Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.130
Filtrar
1.
BMC Plant Biol ; 24(1): 276, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605285

RESUMO

BACKGROUND: Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are no reports on the growth and development of S. kwangsiensis storage stems. RESULTS: The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenylpropanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis was not completely consistent. CONCLUSIONS: Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosynthesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance for the cultivation, breeding, and harvesting of S. kwangsiensis.


Assuntos
Alcaloides , Plantas Medicinais , Stephania , Stephania/química , Stephania/metabolismo , Plantas Medicinais/metabolismo , Cromatografia Líquida/métodos , Lignina/metabolismo , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Alcaloides/metabolismo , Amido/metabolismo , Isoquinolinas/metabolismo , Tirosina/metabolismo , Lipídeos , Regulação da Expressão Gênica de Plantas
2.
Neuromolecular Med ; 26(1): 13, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619671

RESUMO

Normal tension glaucoma (NTG) is a progressive neurodegenerative disease in glaucoma families. Typical glaucoma develops because of increased intraocular pressure (IOP), whereas NTG develops despite normal IOP. As a subtype of open-angle glaucoma, NTG is characterized by retinal ganglion cell (RGC) degeneration, gradual loss of axons, and injury to the optic nerve. The relationship between glutamate excitotoxicity and oxidative stress has elicited great interest in NTG studies. We recently reported that suppressing collapsin response mediator protein 2 (CRMP2) phosphorylation in S522A CRMP2 mutant (CRMP2 KIKI) mice inhibited RGC death in NTG mouse models. This study evaluated the impact of the natural compounds huperzine A (HupA) and naringenin (NAR), which have therapeutic effects against glutamate excitotoxicity and oxidative stress, on inhibiting CMRP2 phosphorylation in mice intravitreally injected with N-methyl-D-aspartate (NMDA) and GLAST mutant mice. Results of the study demonstrated that HupA and NAR significantly reduced RGC degeneration and thinning of the inner retinal layer, and inhibited the elevated CRMP2 phosphorylation. These treatments protected against glutamate excitotoxicity and suppressed oxidative stress, which could provide insight into developing new effective therapeutic strategies for NTG.


Assuntos
Alcaloides , Glaucoma de Ângulo Aberto , Glaucoma , Glaucoma de Baixa Tensão , Doenças Neurodegenerativas , Sesquiterpenos , Humanos , Animais , Camundongos , Células Ganglionares da Retina , Semaforina-3A , Fosforilação , Glaucoma/tratamento farmacológico , Ácido Glutâmico/toxicidade , Modelos Animais de Doenças
3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 868-883, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621894

RESUMO

Scorpio is a valuable Chinese animal medicine commonly used in clinical practice in China. It is the main drug in the treatment of liver wind internal movement caused by various reasons throughout the history of traditional Chinese medicine(TCM), with the effects of relieving wind and spasm, dredging collaterals, relieving pain, and eliminating toxin and mass. Scorpio is poisonous and often used as medicine after processing. There are records of its processing as early as the Song Dynasty. Afterward, there were more than 15 processing methods, including frying with vinegar, neat processing, and stir-frying. After processing, the fishy smell could be removed to correct the taste, and the toxicity could be reduced, which was beneficial to clinical application. At present, the main reported components in Scorpio are protein polypeptides, alkaloids, and lipids, with many pharmacological effects, such as anti-cancer, anti-coagulation, anti-thrombosis, anti-atherosclerosis, and anti-bacteria. In this study, the historical evolution of processing, chemical constituents, and pharmacological action of Scorpio were discussed in order to provide references for the related research on Scorpio.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Animais , Evolução Química , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Alcaloides/farmacologia
4.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611859

RESUMO

A novel Lycopodium alkaloid, lycocasine A (1), and seven known Lycopodium alkaloids (2-8), were isolated from Lycopodiastrum casuarinoides. Their structures were determined through NMR, HRESIMS, and X-ray diffraction analysis. Compound 1 features an unprecedented 5/6/6 tricyclic skeleton, highlighted by a 5-aza-tricyclic[6,3,1,02,6]dodecane motif. In bioactivity assays, compound 1 demonstrated weak inhibitory activity against acid-sensing ion channel 1a.


