Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.770
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612840

RESUMO

The monoamine transporters, including the serotonin transporter (SERT), dopamine transporter (DAT), and norepinephrine transporter (NET), are the therapeutic targets for the treatment of many neuropsychiatric disorders. Despite significant progress in characterizing the structures and transport mechanisms of these transporters, the regulation of their transport functions through dimerization or oligomerization remains to be understood. In the present study, we identified a conserved intramolecular ion-pair at the third extracellular loop (EL3) connecting TM5 and TM6 that plays a critical but divergent role in the modulation of dimerization and transport functions among the monoamine transporters. The disruption of the ion-pair interactions by mutations induced a significant spontaneous cross-linking of a cysteine mutant of SERT and an increase in cell surface expression but with an impaired specific transport activity. On the other hand, similar mutations of the corresponding ion-pair residues in both DAT and NET resulted in an opposite effect on their oxidation-induced dimerization, cell surface expression, and transport function. Reversible biotinylation experiments indicated that the ion-pair mutations slowed down the internalization of SERT but stimulated the internalization of DAT. In addition, cysteine accessibility measurements for monitoring SERT conformational changes indicated that substitution of the ion-pair residues resulted in profound effects on the rate constants for cysteine modification in both the extracellular and cytoplasmatic substrate permeation pathways. Furthermore, molecular dynamics simulations showed that the ion-pair mutations increased the interfacial interactions in a SERT dimer but decreased it in a DAT dimer. Taken together, we propose that the transport function is modulated by the equilibrium between monomers and dimers on the cell surface, which is regulated by a potential compensatory mechanism but with different molecular solutions among the monoamine transporters. The present study provided new insights into the structural elements regulating the transport function of the monoamine transporters through their dimerization.


Assuntos
Cisteína , Proteínas da Membrana Plasmática de Transporte de Serotonina , Dimerização , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Biotinilação , Membrana Celular , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Polímeros
2.
Adv Exp Med Biol ; 1446: 135-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625527

RESUMO

The hair and skin of domestic cats or dogs account for 2% and 12-24% of their body weight, respectively, depending on breed and age. These connective tissues contain protein as the major constituent and provide the first line of defense against external pathogens and toxins. Maintenance of the skin and hair in smooth and elastic states requires special nutritional support, particularly an adequate provision of amino acids (AAs). Keratin (rich in cysteine, serine and glycine) is the major protein both in the epidermis of the skin and in the hair. Filaggrin [rich in some AAs (e.g., serine, glutamate, glutamine, glycine, arginine, and histidine)] is another physiologically important protein in the epidermis of the skin. Collagen and elastin (rich in glycine and proline plus 4-hydroxyproline) are the predominant proteins in the dermis and hypodermis of the skin. Taurine and 4-hydroxyproline are abundant free AAs in the skin of dogs and cats, and 4-hydroxyproline is also an abundant free AA in their hair. The epidermis of the skin synthesizes melanin (the pigment in the skin and hair) from tyrosine and produces trans-urocanate from histidine. Qualitative requirements for proteinogenic AAs are similar between cats and dogs but not identical. Both animal species require the same AAs to nourish the hair and skin but the amounts differ. Other factors (e.g., breeds, coat color, and age) may affect the requirements of cats or dogs for nutrients. The development of a healthy coat, especially a black coat, as well as healthy skin critically depends on AAs [particularly arginine, glycine, histidine, proline, 4-hydroxyproline, and serine, sulfur AAs (methionine, cysteine, and taurine), phenylalanine, and tyrosine] and creatine. Although there are a myriad of studies on AA nutrition in cats and dogs, there is still much to learn about how each AA affects the growth, development and maintenance of the hair and skin. Animal-sourced foodstuffs (e.g., feather meal and poultry by-product meal) are excellent sources of the AAs that are crucial to maintain the normal structure and health of the skin and hair in dogs and cats.


