target organisms in aquatic environments still requires further attention.


Assuntos
Microbioma Gastrointestinal , Guanidinas , Nitrocompostos , Penaeidae , Animais , Penaeidae/genética , Penaeidae/metabolismo , Penaeidae/microbiologia , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Oxirredutases N-Desmetilantes/farmacologia
17.
J Virol Methods ; 326: 114909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452822

RESUMO

This study aimed to evaluate diagnostic accuracy of SARS-CoV-2 RNA detection in saliva samples treated with a guanidine-based or guanidine-free inactivator, using nasopharyngeal swab samples (NPS) as referents. Based on the NPS reverse transcription-polymerase chain reaction (RT-PCR) results, participants were classified as with or without COVID-19. Fifty sets of samples comprising NPS, self-collected raw saliva, and saliva with a guanidine-based, and guanidine-free inactivator were collected from each group. In patients with COVID-19, the sensitivity of direct RT-PCR using raw saliva and saliva treated with a guanidine-based and guanidine-free inactivator was 100.0%, 65.9%, and 82.9%, respectively, with corresponding concordance rates of 94.3% (κ=88.5), 82.8% (κ=64.8), and 92.0% (κ=83.7). Among patients with a PCR Ct value of <30 in the NPS sample, the positive predictive value for the three samples was 100.0%, 80.0%, and 96.0%, respectively. The sensitivity of SARS-CoV-2 RNA detection was lower in inactivated saliva than in raw saliva and lower in samples treated with a guanidine-based than with a guanidine-free inactivator. However, in individuals contributing to infection spread, inactivated saliva showed adequate accuracy regardless of the inactivator used. Inactivators can be added to saliva samples collected for RT-PCR to reduce viral transmission risk while maintaining adequate diagnostic accuracy.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Guanidina , SARS-CoV-2/genética , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa , Saliva , COVID-19/diagnóstico , Guanidinas , Nasofaringe , Manejo de Espécimes , Teste para COVID-19
18.
Front Immunol ; 15: 1332924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469314

RESUMO

Introduction: This was an ambispective cohort study evaluating the prognostic significance of lymphocytic foci and its lymphoid composition in minor salivary gland biopsy (MSGB) for short-term disease flare and severity in Sjögren's syndrome (SS). Methods: The inclusion criteria comprised individuals meeting the ACR/EULAR 2016 criteria who underwent MSGB with an infiltration of more than 50 lymphocytes and received clinical diagnosis between September 2017 and December 2018. Patients with inadequate biopsy samples were excluded. The number of lymphocytic foci and their lymphoid composition in MSGB were assessed using immunofluorescence staining. Major organ damage and improvements in the EULAR Sjögren's Syndrome Disease Activity Index (ESSDAI) were measured. Statistical analyses, including Cox and linear regressions, were conducted. Results: A total of 78 patients with at least one lymphocytic focus were included in the study. The presence of higher T-cell counts in lymphocytic foci in MSGB was associated with severe disease flare, and a logarithmic transformation of T-cell count indicated increased risk (HR 1.96, 95% CI 0.91-4.21). Improvements in the ESSDAI were associated with higher total lymphocyte count and T- and B-cell numbers in the lymphoid composition of the lymphocytic foci. Seropositive patients exhibited higher T CD4+ cell numbers. Correlation analysis showed negative associations between age and lymphocytic foci and the T-cell count. Positive correlations were observed between antinuclear antibody (ANA) titers and total lymphocyte numbers. Discussion: Patients with a higher number of T cells in the lymphocytic infiltrates of lymphocytic foci may have a two-fold risk of severe disease flare. The number of B cells and T CD4+ cells in the lymphocytic infiltrates of lymphocytic foci showed a weak but positive relation with the ESSDAI improvement during follow-up. Age and seropositivity appeared to influence the lymphoid composition of the lymphocytic foci.


Assuntos
Guanidinas , Glândulas Salivares Menores , Síndrome de Sjogren , Humanos , Glândulas Salivares Menores/patologia , Seguimentos , Prognóstico , Estudos de Coortes , Exacerbação dos Sintomas , Linfócitos B/patologia , Biópsia , Inflamação/patologia
19.
Vet Microbiol ; 292: 110035, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484577

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) poses a significant threat to the global pork industry, resulting in substantial economic losses. Current control measures rely on modified live virus (MLV) vaccines with safety concerns. However, the lack of consensus on protective PRRSV antigens is impeding the development of effective and safety subunit vaccines. In this study, we conducted in vitro virus neutralization (VN) assays in MARC-145 and CRL-2843CD163/CD169 cell lines and primary porcine alveolar macrophages (PAMs) to systemically identify PRRSV structural proteins (SPs) recognized by virus-neutralizing antibodies in hyperimmune serum collected from piglets infected with highly pathogenic PRRSV (HP-PRRSV). Additionally, piglets immunized with different combinations of recombinant PRRSV-SPs were challenged with HP-PRRSV to evaluate their in vivo protection potential. Intriguingly, different in vitro VN activities of serum antibodies elicited by each PRRSV SP were observed depending on the cell type used in the VN assay. Notably, antibodies specific for GP3, GP4, and M exhibited highest in vitro VN activities in PAMs, correlating with complete protection (100% survival) against HP-PRRSV challenge in vivo after immunization of piglets with combination of GP3, GP4, M and N (GP3/GP4/M/N). Further analysis of lung pathology, weight gain, and viremia post-challenge revealed that the combination of GP3/GP4/M/N provided superior protective efficacy against severe infection. These findings underscore the potential of this SP combination to serve as an effective PRRSV subunit vaccine, marking a significant advancement in pork industry disease management.


Assuntos
Guanidinas , Piperazinas , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Macrófagos Alveolares , Anticorpos Antivirais
20.
J Hazard Mater ; 469: 134020, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521037

RESUMO

Dinotefuran is a chiral neonicotinoid that is widely distributed in environmental matrices, but its health risks to different organisms are poorly understood. This study investigated the neurotoxic responses of honeybee/cotton aphid nicotinic acetylcholine receptors (nAChRs) to chiral dinotefuran at the enantiomeric scale and demonstrated the microscopic mechanism of species selectivity in nAChR-mediated enantioselective neurotoxicity. The findings indicated that (S)-dinotefuran had a higher affinity for honeybee nAChR than (R)-dinotefuran whereas both enantiomers exhibited similar bioactivity toward cotton aphid nAChR. The results of dynamic neurotoxic processes indicated the association of conformational changes induced by chiral dinotefuran with its macroscopic neurotoxicity, and (R)-dinotefuran, which exhibit low toxicity to honeybee, was found to induce significant conformational changes in the enantioselective neurotoxic reaction, as supported by the average root-mean-square fluctuation (0.35 nm). Energy decomposition results indicated that electrostatic contribution (ΔGele) is the critical energy term that leads to substantial enantioselectivity, and both Trp-51 (-2.57 kcal mol-1) and Arg-75 (-4.86 kcal mol-1), which form a hydrogen-bond network, are crucial residues in mediating the species selectivity for enantioselective neurotoxic responses. Clearly, this study provides experimental evidence for a comprehensive assessment of the health hazards of chiral dinotefuran.


Assuntos
Síndromes Neurotóxicas , Receptores Nicotínicos , Animais , Abelhas , Estereoisomerismo , Neonicotinoides/toxicidade , Neonicotinoides/química , Guanidinas/toxicidade , Guanidinas/química , Nitrocompostos/toxicidade , Nitrocompostos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...