Assuntos
Alcaloides , Lycopodiaceae , Lycopodium , Canais Iônicos Sensíveis a Ácido , Alcaloides/farmacologia , Azacitidina
5.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611869

RESUMO

The fascaplysin and homofascaplysin class of marine natural products has a characteristic 12H-pyrido[1,2-a:3,4-b']diindole pentacyclic structure. Fascaplysin was isolated in 1988 from the marine sponge Fascaplysinopsis bergquist sp. The analogs of fascaplysin, such as homofascaplysins A, B, and C, were discovered late in the Fijian sponge F. reticulate, and also have potent antimicrobial activity and strong cytotoxicity against L-1210 mouse leukemia. In this review, the total synthesis of fascaplysin and its analogs, such as homofascaplysins A, B, and C, will be reviewed, which will offer useful information for medicinal chemistry researchers who are interested in the exploration of marine alkaloids.


Assuntos
Alcaloides , Antineoplásicos , Produtos Biológicos , Carbolinas , Indóis , Indolizinas , Poríferos , Compostos de Amônio Quaternário , Animais , Camundongos , Alcaloides/farmacologia , Bandagens
6.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611934

RESUMO

Spirotryprostatin alkaloids, a class of alkaloids with a unique spirocyclic indoledionepiperazine structure, were first extracted from the fermentation broth of Aspergillus fumigatus and have garnered significant attention in the fields of biology and pharmacology. The investigation into the pharmacological potential of this class of alkaloids has unveiled promising applications in drug discovery and development. Notably, certain spirotryprostatin alkaloids have demonstrated remarkable anti-cancer activity, positioning them as potential candidates for anti-tumor drug development. In recent years, organic synthetic chemists have dedicated efforts to devise efficient and viable strategies for the total synthesis of spirotryprostatin alkaloids, aiming to meet the demands within the pharmaceutical domain. The construction of the spiro-C atom within the spirotryprostatin scaffold and the chirality control at the spiro atomic center emerge as pivotal aspects in the synthesis of these compounds. This review categorically delineates the synthesis of spirotryprostatin alkaloids based on the formation mechanism of the spiro-C atom.


Assuntos
Alcaloides , Fermentação , Aspergillus fumigatus , Descoberta de Drogas
7.
J Agric Food Chem ; 72(14): 8225-8236, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557068

RESUMO

As a continuous flow investigation of novel pesticides from natural quinolizidine alkaloids, the chemical compositions of the seeds of Sophora alopecuroides were thoroughly researched. Fifteen new aloperine-type alkaloids (1-15) as well as six known aloperine-type alkaloids (16-21) were obtained from the extract of S. alopecuroides. The structures of 1-21 were confirmed via HRESIMS, NMR, UV, IR, ECD calculations, and X-ray diffraction. The antiviral activities of 1-21 against tobacco mosaic virus (TMV) were detected following the improved method of half-leaf. Compared with ningnanmycin (protective: 69.7% and curative: 64.3%), 15 exhibited excellent protective (71.7%) and curative (64.6%) activities against TMV. Further biological studies illustrated that 15 significantly inhibited the transcription of the TMV-CP gene and increased the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL). The antifungal activities of 1-21 against Phytophythora capsica, Botrytis cinerea, Alternaria alternata, and Gibberella zeae were screened according to a mycelial inhibition test. Compound 13 displayed excellent antifungal activity against B. cinerea (EC50: 7.38 µg/mL). Moreover, in vitro antifungal mechanism studies displayed that 13 causes accumulation of reactive oxygen species and finally leads to mycelia cell membrane damage and cell death in vitro.