Assuntos
Doenças do Gato , Doenças do Cão , Gatos , Cães , Animais , Aminoácidos , Histidina , Cisteína , Hidroxiprolina , Cabelo , Glicina , Tirosina , Taurina , Serina , Prolina , Arginina
3.
Anal Chem ; 96(15): 6030-6036, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569068

RESUMO

Cysteine (Cys), as one of the biological thiols, is related to many physiological and pathological processes in humans and plants. Therefore, it is necessary to develop a sensitive and selective method for the detection and imaging of Cys in biological organisms. In this work, a novel near-infrared (NIR) fluorescent probe, Probe-Cys, was designed by connecting furancarbonyl, as a new recognition moiety, with Fluorophore-OH via the decomposition of IR-806. The use of the furan moiety is anticipated to produce more effective fluorescence quenching because of the electron-donating ability of the O atom. Probe-Cys has outstanding properties, such as a new recognition group, an emission wavelength in the infrared region at 710 nm, a linear range (0-100 µM), a low detection limit of 0.035 µM, good water solubility, excellent sensitivity, and selectivity without the interference of Hcy, GSH, and HS-. More importantly, Probe-Cys could achieve the detection of endogenous Cys by reacting with the stimulant 1,4-dimercaptothreitol (DTT) and the inhibitor N-ethylmaleimide (NEM) in HepG2 cells and zebrafish. Ultimately, it was successfully applied to obtain images of Arabidopsis thaliana, revealing that the content of Cys in the meristematic zone was higher than that in the elongation zone, which was the first time that the NIR fluorescence probe was used to obtain images of Cys in A. thaliana. The superior properties of the probe exhibit its great potential for use in biosystems to explore the physiological and pathological processes associated with Cys.


Assuntos
Arabidopsis , Perciformes , Humanos , Animais , Fluorescência , Peixe-Zebra , Cisteína , Células HeLa , Corantes Fluorescentes , Glutationa
4.
J Am Chem Soc ; 146(15): 10393-10406, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569115

RESUMO

Covalent chemistry coupled with activity-based protein profiling (ABPP) offers a versatile way to discover ligands for proteins in native biological systems. Here, we describe a set of stereo- and regiochemically defined spirocycle acrylamides and the analysis of these electrophilic "stereoprobes" in human cancer cells by cysteine-directed ABPP. Despite showing attenuated reactivity compared to structurally related azetidine acrylamide stereoprobes, the spirocycle acrylamides preferentially liganded specific cysteines on diverse protein classes. One compound termed ZL-12A promoted the degradation of the TFIIH helicase ERCC3. Interestingly, ZL-12A reacts with the same cysteine (C342) in ERCC3 as the natural product triptolide, which did not lead to ERCC3 degradation but instead causes collateral loss of RNA polymerases. ZL-12A and triptolide cross-antagonized one another's protein degradation profiles. Finally, we provide evidence that the antihypertension drug spironolactone─previously found to promote ERCC3 degradation through an enigmatic mechanism─also reacts with ERCC3_C342. Our findings thus describe monofunctional degraders of ERCC3 and highlight how covalent ligands targeting the same cysteine can produce strikingly different functional outcomes.


Assuntos
Acrilamida , Diterpenos , Fenantrenos , Humanos , Cisteína/química , Proteômica , Compostos de Epóxi
5.
Nat Commun ; 15(1): 3036, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589439

RESUMO

The Alanine-Serine-Cysteine transporter 1 (Asc-1 or SLC7A10) forms a crucial heterodimeric transporter complex with 4F2hc (SLC3A2) through a covalent disulfide bridge. This complex enables the sodium-independent transport of small neutral amino acids, including L-Alanine (L-Ala), Glycine (Gly), and D-Serine (D-Ser), within the central nervous system (CNS). D-Ser and Gly are two key endogenous glutamate co-agonists that activate N-methyl-d-aspartate (NMDA) receptors by binding to the allosteric site. Mice deficient in Asc-1 display severe symptoms such as tremors, ataxia, and seizures, leading to early postnatal death. Despite its physiological importance, the functional mechanism of the Asc-1-4F2hc complex has remained elusive. Here, we present cryo-electron microscopy (cryo-EM) structures of the human Asc-1-4F2hc complex in its apo state, D-Ser bound state, and L-Ala bound state, resolved at 3.6 Å, 3.5 Å, and 3.4 Å, respectively. Through detailed structural analysis and transport assays, we uncover a comprehensive alternating access mechanism that underlies conformational changes in the complex. In summary, our findings reveal the architecture of the Asc-1 and 4F2hc complex and provide valuable insights into substrate recognition and the functional cycle of this essential transporter complex.


