Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.414
Filtrar
1.
AAPS PharmSciTech ; 25(3): 57, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472545

RESUMO

Psoriasis is a complex and persistent autoimmune skin disease. The present research focused on the therapeutic evaluation of betulin-loaded nanostructured lipid carriers (BE-NLCs) towards managing psoriasis. The BE-NLCs were synthesized using the emulsification cum solidification method, exhibiting a spherical shape with a particle size of 183.5±1.82nm and a narrow size distribution window (PDI: 0.142±0.05). A high zeta potential -38.64±0.05mV signifies the relative stability of the nano-dispersion system. BE-NLCs show a drug loading and entrapment efficiency of 47.35±3.25% and 87.8±7.86%, respectively. In vitro release study, BE NLCs show a cumulative percentage release of 90.667±5.507% over BE-sol (57.334±5.03%) and BD-oint (42±4.58%) for 720min. In an ex vivo 24-h permeation study, % cumulative amount permeated per cm2 was found to be 55.667±3.33% from BE-NLCs and 32.012±3.26% from BE-sol, demonstrating a better permeability of 21.66% when compared to the standard formulation BD-oint. The in vivo anti-psoriatic activity in the IMQ-induced model shows topical application of BE-sol, BE-NLCs, and BD-oint resulted in recovery rates of 56%, 82%, and 65%, respectively, based on PASI (Psoriasis Area and Severity Index) score. Notably, BE-NLCs demonstrated a more significant reduction in spleen mass, indicating attenuation of the local innate immune system in psoriatic mice. Reductions in TNF-α, IL-6, and IL-17 levels were observed in both BE-sol and BE-NLCs groups compared to the disease control (DC) group, with BE-NLCs exhibiting superior outcomes (74.05%, 44.76%, and 49.26% reduction, respectively). Soy lecithin and squalene-based NLCs could be better carrier system for the improvement of the therapeutic potential of BE towards management of psoriasis.


Assuntos
Ácido Betulínico , Nanoestruturas , Psoríase , Camundongos , Animais , Imiquimode/efeitos adversos , Portadores de Fármacos/uso terapêutico , Psoríase/tratamento farmacológico , Lipídeos , Tamanho da Partícula
2.
Clin Transl Sci ; 17(3): e13771, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511583

RESUMO

This study evaluated and characterized the pharmacological activity of the orally administered interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitors BAY1834845 (zabedosertib) and BAY1830839 in healthy male volunteers. Participants received one of either IRAK4 inhibitors or a control treatment (prednisolone 20 mg or placebo) twice daily for 7 days. Localized skin inflammation was induced by topical application of imiquimod (IMQ) cream for 3 days, starting at Day 3 of treatment. The inflammatory response was evaluated by laser speckle contrast imaging (skin perfusion) and multispectral imaging (erythema). At Day 7, participants received 1 ng/kg intravenous lipopolysaccharide (LPS). Circulating inflammatory proteins, leukocyte differentiation, acute phase proteins, and clinical parameters were evaluated before and after the systemic LPS challenge. Treatment with BAY1834845 significantly reduced the mean IMQ-induced skin perfusion response (geometric mean ratio [GMR] vs. placebo: 0.69 for BAY1834845, 0.70 for prednisolone; both p < 0.05). Treatment with BAY1834845 and BAY1830839 significantly reduced IMQ-induced erythema (GMR vs. placebo: 0.75 and 0.83, respectively, both p < 0.05; 0.86 for prednisolone, not significant). Both IRAK4 inhibitors significantly suppressed the serum TNF-α and IL-6 responses (≥80% suppression vs. placebo, p < 0.05) and inhibited C-reactive protein, procalcitonin, and IL-8 responses to intravenous LPS. This study demonstrated the pharmacological effectiveness of BAY1834845 and BAY1830839 in suppressing systemically and locally induced inflammatory responses in the same range as prednisolone, underlining the potential value of these IRAK4 inhibitors as future therapies for dermatological or other immune-mediated inflammatory diseases.