Assuntos
Alcaloides , Quinolizidinas , Sophora , Vírus do Mosaico do Tabaco , Antifúngicos , Sophora/química , Alcaloides/química , Antivirais/farmacologia , Antivirais/química , Sementes/química
8.
Sci Rep ; 14(1): 8247, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589438

RESUMO

The aim of the present study was to prepare and evaluate Piperine (PP) loaded chitosan lipid nanoparticles (PP-CLNPs) to evaluate its biological activity alone or in combination with the antidiabetic drug Metformin (MET) in the management of cognitive deficit in diabetic rats. Piperine was successfully loaded on CLNPs prepared using chitosan, stearic acid, Tween 80 and Tripolyphosphate (TPP) at different concentrations. The developed CLNPs exhibited high entrapment efficiency that ranged from 85.12 to 97.41%, a particle size in the range of 59.56-414 nm and a negatively charged zeta potential values (- 20.1 to - 43.9 mV). In vitro release study revealed enhanced PP release from CLNPs compared to that from free PP suspensions for up to 24 h. In vivo studies revealed that treatment with the optimized PP-CLNPs formulation (F2) exerted a cognitive enhancing effect and ameliorated the oxidative stress associated with diabetes. PP-CLNPs acted as an effective bio-enhancer which increased the potency of metformin in protecting brain tissue from diabetes-induced neuroinflammation and memory deterioration. These results suggested that CLNPs could be a promising drug delivery system for encapsulating PP and thus can be used as an adjuvant therapy in the management of high-risk diabetic cognitive impairment conditions.


Assuntos
Alcaloides , Benzodioxóis , Quitosana , Disfunção Cognitiva , Diabetes Mellitus Experimental , Lipossomos , Metformina , Nanopartículas , Piperidinas , Alcamidas Poli-Insaturadas , Ratos , Animais , Ratos Wistar , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Cognição , Metformina/farmacologia , Metformina/uso terapêutico , Tamanho da Partícula , Portadores de Fármacos
9.
Pestic Biochem Physiol ; 200: 105814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582586

RESUMO

To explore active natural products against tobacco powdery mildew caused by Golovinomyces cichoracearum, an extract from the fermentation of endophytic Aspergillus fumigatus 0338 was investigated. The mechanisms of action for active compounds were also studied in detail. As a result, 14 indole alkaloid derivatives were isolated, with seven being newly discovered (1-7) and the remaining seven previously described (8-14). Notably, compounds 1-3 are rare linearly fused 6/6/5 tricyclic prenylated indole alkaloids, with asperversiamide J being the only known natural product of this kind. The isopentenyl substitutions at the 5-position in compounds 4 and 5 are also rare, with only compounds 1-(5-prenyl-1H-indol-3-yl)-propan-2-one (8) and 1-(6-methoxy-5-prenyl-1H-indol3-yl)-propan-2-one currently available. In addition, compounds 6 and 7 are new framework indole alkaloid derivatives bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. The purified compounds were evaluated for their activity against G. cichoracearum, and the results revealed that compounds 7 and 9 demonstrated obvious anti-G. cichoracearum activities with an inhibition rate of 82.6% and 85.2%, respectively, at a concentration of 250 µg/mL, these rates were better than that of the positive control agent, carbendazim (78.6%). The protective and curative effects of compounds 7 and 9 were also better than that of positive control, at the same concentration. Moreover, the mechanistic study showed that treatment with compound 9 significantly increased the structural tightness of tobacco leaves and directly affect the conidiospores of G. cichoracearum, thereby enhancing resistance. Compounds 7 and 9 could also induce systemic acquired resistance (SAR), directly regulating the expression of defense enzymes, defense genes, and plant semaphorins, which may further contribute to increased plant resistance. Based on the activity experiments and molecular dockings, the indole core structure may be the foundation of these compounds' anti-G. cichoracearum activity. Among them, the indole derivative parent structures of compounds 6, 7, and 9 exhibit strong effects. Moreover, the methoxy substitution in compound 7 can enhance their activity. By isolating and structurally identifying the above indole alkaloids, new candidates for anti-powdery mildew chemical screening were discovered, which could enhance the utilization of N. tabacum-derived fungi in pesticide development.