Assuntos
Proteínas de Membrana Transportadoras , Serina , Camundongos , Humanos , Animais , Microscopia Crioeletrônica , Serina/metabolismo , Proteínas de Membrana Transportadoras/genética , Glicina , Cisteína
6.
JACC Cardiovasc Interv ; 17(7): 920-929, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599696

RESUMO

BACKGROUND: Ischemia with no obstructive coronary arteries is frequently caused by coronary microvascular dysfunction (CMD). Consensus diagnostic criteria for CMD include baseline angiographic slow flow by corrected TIMI (Thrombolysis In Myocardial Infarction) frame count (cTFC), but correlations between slow flow and CMD measured by invasive coronary function testing (CFT) are uncertain. OBJECTIVES: The aim of this study was to investigate relationships between cTFC and invasive CFT for CMD. METHODS: Adults with ischemia with no obstructive coronary arteries underwent invasive CFT with thermodilution-derived baseline coronary blood flow, coronary flow reserve (CFR), and index of microcirculatory resistance (IMR). CMD was defined as abnormal CFR (<2.5) and/or abnormal IMR (≥25). cTFC was measured from baseline angiography; slow flow was defined as cTFC >25. Correlations between cTFC and baseline coronary flow and between CFR and IMR and associations between slow flow and invasive measures of CMD were evaluated, adjusted for covariates. All patients provided consent. RESULTS: Among 508 adults, 49% had coronary slow flow. Patients with slow flow were more likely to have abnormal IMR (36% vs 26%; P = 0.019) but less likely to have abnormal CFR (28% vs 42%; P = 0.001), with no difference in CMD (46% vs 51%). cTFC was weakly correlated with baseline coronary blood flow (r = -0.35; 95% CI: -0.42 to -0.27), CFR (r = 0.20; 95% CI: 0.12 to 0.28), and IMR (r = 0.16; 95% CI: 0.07-0.24). In multivariable models, slow flow was associated with lower odds of abnormal CFR (adjusted OR: 0.53; 95% CI: 0.35 to 0.80). CONCLUSIONS: Coronary slow flow was weakly associated with results of invasive CFT and should not be used as a surrogate for the invasive diagnosis of CMD.


Assuntos
Doença da Artéria Coronariana , Cisteína/análogos & derivados , Infarto do Miocárdio , Isquemia Miocárdica , Adulto , Humanos , Microcirculação/fisiologia , Resistência Vascular/fisiologia , Resultado do Tratamento , Vasos Coronários/diagnóstico por imagem , Circulação Coronária/fisiologia , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia
7.
Nat Commun ; 15(1): 2831, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565562

RESUMO

The prodrug design strategy offers a potent solution for improving therapeutic index and expanding drug targets. However, current prodrug activation designs are mainly responsive to endogenous stimuli, resulting in unintended drug release and systemic toxicity. In this study, we introduce 3-vinyl-6-oxymethyl-tetrazine (voTz) as an all-in-one reagent for modular preparation of tetrazine-caged prodrugs and chemoselective labeling peptides to produce bioorthogonal activable peptide-prodrug conjugates. These stable prodrugs can selectively bind to target cells, facilitating cellular uptake. Subsequent bioorthogonal cleavage reactions trigger prodrug activation, significantly boosting potency against tumor cells while maintaining exceptional off-target safety for normal cells. In vivo studies demonstrate the therapeutic efficacy and safety of this prodrug design approach. Given the broad applicability of functional groups and labeling versatility with voTz, we foresee that this strategy will offer a versatile solution to enhance the therapeutic range of cytotoxic agents and facilitate the development of bioorthogonal activatable biopharmaceuticals and biomaterials.