Assuntos
Indazóis , Quinases Associadas a Receptores de Interleucina-1 , Lipopolissacarídeos , Piridinas , Humanos , Masculino , Eritema , Prednisolona , Imiquimode , Imunidade , Voluntários
3.
Int J Nanomedicine ; 19: 2625-2638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505169

RESUMO

Purpose: Psoriasis is a chronic and recurrent inflammatory dermatitis characterized by T cell imbalance and abnormal keratinocyte proliferation. MicroRNAs (miRNAs) hold promise as therapeutic agents for this disease; however, their clinical application is hindered by poor stability and limited skin penetration. This study demonstrates the utilization of Framework Nucleic Acid (FNA) for the topical delivery of miRNAs in psoriasis treatment. Methods: By utilizing miRNA-125b as the model drug, FNA-miR-125b was synthesized via self-assembly. The successful synthesis and stability of FNA-miR-125b in bovine fetal serum (FBS) were verified through gel electrophoresis. Subsequently, flow cytometry was employed to investigate the cell internalization on HaCaT cells, while qPCR determined the effects of FNA-miR-125b on cellular functions. Additionally, the skin penetration ability of FNA-miR-125b was assessed. Finally, a topical administration study involving FNA-miR-125b cream on imiquimod (IMQ)-induced psoriasis mice was conducted to evaluate its therapeutic efficacy. Results: The FNA-miR-125b exhibited excellent stability, efficient cellular internalization, and potent inhibition of keratinocyte proliferation. In the psoriasis mouse model, FNA-miR-125b effectively penetrated the skin tissue, resulting in reduced epidermal thickness and PASI score, as well as decreased levels of inflammatory cytokines.


Assuntos
MicroRNAs , Psoríase , Animais , Bovinos , Camundongos , MicroRNAs/genética , Queratinócitos , Pele , Psoríase/tratamento farmacológico , Psoríase/induzido quimicamente , Imiquimode/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
4.
Int Immunopharmacol ; 130: 111800, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447416

RESUMO

p38 MAPK has been implicated in the pathogenesis of rheumatoid arthritis and psoriasis. To assess the therapeutic efficacy of the p38 MAPK inhibitor NJK14047 in the treatment of rheumatoid arthritis and psoriasis, we developed mouse models of collagen-induced rheumatoid arthritis (CIA) and imiquimod-induced psoriasis (IIP). NJK14047 was found to suppress arthritis development and psoriasis symptoms and also suppressed histopathological changes induced by CIA and IIP. Furthermore, we established that CIA and IIP evoked increases in the mRNA expression levels of Th1/Th17 inflammatory cytokines in the joints and skin, which was again suppressed by NJK14047. NJK14047 reversed the enlargement of spleens induced by CIA and IIP as well as increases in the levels of inflammatory cytokine in spleens following induction by CIA and IIP. In human SW982 synovial cells, NJK14047 was found to suppress lipopolysaccharide-induced increases in the mRNA expression of proinflammatory cytokines. NJK14047 inhibition of p38 MAPK suppressed the differentiation of naïve T cells to Th17 and Th1 cells. Our findings in this study provide convincing evidence indicating the therapeutic efficacy of the p38 MAPK inhibitor NJK14047 against CIA and IIP, which we speculate could be associated with the suppression on T-cell differentiation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Psoríase , Camundongos , Animais , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Diferenciação Celular , Citocinas/genética , Citocinas/metabolismo , Imiquimode/uso terapêutico , RNA Mensageiro/metabolismo , Células Th17
5.
Int Immunopharmacol ; 130: 111805, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38457930