Assuntos
Alcaloides , Aspergillus fumigatus , Neopreno , Tabaco , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Alcaloides/farmacologia
10.
BMC Complement Med Ther ; 24(1): 139, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575897

RESUMO

BACKGROUND: Catharanthus roseus, a Madagascar native flowering plant, is known for its glossy leaves and vibrant flowers, and its medicinal significance due to its alkaloid compounds. As a source of vinblastine and vincristine used in chemotherapy, Catharanthus roseus is also employed in traditional medicine with its flower and stalks in dried form. Its toxicity can lead to various adverse effects. We report a case of Catharanthus roseus juice toxicity presenting as acute cholangitis, emphasizing the importance of healthcare providers obtaining detailed herbal supplement histories. CASE PRESENTATION: A 65-year-old woman presented with abdominal pain, fever, anorexia, and lower limb numbness. Initial diagnosis of acute cholangitis was considered, but imaging excluded common bile duct stones. Further investigation revealed a history of ingesting Catharanthus roseus juice for neck pain. Laboratory findings showed leukocytosis, elevated liver enzymes, and hyperbilirubinemia. The patient developed gastric ulcers, possibly due to alkaloids in Catharanthus roseus. No bacterial growth was noted in blood cultures. The patient recovered after discontinuing the herbal extract. CONCLUSIONS: Catharanthus roseus toxicity can manifest as fever, hepatotoxicity with cholestatic jaundice, and gastric ulcers, mimicking acute cholangitis. Awareness of herbal supplement use and potential toxicities is crucial for healthcare providers to ensure prompt diagnosis and appropriate management. This case emphasizes the need for public awareness regarding the possible toxicity of therapeutic herbs and the importance of comprehensive patient histories in healthcare settings.


Assuntos
Alcaloides , Catharanthus , Colangite , Úlcera Gástrica , Humanos , Idoso , Folhas de Planta
11.
Se Pu ; 42(4): 311-326, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566420

RESUMO

Ion chromatography (IC) is a novel high performance liquid chromatographic technique that is suitable for the separation and analysis of ionic substances in different matrix samples. Since 1975, it has been widely used in many fields, such as the environment, energy, food, and medicine. IC compensates for the separation limitations of traditional gas chromatography and high performance liquid chromatography and can realize the qualitative analysis and quantitative detection of strongly polar components. This chromatographic technique features not only simple operations but also rapid analysis. The sensors used in IC are characterized by high sensitivity and selectivity, and the technique can simultaneously separate and determine multiple components. Several advances in IC instrumentation and chromatographic theories have been developed in recent years. IC can analyze various types of samples, including ions, sugars, amino acids, and organic acids (bases). Chinese herbal medicines are typically characterized by highly complex chemical compositions and may contain carbohydrates, proteins, alkaloids, and other active components. They also contain toxic residues such as sulfur dioxide, which may be produced during the processing of medicinal materials. Therefore, the analysis and elucidation of the precise chemical constituents of Chinese herbal medicines present key problems that must be resolved in modern Chinese herbal medicine research. In this context, IC has become an important method for analyzing and identifying the complex components of Chinese herbal medicines because this method is suitable for detecting a single active ingredients among complex components. This paper introduces the different types and principles of IC as well as research progress in this technique. As the applications of IC-based methods in pharmaceutical science, cell biology, and microbiology increase, further development is necessary to expand the applications of this technique. The development of innovative techniques has enabled IC technologies to achieve higher analytical sensitivity, better selectivity, and wider application. The components of Chinese herbal medicines can be divided into endogenous and exogenous components according to their source: endogenous components include glycosides, amino acids, and organic acids, while exogenous components include toxic residues such as sulfur dioxide. Next, the applications of IC to the complex components of Chinese herbal medicines in recent decades are summarized. The most commonly used IC technologies and methods include ion exchange chromatography and conductivity detection. The advantages of IC for the analysis of alkaloids have been demonstrated. This method exhibits better characteristics than traditional analytical methods. However, the applications of IC for the speciation analysis of inorganic anions are limited. Moreover, few reports on the direct application of the technique for the determination of the main active substances in Chinese herbal medicines, including flavonoids, phenylpropanoids, and steroids, have been reported. Finally, this paper reviews new IC technologies and their application progress in Chinese herbal medicine, focusing on their prospects for the effective separation and analysis of complex components. In particular, we discuss the available sample (on-line) pretreatment technologies and explore possible technologies for the selective and efficient enrichment and separation of different components. Next, we assess innovative research on solid-phase materials that can improve the separation effect and analytical sensitivity of IC. We also describe the features of multidimensional chromatography, which combines the advantages of various chromatographic techniques. This review provides a theoretical reference for the further development of IC technology for the analysis of the complex chemical components of Chinese herbal medicines.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Dióxido de Enxofre/análise , Alcaloides/análise , Cromatografia Líquida de Alta Pressão , Íons , Medicina Tradicional Chinesa
12.
Se Pu ; 42(3): 234-244, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38503700