Assuntos
Compostos Heterocíclicos , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Linhagem Celular Tumoral , Cisteína , Sistemas de Liberação de Medicamentos
8.
ACS Chem Biol ; 19(4): 992-998, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562012

RESUMO

Glycosyltransferases play a fundamental role in the biosynthesis of glycoproteins and glycotherapeutics. In this study, we investigated protein glycosyltransferase FlgGT1, belonging to the GT2 family. The GT2 family includes cysteine S-glycosyltransferases involved in antimicrobial peptide biosyntheses, sharing conserved catalytic domains while exhibiting diverse C-terminal domains. Our in vitro studies revealed that FlgGT1 recognizes structural motifs rather than specific amino acid sequences when glycosylating the flagellin protein Hag. Notably, FlgGT1 is selective for serine or threonine O-glycosylation over cysteine S-glycosylation. Molecular dynamics simulations provided insights into the structural basis of FlgGT1's ability to accommodate various sugar nucleotides as donor substrates. Mutagenesis experiments on FlgGT1 demonstrated that truncating the relatively large C-terminal domain resulted in a loss of flagellin glycosylation activity. Our classification based on sequence similarity network analysis and AlphaFold2 structural predictions suggests that the acquisition of the C-terminal domain is a key evolutionary adaptation conferring distinct substrate specificities on glycosyltransferases within the GT2 family.


Assuntos
Flagelina , Glicosiltransferases , Glicosilação , Glicosiltransferases/metabolismo , Flagelina/metabolismo , Cisteína/metabolismo , Sequência de Aminoácidos
9.
Biochem Biophys Res Commun ; 710: 149862, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593618

RESUMO

Zinc is an important trace element in the human body, and its homeostasis is closely related to amyotrophic lateral sclerosis (ALS). Cytoplasmic FUS proteins from patients with ALS aggregate their important pathologic markers. Liquid-liquid phase separation (LLPS) of FUS can lead to its aggregation. However, whether and how zinc homeostasis affects the aggregation of disease-associated FUS proteins in the cytoplasm remains unclear. Here, we found that zinc ion enhances LLPS and promotes the aggregation in the cytoplasm for FUS protein. In the FUS, the cysteine of the zinc finger (ZnF), recognizes and binds to zinc ions, reducing droplet mobility and enhancing protein aggregation in the cytoplasm. The mutation of FUS cysteine disrupts the dynamic regulatory switch of zinc ions and ZnF, resulting in insensitivity to zinc ions. These results suggest that the dynamic regulation of LLPS by binding with zinc ions may be a widespread mechanism and provide a new understanding of neurological diseases such as ALS and other ZnF protein-related diseases.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Zinco/metabolismo , Cisteína/genética , 60422 , Dedos de Zinco , Mutação
10.
Biochem Biophys Res Commun ; 710: 149895, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593620

RESUMO

Neurotoxicity is a common side effect of certain types of therapeutic drugs, posing a major hurdle for their clinical application. Accumulating evidence suggests that ferroptosis is involved in the neurotoxicity induced by these drugs. Therefore, targeting ferroptosis is considered to be a reasonable approach to prevent such side effect. Arctigenin (ATG) is a major bioactive ingredient of Arctium lappa L., a popular medicinal plant in Asia, and has been reported to have multiple bioactivities including neuroprotection. However, the mechanisms underlying the neuroprotection of ATG has not been well elucidated. The purpose of this study was to investigate whether the neuroprotection of ATG was associated with its ability to protect neuronal cells from ferroptosis. Using neuronal cell ferroptosis model induced by either classic ferroptosis induces or therapeutic drugs, we demonstrated for the first time that ATG in the nanomolar concentration range effectively prevented neuronal cell ferroptosis induced by classic ferroptosis inducer sulfasalazine (SAS) and erastin (Era), or therapeutic drug oxaliplatin (OXA) and 5-fluorouracil (5-FU). Mechanistically, we uncovered that the anti-ferroptotic effect of ATG was attributed to its ability to activate SLC7A11-cystine-cysteine axis. The findings of the present study implicate that ATG holds great potential to be developed as a novel agent for preventing SLC7A11 inhibition-mediated neurotoxicity.