RESUMO

OBJECTIVE: To elucidate the mechanism of Pentraxin 3 (PTX3) in the pathogenesis of psoriasiform dermatitis using Ptx3-knockout (Ptx3-KO) background mice. METHODS: An Imiquimod (IMQ)-induced murine psoriatic model was created using Ptx3-KO (Ptx3-/-) and wild-type (Ptx3+/+) mice. Skin lesion severity and expression of inflammatory mediators (IL-6 and TNFα) were assessed using PASI score and ELISA, respectively. Cutaneous tissues from the two mice groups were subjected to histological analyses, including HE staining, Masson staining, and Immunohistochemistry (IHC). The PTX3, iNOS, COX2, and Arg1 expressions were quantified and compared between the two groups. We used RNA-seq to clarify the underlying mechanisms of the disease. Flow cytometry was used to analyze systemic Th17 cell differentiation and macrophage polarization. RESULT: The psoriatic region exhibited a higher PTX3 expression than the normal cutaneous area. Moreover, PTX3 was upregulated in HaCaT cells post-TNFα stimulation. Upon IMQ stimulation, Ptx3-/- mice displayed a lower degree of the psoriasiform dermatitis phenotype compared to Ptx3+/+ mice. Consistent with the RNA-seq results, further experiments confirmed that compared to the wild-type group, the PTX3-KO group exhibited a generally lower IL-6, TNFα, iNOS, and COX2 expression and a contrasting trend in macrophage polarization. However, no significant difference in Th17 cell activation was observed between the two groups. CONCLUSIONS: This study revealed that PTX3 was upregulated in psoriatic skin tissues and TNFα-stimulated HaCaT cells. We also discovered that PTX3 deficiency in mice ameliorated the psoriasiform dermatitis phenotype upon IMQ stimulation. Mechanistically, PTX3 exacerbates psoriasiform dermatitis by regulating macrophage polarization rather than Th17 cell differentiation.


Assuntos
Proteína C-Reativa , Dermatite , Psoríase , Componente Amiloide P Sérico , Animais , Camundongos , Psoríase/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Pele/patologia , Imiquimode/efeitos adversos , Dermatite/patologia , Macrófagos/patologia , Modelos Animais de Doenças
6.
J Low Genit Tract Dis ; 28(2): 198-201, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518218

RESUMO

OBJECTIVES: Anal condylomas are a manifestation of anal human papillomavirus infection and can be associated with precancerous lesions and squamous cell carcinomas. Several methods have been described for treatment, including argon plasma coagulation. A narrative review of the evidence published on this topic was conducted. METHODS: A search was conducted using PubMed, Scopus, and Web of Science databases. RESULTS: Five studies reported on anal/perianal condyloma treatment with argon plasma coagulation. In 3 of these studies, there was a comparison with other treatment methods (addition of imiquimod, electrofulguration, and electrocautery, respectively). Argon plasma coagulation settings varied between studies. This type of treatment was effective for ablation. Recurrence rates and follow-up times varied largely between studies. No major complications, such as pain, scarring, sexual dysfunction, or severe bleeding were described. CONCLUSION: Studies indicate that argon plasma coagulation is an effective and safe therapy for anal and perianal condylomas.


Assuntos
Condiloma Acuminado , Infecções por Papillomavirus , Humanos , Coagulação com Plasma de Argônio , Condiloma Acuminado/cirurgia , Condiloma Acuminado/patologia , Imiquimode , Eletrocoagulação , Resultado do Tratamento
7.
Cell Death Dis ; 15(3): 180, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429278

RESUMO

Gasdermin E (GSDME) has recently been identified as a critical executioner to mediate pyroptosis. While epidermal keratinocytes can initiate GSDME-mediated pyroptosis, the role of keratinocyte GSDME in psoriatic dermatitis remains poorly characterized. Through analysis of GEO datasets, we found elevated GSDME levels in psoriatic lesional skin. Additionally, GSDME levels correlated with both psoriasis severity and response to biologics treatments. Single-cell RNA sequencing (scRNA-seq) from a GEO dataset revealed GSDME upregulation in keratinocytes of psoriasis patients. In the imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model, both full-length and cleaved forms of caspase-3 and GSDME were elevated in the epidermis. Abnormal proliferation and differentiation of keratinocytes and dermatitis were attenuated in Gsdme-/- mice and keratinocyte-specific Gsdme conditional knockout mice after IMQ stimulation. Exposure of keratinocytes to mixed cytokines (M5), mimicking psoriatic conditions, led to GSDME cleavage. Moreover, the interaction between GSDME-FL and p65 or c-jun was significantly increased after M5 stimulation. GSDME knockdown inhibited nuclear translocation of p65 and c-jun and decreased upregulation of psoriatic inflammatory mediators such as IL1ß, CCL20, CXCL1, CXCL8, S100A8, and S100A9 in M5-challenged keratinocytes. In conclusion, GSDME in keratinocytes contributes to the pathogenesis and progression of psoriasis, potentially in a pyroptosis-independent manner by interacting and promoting translocation of p65 and c-jun. These findings suggest that keratinocyte GSDME could serve as a potential therapeutic target for psoriasis treatment.