RESUMO

Ziziphi Spinosae Semen refers to the dried seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou. The seed is composed of a reddish brown coat and a yellow kernel. A comparative study was conducted to investigate differences in the chemical composition and their relative contents between the seed coat and kernel of Ziziphi Spinosae Semen. First, the chemical compounds found in the seed coat and kernel were characterized and identified using ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The analytical results tentatively identified 57 chemical compounds based on reference-compound comparison, literature retrieval, and chemical-database (e. g., MassBank) searches; these compounds included 14 triterpenes, 23 flavonoids, 7 alkaloids, 6 carboxylic acids, and 7 other types of compounds. The mass error of the identified compounds was within the mass deviation range of 5×10-6 (5 ppm). Next, two methods of multivariate statistical analysis, namely, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), were used to compare the differential compounds between the two seed parts. A total of 17 differential compounds were screened out via OPLS-DA based on a variable importance in projection (VIP) value of >5. The results revealed that betulinic acid, betulonic acid, alphitolic acid, and jujuboside Ⅰ mainly existed in the seed coat whereas the 13 other compounds, such as spinosin, jujuboside A, and 6‴-feruloylspinosin, mainly existed in the seed kernel. Therefore, these 17 differential compounds can be used to distinguish between the two seed parts. Finally, a semiquantitative method was established using UPLC and a charged aerosol detector (CAD) with inverse gradient compensation in the mobile phase. Six representative compounds with different types were selected to examine the CAD response consistency: magnoflorine (alkaloid), spinosin (flavone), 6‴-feruloylspinosin (flavone), jujuboside A (triterpenoid saponin), jujuboside B (triterpenoid saponin), and betulinic acid (triterpenoid acid). The results showed that the relative standard deviation (RSD) of the average response factors at different levels of these six compounds was 7.04% and that their response intensities were similar. Moreover, each compound in the fingerprint demonstrated good response consistency, and the peak areas obtained directly reflected the contents of each compound. Based on the semiquantitative fingerprints obtained, betulinic acid and oleic acid were considered the main components of the seed coat. The betulinic acid content in the seed coat was approximately 7 times higher than that in the seed kernel. Spinosin, jujuboside A, linoleic acid, betulinic acid, and oleic acid were the main components of the seed kernel. The spinosin content in the seed kernel was 18 times higher than that in the seed coat. In addition, the jujuboside A content in the seed kernel was 24 times higher than that in the seed coat. The proposed method can accurately determine the main components and compare the relative contents of these components in different seed parts. In summary, this study identified the differences in chemical components between the seed coat and kernel of Ziziphi Spinosae Semen and clarified the main components and their relative contents in these parts. The findings can not only provide a basis for the identification of chemical compounds and quality research on different parts of Ziziphi Spinosae Semen but also promote the development and utilization of this traditional Chinese medicine.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Flavonas , Saponinas , Triterpenos , Ziziphus , Medicamentos de Ervas Chinesas/química , Ácido Betulínico , Saponinas/química , Ácidos Oleicos , Cromatografia Líquida de Alta Pressão , Ziziphus/química , Sementes
13.
Sci Rep ; 14(1): 6000, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472367