Assuntos
Antineoplásicos , Ferroptose , Furanos , Lignanas , Síndromes Neurotóxicas , Humanos , Cisteína , Cistina , Fluoruracila , Antineoplásicos/farmacologia , Sistema y+ de Transporte de Aminoácidos
11.
Bioorg Med Chem Lett ; 104: 129740, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599294

RESUMO

Leukocyte antigen-related (LAR) phosphatase is a receptor-type protein tyrosine phosphatase involved in cellular signaling and associated with human disease including cancer and metabolic disorders. Selective inhibition of LAR phosphatase activity by well characterized and well validated small molecules would provide key insights into the roles of LAR phosphatase in health and disease, but identifying selective inhibitors of LAR phosphatase activity has been challenging. Recently, we described potent and selective inhibition of LAR phosphatase activity by the fungal natural product illudalic acid. Here we provide a detailed biochemical characterization of the adduct formed between LAR phosphatase and illudalic acid. A mass spectrometric analysis indicates that two cysteine residues are covalently labeled by illudalic acid and a related analog. Mutational analysis supports the hypothesis that inhibition of LAR phosphatase activity is due primarily to the adduct with the catalytic cysteine residue. A computational study suggests potential interactions between the illudalic acid moiety and the enzyme active site. Taken together, these data offer novel insights into the mechanism of inhibition of LAR phosphatase activity by illudalic acid.


Assuntos
Cisteína , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Humanos , Proteínas Tirosina Fosfatases , Cumarínicos/química , Fosfatase Alcalina
12.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38622951

RESUMO

We determined apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of crude protein (CP) and amino acids (AA) in fermented soybean meal from five different sources (FSBM 1 to 5) in China when fed to mid and late-gestating sows. Twenty-four parity four sows (12 at 30 d in gestation and 12 at 80 d in gestation) were fitted with a T-cannula in the distal ileum and used in this experiment. Sows were randomly assigned to a replicated 6 × 3 Youden square design including six diets and three periods. Six diets were provided for sows in mid and late gestation, including a nitrogen-free diet and five test diets containing 26% FSBM from different sources. Results showed that there were differences in AID and SID of CP among the different FSBM samples, but no differences between sow physiological stages were observed. Specifically, when mid-gestating sows were fed FSBM 2, the AID of CP was the lowest, whereas FSBM 3 exhibited a greater AID of CP when compared to the other FSBM samples (P < 0.01). Furthermore, during late gestation, FSBM 3 consistently had greater SID of CP when compared to other FSBM samples (P < 0.01). The ileal digestibility of most AA varied with different FSBM samples. In both mid and late gestation, differences (P < 0.05) were observed for AID of lysine, tryptophan, histidine, and arginine across different FSBM samples. Similarly, the AID of dispensable AA (cysteine, glutamine, and serine) also exhibited differences (P < 0.05) across different FSBM samples in both mid and late-gestating sows. For mid-gestating sows, SID differences relating to lysine, phenylalanine, tryptophan, threonine, and arginine were observed among different diets (P < 0.05). In late-gestating sows, SID values for lysine, tryptophan, leucine, and arginine differed across diets (P < 0.05). Furthermore, the ileal digestibility of some dispensable AA was influenced by physiological stage, as evidenced by greater AID and SID values for glycine, glutamine, cysteine, and serine in late-gestating sows when compared to mid-gestating sows (P < 0.01). In summary, our study determined AA ileal digestibility of different FSBM fed to mid and late-gestating sows. We observed that the AA ileal digestibility differed among five FSBM samples, but the physiological stage of sows did not affect the ileal digestibility of CP and most AA. Additionally, when formulating diets for sows, it is crucial to consider the nutritional value differences of FSBM.


Fermented soybean meal (FSBM) is obtained from the microbial fermentation of soybean meal, which reduces anti-nutritional factor levels and enhances other nutrient content. Substituting soybean meal with FSBM in piglet and growing pig diets improves nutrient digestibility. However, its nutritional value for sows remains unclear. Therefore, five sources of FSBM were fed to sows in mid and late gestation to evaluate apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of amino acids (AA). We found that different FSBM samples impacted the SID value of AA when fed to gestating sows. Additionally, sow physiological stage influenced the SID of some dispensable AA. These findings provide valuable insights into the incorporation of FSBM into sow diets.


Assuntos
Aminoácidos , Alimentos Fermentados , Suínos , Animais , Feminino , Gravidez , Aminoácidos/metabolismo , Digestão/fisiologia , Glutamina/metabolismo , Triptofano/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Soja , Dieta/veterinária , Arginina/metabolismo , Serina , Ração Animal/análise , Íleo/metabolismo , Fenômenos Fisiológicos da Nutrição Animal
13.
Front Endocrinol (Lausanne) ; 15: 1379231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638139

RESUMO

Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome transcriptome database, which included all major crustacean taxa, showed that RTK sequences segregated into receptor clades representing InsR (72 sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR (PVR; 235 sequences). These four receptor families were distinguished by the domain organization of the extracellular N-terminal region and motif sequences in the protein kinase catalytic domain in the C-terminus or the ligand-binding domain in the N-terminus. EGFR1 formed a single monophyletic group, while the other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3, and PVR1-2. In decapods, isoforms within the RTK subclades were common. InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat, furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a cadherin tandem repeat domain. PVRs had between two and five immunoglobulin-like domains. A classification nomenclature of the four RTK classes, based on phylogenetic analysis and multiple sequence alignments, is proposed.


Assuntos
Furina , Insulina , Furina/genética , Filogenia , Insulina/genética , Transcriptoma , Cisteína , Leucina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores ErbB/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Tirosina
14.
Anal Methods ; 16(15): 2378-2385, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38572618

RESUMO

Using silver nitrate as the silver source and sodium borohydride as the reducing agent, we synthesized negatively charged silver nanoparticles (AgNPs). Subsequently, the AgNPs solution was mixed with positively charged lead ions, resulting in AgNPs aggregation via electrostatic interactions. This led to a color change in the solution from yellow to purple and eventually to blue-green. Our study focused on a colorimetric method that exhibited high selectivity and sensitivity in detecting cysteine using AgNPs-Pb2+ as a sensing probe. Upon the introduction of cysteine to the AgNPs-Pb2+ system, the absorbance of AgNPs increased at 396 nm and decreased at 520 nm. The formation of a complex between cysteine and lead ions prevented the aggregation of silver nanoparticles, enabling the colorimetric detection of cysteine. The relationship between the concentration of ΔA396/A520 and cysteine showed linearity within the range of 0.01 to 0.1 µM; the regression equation of the calibration curve is ΔA396/A520 = 9.0005c - 0.0557 (c: µM), with an R2 value of 0.9997. The detection limit was found to be 3.8 nM (S/N = 3). This method demonstrated exceptional selectivity and sensitivity for cysteine and was effectively used for the determination of cysteine in urine. Our findings offer a new perspective for the future advancement of anti-aggregation silver nanocolorimetry.


Assuntos
Colorimetria , Nanopartículas Metálicas , Colorimetria/métodos , Cisteína , Chumbo , Prata , Íons
15.
Anal Methods ; 16(15): 2386-2399, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38572640

RESUMO

A novel fluorescence sensor based on a porphyrinic zirconium-based metal-organic framework, L-cysteine-modified PCN-222 (L-Cys/PCN-222), was developed to selectively recognize histidine enantiomers and sensitively detect Hg2+. The dual-functional sensor was successfully prepared via the solvent-assisted ligand incorporation method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption analyses. L-Cys/PCN-222 not only showed a higher quenching response for L-histidine than that for D-histidine with a fast fluorescent response rate of <40 s but also exhibited low detection limits for L- and D-histidine (2.48 µmol L-1 and 3.85 µmol L-1, respectively). Moreover, L-Cys/PCN-222 was employed as a fluorescent and visual sensor for the highly sensitive detection of Hg2+ in the linear range of 10-500 µmol L-1, and the detection limit was calculated to be 2.79 µmol L-1 in surface water. The specific and selective recognition of chiral compounds and metal ions by our probe make it suitable for real field applications.


Assuntos
Mercúrio , Estruturas Metalorgânicas , Espectroscopia de Infravermelho com Transformada de Fourier , Histidina , Estruturas Metalorgânicas/química , Zircônio , Cisteína/análise , Cisteína/química , Corantes Fluorescentes/química , Mercúrio/análise
16.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611851

RESUMO

This research centers on the development and synthesis of a longwave fluorescence probe, labeled as 60T, designed for the simultaneous detection of hydrogen sulfide, cysteine/homocysteine, and glutathione. The probe showcases a swift response, good linearity range, and heightened sensitivity, boasting that the detection limits of the probe for Cys, Hcy, GSH and H2S were 0.140, 0.202, 0.259 and 0.396 µM, respectively. Notably, its efficacy in monitoring thiol status changes in live MCF-7 cells is underscored by a substantial decrease in fluorescence intensity upon exposure to the thiol trapping reagent, N-ethyl maleimide (NEM). With an impressive red emission signal at 630 nm and a substantial Stokes shift of 80 nm, this probe exhibits remarkable sensitivity and selectivity for biothiols and H2S, indicating promising applications in the diagnosis and surgical navigation of relevant cancers.