RESUMO

Oriental poppy (Papaver orientale L.) belonging to the Papaveraceae family, has the capacity to synthesize a wide range of benzylisoquinoline alkaloids (BIAs). This experiment was conducted to investigate the effects of green and chemical copper oxide nanoparticles (CuO NPs) elicitors on oxidative stress and the BIAs biosynthesis pathway in the cell suspension culture of P. orientale. This research shows that both green and chemical CuO NPs at concentrations of 20 mg/L and 40 mg/L, induce oxidative stress in the cell suspension of P. orientale by increasing the production of H2O2 and the activity of antioxidant enzymes. The comparison of treatments revealed that utilizing a lower concentration of CuO NPs (20 mg/L) and extending the duration of cell suspension incubation (up to 48 h) play a more influential role in inducing the expression of the BIAs biosynthesis pathway genes (PsWRKY, TYDC, SalSyn, SalR, SalAT, T6ODM, COR and CODM) and increasing the production of morphinan alkaloids (thebaine, codeine, and morphine). The overarching results indicate that the concentration of CuO NPs and the duration of cell treatment have a more significant impact than the nature of CuO NPs in inducing oxidative stress and stimulating the expression of the BIAs pathway genes.


Assuntos
Alcaloides , Benzilisoquinolinas , Nanopartículas Metálicas , Nanopartículas , Papaver , Papaver/genética , Cobre/metabolismo , Peróxido de Hidrogênio/metabolismo , Morfina/metabolismo , Alcaloides/metabolismo , Benzilisoquinolinas/metabolismo , Expressão Gênica
14.
STAR Protoc ; 5(1): 102924, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430518

RESUMO

In addition to proteins, microRNAs, and lipids, plant-derived exosome-like nanovesicles (ENVs) are also enriched with host plant bioactives. Both curcumin and piperine are water insoluble, lack bioavailability, and are extracted by non-ecofriendly solvents. Herein, we present an eco-friendly protocol for co-isolating both curcumin and piperine in the form of hybrid ENVs. We describe steps for sample pre-processing, combined homogenization of plant materials, filtration, and differential centrifugation. We then detail procedures for polyethylene glycol-based fusion and precipitation of hybrid ENVs. For complete details on the use and execution of this protocol, please refer to Kumar et al.1.


Assuntos
Alcaloides , Curcuma , Curcumina , Piperidinas , Alcamidas Poli-Insaturadas , Polietilenoglicóis , Benzodioxóis
15.
Colloids Surf B Biointerfaces ; 236: 113827, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430830

RESUMO

In this study, cross-linked carboxymethyl cellulose/chitosan submicron particles were employed to facilitate the stabilization of Pickering emulsion. The polymer particles were prepared using the polyelectrolyte self-assembly method in conjunction with isocyanide based multicomponent reactions and the characteristics were obtained using: nuclear magnetic resonance, Fourier-transform infrared spectroscopy and dynamic light scattering. Atomic force microscopy revealed the heterogeneous structure of the resulting submicron particles with domains of 20-30 nm in size. The average diameter was found to be in the range of 229-378 nm and they were found to be suitable for the fabrication of oil/water Pickering emulsion when proceeded via the homogenization method followed by sonication. The results obtained revealed that carboxymethyl cellulose/chitosan particles significantly stabilized the droplets at the oil/water interface. Even at low particle concentrations of 0.3 g/L (which is close to that of low molecular weight surfactants) stable Pickering emulsions have been obtained. Additionally, the resulting emulsions showed a high level of stability with regard to changes in pH, temperature and ionic strength. The natural alkaloid piperine was used as a model compound to load the resulting particles, which possessed encapsulation efficiency of 90.6±0.4%. Furthermore, the in vitro release profile of piperine from the Pickering emulsion revealed a much-controlled release in both acidic and neutral media as compared to the unformulated piperine. Additional findings in this work revealed important information on the application of carboxymethyl cellulose/chitosan submicron particles as Pickering stabilizers for creation of new delivery systems.