Assuntos
Sulfeto de Hidrogênio , Corantes Fluorescentes , Diagnóstico por Imagem , Cisteína , Glutationa , Homocisteína , Compostos de Sulfidrila
17.
Int J Med Sci ; 21(5): 775-783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617013

RESUMO

Pulmonary surfactants, a complex assembly of phospholipids and surfactant proteins such as SP-B and SP-C, are critical for maintaining respiratory system functionality by lowering surface tension (ST) and preventing alveolar collapse. Our study introduced five synthetic SP-B peptides and one SP-C peptide, leading to the synthesis of CHAsurf candidates (CHAsurf-1 to CHAsurf-5) for evaluation. We utilized a modified Wilhelmy balance test to assess the surface tension properties of the surfactants, measuring spreading rate, surface adsorption, and ST-area diagrams to comprehensively evaluate their performance. Animal experiments were performed on New Zealand white rabbits to test the efficacy of CHAsurf-4B, a variant chosen for its economic viability and promising ST reduction properties, comparable to Curosurf®. The study confirmed that higher doses of SP-B in CHAsurf-4 are associated with improved ST reduction. However, due to cost constraints, CHAsurf-4B was selected for in vivo assessment. The animal model revealed that CHAsurf-4B could restore alveolar structure and improve lung elasticity, akin to Curosurf®. Our research highlights the significance of cysteine residues and disulfide bonds in the structural integrity and function of synthetic SP-B analogues, offering a foundation for future surfactant therapy in respiratory disorders. This study's findings support the potential of CHAsurf-4B as a therapeutic agent, meriting further investigation to solidify its role in clinical applications.


Assuntos
Surfactantes Pulmonares , Animais , Coelhos , Cisteína , Elasticidade , Surfactantes Pulmonares/farmacologia , Tensoativos
18.
Biochem Pharmacol ; 222: 116103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428825

RESUMO

Liver is a major organ that metabolizes sulfur amino acids cysteine, which is the substrate for the synthesis of many essential cellular molecules including GSH, taurine, and coenzyme A. Bile acid-activated farnesoid x receptor (FXR) inhibits cysteine dioxygenase type 1 (CDO1), which mediates hepatic cysteine catabolism and taurine synthesis. To define the impact of bile acid inhibition of CDO1 on hepatic sulfur amino acid metabolism and antioxidant capacity, we developed hepatocyte-specific CDO1 knockout mice (Hep-CDO1 KO) and hepatocyte specific CDO1 transgenic mice (Hep-CDO1 Tg). Liver metabolomics revealed that genetic deletion of hepatic CDO1 reduced de novo taurine synthesis but had no impact on hepatic taurine abundance or bile acid conjugation. Consistent with reduced cysteine catabolism, Hep-CDO1 KO mice showed increased hepatic cysteine abundance but unaltered methionine cycle intermediates and coenzyme A synthesis. Upon acetaminophen overdose, Hep-CDO1 KO mice showed increased GSH synthesis capacity and alleviated liver injury. In contrast, hepatic CDO1 overexpression in Hep-CDO1 Tg mice stimulated hepatic cysteine to taurine conversion, resulting in reduced hepatic cysteine abundance. However, Hep-CDO1 Tg mice and WT showed similar susceptibility to acetaminophen-induced liver injury. Hep-CDO1 Tg mice showed similar hepatic taurine and coenzyme A compared to WT mice. In summary, these findings suggest that bile acid and FXR signaling inhibition of CDO1-mediated hepatic cysteine catabolism preferentially modulates hepatic GSH synthesis capacity and antioxidant defense, but has minimal effect on hepatic taurine and coenzyme A abundance. Repression of hepatic CDO1 may contribute to the hepatoprotective effects of FXR activation under certain pathologic conditions.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Camundongos , Animais , Cisteína/metabolismo , Acetaminofen/metabolismo , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , Ácidos e Sais Biliares/metabolismo , Antioxidantes/farmacologia , Hepatócitos/metabolismo , Fígado/metabolismo , Glutationa/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Taurina/farmacologia , Taurina/metabolismo , Coenzima A/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Bioconjug Chem ; 35(4): 457-464, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38548654