Assuntos
Alcaloides , Benzodioxóis , Quitosana , Nanopartículas , Piperidinas , Alcamidas Poli-Insaturadas , Quitosana/química , Emulsões/química , Celulose/química , Carboximetilcelulose Sódica , Polímeros , Emulsificantes , Tamanho da Partícula , Nanopartículas/química
16.
Org Lett ; 26(11): 2163-2168, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38467014

RESUMO

Inspired by the multicomponent reaction-type scenario involving fatty dialdehydes, a nitrogen source, and acrolein, as a key C3 unit, put forward by Baldwin and Whitehead to explain the formation of manzamine-type alkaloids, 96 multicomponent reactions were designed, and their analytical readouts were deconvoluted using a herein-provided chemoinformatic workflow. This strategy pinpointed relevant conditions tuning the reactivity of acrolein to fulfill Baldwin and Whitehead's manzamine alkaloids biosynthetic hypothesis. This strategy can become part of a general method for the high-content analysis of multicomponent reactions applied to a natural product biosynthetic scenario.


Assuntos
Acroleína , Alcaloides , 60705 , Cromatografia Líquida , Espectrometria de Massas em Tandem
17.
J Orthop Surg Res ; 19(1): 178, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468339

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common degenerative joint disease characterized by persistent articular cartilage degeneration and synovitis. Oxymatrine (OMT) is a quinzolazine alkaloid extracted from the traditional Chinese medicine, matrine, and possesses anti-inflammatory properties that may help regulate the pathogenesis of OA; however, its mechanism has not been elucidated. This study aimed to investigate the effects of OMT on interleukin-1ß (IL-1ß)-induced damage and the potential mechanisms of action. METHODS: Chondrocytes were isolated from Sprague-Dawley rats. Toluidine blue and Collagen II immunofluorescence staining were used to determine the purity of the chondrocytes. Thereafter, the chondrocytes were subjected to IL-1ß stimulation, both in the presence and absence of OMT, or the autophagy inhibitor 3-methyladenine (3-MA). Cell viability was assessed using the MTT assay and SYTOX Green staining. Additionally, flow cytometry was used to determine cell apoptosis rate and reactive oxygen species (ROS) levels. The protein levels of AKT, mTOR, LC3, P62, matrix metalloproteinase-13, and collagen II were quantitatively analyzed using western blotting. Immunofluorescence was used to assess LC3 expression. RESULTS: OMT alleviated IL-1ß-induced damage in chondrocytes, by increasing the survival rate, reducing the apoptosis rates of chondrocytes, and preventing the degradation of the cartilage matrix. In addition, OMT decreased the ROS levels and inhibited the AKT/mTOR signaling pathway while promoting autophagy in IL-1ß treated chondrocytes. However, the effectiveness of OMT in improving chondrocyte viability under IL-1ß treatment was limited when autophagy was inhibited by 3-MA. CONCLUSIONS: OMT decreases oxidative stress and inhibits the AKT/mTOR signaling pathway to enhance autophagy, thus inhibiting IL-1ß-induced damage. Therefore, OMT may be a novel and effective therapeutic agent for the clinical treatment of OA.


Assuntos
Alcaloides , Cartilagem Articular , Matrinas , Osteoartrite , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Condrócitos/metabolismo , Interleucina-1beta/toxicidade , Interleucina-1beta/metabolismo , Osteoartrite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Cartilagem Articular/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/metabolismo , Autofagia , Colágeno/metabolismo , Apoptose
18.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474561

RESUMO

Berberis species have a long history of use in traditional Chinese medicine, Ayurvedic medicine, and Western herbal medicine. The aim of this study was the quantification of the main isoquinoline alkaloids in extracts obtained from various Berberis species by HPLC, in vitro and in silico determination of anti-cholinesterase activity, and in vitro and in vivo investigations of the cytotoxic activity of the investigated plant extracts and alkaloid standards. In particular, Berberis species whose activity had not been previously investigated were selected for the study. In the most investigated Berberis extracts, a high content of berberine and palmatine was determined. Alkaloid standards and most of the investigated plant extracts exhibit significant anti-cholinesterase activity. Molecular docking results confirmed that both alkaloids are more favourable for forming complexes with acetylcholinesterase compared to butyrylcholinesterase. The kinetic results obtained by HPLC-DAD indicated that berberine noncompetitively inhibited acetylcholinesterase, while butyrylcholinesterase was inhibited in a mixed mode. In turn, palmatine exhibited a mixed inhibition of acetylcholinesterase. The cytotoxic activity of berberine and palmatine standards and plant extracts were investigated against the human melanoma cell line (A375). The highest cytotoxicity was determined for extract obtained from Berberis pruinosa cortex. The cytotoxic properties of the extract were also determined in the in vivo investigations using the Danio rerio larvae xenograft model. The obtained results confirmed a significant effect of the Berberis pruinosa cortex extract on the number of cancer cells in a living organism. Our results showed that extracts obtained from Berberis species, especially the Berberis pruinosa cortex extract, can be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of neurodegenerative diseases and human melanoma.