RESUMO

Antibody-drug conjugates (ADCs) have emerged as a powerful class of anticancer therapeutics that enable the selective delivery of toxic payloads into target cells. There is increasing appreciation for the importance of synthesizing such ADCs in a defined manner where the payload is attached at specific permissive sites on the antibody with a defined drug to antibody ratio. Additionally, the ability to systematically alter the site of attachment is important to fine-tune the therapeutic properties of the ADC. Engineered cysteine residues have been used to achieve such site-specific programmable attachment of drug molecules onto antibodies. However, engineered cysteine residues on antibodies often get "disulfide-capped" during secretion and require reductive regeneration prior to conjugation. This reductive step also reduces structurally important disulfide bonds in the antibody itself, which must be regenerated through oxidation. This multistep, cumbersome process reduces the efficiency of conjugation and presents logistical challenges. Additionally, certain engineered cysteine sites are resistant to reductive regeneration, limiting their utility and the overall scope of this conjugation strategy. In this work, we utilize a genetically encoded photocaged cysteine residue that can be site-specifically installed into the antibody. This photocaged amino acid can be efficiently decaged using light, revealing a free cysteine residue available for conjugation without disrupting the antibody structure. We show that this ncAA can be incorporated at several positions within full-length recombinant trastuzumab and decaged efficiently. We further used this method to generate a functional ADC site-specifically modified with monomethyl auristatin F (MMAF).


Assuntos
Antineoplásicos , Imunoconjugados , Cisteína/química , Antineoplásicos/química , Compostos de Sulfidrila , Anticorpos/química , Imunoconjugados/química , Dissulfetos
20.
Chemosphere ; 355: 141825, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552802

RESUMO

BACKGROUND: Most research exploring the correlation between volatile organic compounds (VOCs) and hematological parameters have focused on single VOCs. Our study aimed to explore the single and combined effects of VOCs on hematological parameters through three statistical models. METHODS: Data from 4 cycles of the National Health and Nutrition Examination Survey (NHANES) were used in this study. The correlations between single exposure to 16 VOCs and hematological parameters in the general population were assessed by weighted multiple linear regression. Weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models were used to explore the relationship between the combined important VOCs selected by the least absolute shrinkage and selection operator (LASSO) and hematological parameters, as well as the effects of smoking status on them. RESULTS: A total of 4089 adults were included in the study. We found that a variety of VOCs were significantly associated with hematological parameters. Among them, N-acetyl-S-(benzyl)-l-cysteine (BMA) was significantly negatively correlated with white blood cell (WBC), red blood cell (RBC), lymphocyte, and neutrophil counts. N-acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine (HPMMA) was significantly positively correlated with WBC, monocyte, lymphocyte, and neutrophil counts. In the WQS analysis, the WQS index of the VOCs mixtures was positively correlated with WBC (ß: 0.031; P < 0.001), monocyte (0.023; P = 0.021), and neutrophil (0.040; P = 0.001) counts, while negatively associated with RBC (-0.013; P < 0.001) counts. The BKMR model revealed that combined exposure to VOCs levels ≥70th percentile was significantly associated with lower RBC counts, and BMA was identified as the dominant contributor. Smoking significantly influenced the relationship between VOCs and hematological parameters. CONCLUSIONS: Our study indicated the effects of single and overall VOCs exposure on hematological parameters and suggested the hematotoxicity as well as pro-inflammatory effects of VOCs, which had strong public health implications for reducing the potential health hazards of VOCs exposure to the hematologic system.


Assuntos
Exposição Ambiental , Compostos Orgânicos Voláteis , Adulto , Humanos , Exposição Ambiental/análise , Inquéritos Nutricionais , Compostos Orgânicos Voláteis/toxicidade , Fumar , Teorema de Bayes , Cisteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...