Assuntos
Alcaloides , Antineoplásicos , Berberina , Berberis , Melanoma , Humanos , Berberina/farmacologia , Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Alcaloides/farmacologia , Extratos Vegetais/farmacologia
19.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474571

RESUMO

The Euodia genus comprises numerous untapped medicinal plants that warrant thorough evaluation for their potential as valuable natural sources of herbal medicine or food flavorings. In this study, untargeted metabolomics and in vitro functional methods were employed to analyze fruit extracts from 11 significant species of the Euodia genus. An investigation of the distribution of metabolites (quinolone and indole quinazoline alkaloids) in these species indicated that E. rutaecarpa (Euodia rutaecarpa) was the most widely distributed species, followed by E. compacta (Euodia compacta), E. glabrifolia (Euodia glabrifolia), E. austrosinensis (Euodia austrosinensis), and E. fargesii (Euodia fargesii). There have been reports on the close correlation between indole quinazoline alkaloids and their anti-tumor activity, especially in E. rutaecarpa fruits which exhibit effectiveness against various types of cancer, such as SGC-7901, Hela, A549, and other cancer cell lines. Additionally, the E. rutaecarpa plant contains indole quinazoline alkaloids, which possess remarkable antibacterial properties. Our results offer novel insights into the utilization of Euodia resources in the pharmaceutical industry.


Assuntos
Alcaloides , Evodia , Plantas Medicinais , Quinolonas , Rutaceae , Humanos , Extratos Vegetais , Alcaloides Indólicos , Células HeLa , Quinazolinas
20.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474577

RESUMO

While numerous Fabaceae seeds are a good nutritional source of high-quality protein, the use of some species is hampered by toxic effects caused by exposure to metabolites that accumulate in the seeds. One such species is the faba or broad bean (Vicia faba L.), which accumulates vicine and convicine. These two glycoalkaloids cause favism, the breakdown of red blood cells in persons with a glucose-6-phosphate dehydrogenase deficiency. Because this is the most common enzyme deficiency worldwide, faba bean breeding efforts have focused on developing cultivars with low levels of these alkaloids. Consequently, quantification methods have been developed; however, they quantify vicine and convicine only and not the derivatives of these compounds that potentially generate the same bio-active molecules. Based on the recognition of previously unknown (con)vicine-containing compounds, we screened the fragmentation spectra of LC-MS/MS data from five faba bean cultivars using the characteristic fragments generated by (con)vicine. This resulted in the recognition of more than a hundred derivatives, of which 89 were tentatively identified. (Con)vicine was mainly derivatized through the addition of sugars, hydroxycinnamic acids, and dicarboxylic acids, with a group of compounds composed of two (con)vicine residues linked by dicarboxyl fatty acids. In general, the abundance profiles of the different derivatives in the five cultivars mimicked that of vicine and convicine, but some showed a derivative-specific profile. The description of the (con)vicine diversity will impact the interpretation of future studies on the biosynthesis of (con)vicine, and the content in potentially bio-active alkaloids in faba beans may be higher than that represented by the quantification of vicine and convicine alone.


Assuntos
Alcaloides , Fabaceae , Glucosídeos , Pirimidinonas , Uridina/análogos & derivados , Vicia faba , Vicia faba/química , 60705 , Cromatografia Líquida , Espectrometria de Massas em Tandem , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...