Assuntos
Dermatite , Gasderminas , Psoríase , Animais , Humanos , Camundongos , Dermatite/metabolismo , Dermatite/patologia , Gasderminas/metabolismo , Imiquimode/efeitos adversos , Inflamação/patologia , Queratinócitos/patologia , Psoríase/metabolismo , Psoríase/patologia , Fator de Transcrição RelA/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo
8.
Eur J Pharmacol ; 968: 176382, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311277

RESUMO

Psoriasis is a chronic, recurrent, inflammatory dermatosis accompanied by excessive activation of dendritic cells (DCs), which are primarily responsible for initiating an immune response. The bromodomain and extraterminal domain (BET) family plays a pivotal role in the transcriptional regulation of inflammation and its inhibitors can downregulate DCs maturation and activation. Here we investigated the effect of NHWD-870, a potent BET inhibitor, on inflammation in an imiquimod (IMQ)-induced psoriasis-like mouse model and murine bone marrow-derived dendritic cells (BMDCs) stimulated by lipopolysaccharide (LPS) and IMQ. Application of NHWD-870 significantly ameliorated IMQ-triggered skin inflammation in mice, and markers associated with DC maturation (CD40, CD80 and CD86) were decreased in skin lesions, spleen and lymph nodes. Additionally, NHWD-870 reduced LPS or IMQ induced DCs maturation and activation in vitro, with lower expression of inflammatory cytokines [interleukin (IL)-12, IL-23, tumor necrosis factor-α, IL-6, IL-1ß, chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10]. In addition, we found that interferon regulatory factor 7 (IRF7) significantly increased during DCs maturation, and inhibition of IRF7 could impair BMDCs maturation and activation. What's more, IRF7 was highly expressed in both psoriatic patients and IMQ-induced psoriasis-like mice. Single-cell RNA sequencing of normal and psoriatic skin demonstrated that IRF7 expression was increased in DCs of psoriatic skin. While NHWD-870 could inhibit IRF7 and phosphorylated-IRF7 expression in vivo and in vitro. These results indicate that NHWD-870 suppresses the maturation and activation of DCs by decreasing IRF7 proteins which finally alleviates psoriasis-like skin lesions, and NHWD-870 may be a potent therapeutic drug for psoriasis.


Assuntos
Dermatite , Psoríase , Humanos , Animais , Camundongos , Imiquimode/efeitos adversos , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/farmacologia , Lipopolissacarídeos/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele , Dermatite/patologia , Inflamação/patologia , Células Dendríticas , Transdução de Sinais , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
9.
Physiol Rep ; 12(3): e15949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346802

RESUMO

Toll-like receptor-7 (TLR7) activation promotes autoimmunity, and metabolic syndrome (MetS) is a common comorbidity in patients with autoimmune disease. We previously demonstrated hyperinsulinemia in TLR7 agonist imiquimod (IMQ)-treated, high-fat diet (HFD)-fed female C57BL/6 mice. Since mouse strains differ in susceptibility to MetS and target organ damage, this study investigated whether 12 weeks of exposure to HFD and IMQ promoted MetS, autoimmunity, and target organ damage in female FVB/N mice. Supporting early-stage autoimmunity, spleen-to-tibia ratio, and anti-nuclear antibodies (ANA) were significantly increased by IMQ. No significant effect of IMQ on urinary albumin excretion or left ventricular hypertrophy was observed. HFD increased liver-to-tibia ratio, which was further exacerbated by IMQ. HFD increased fasting blood glucose levels at the end of 12 weeks, but there was no significant effect of IMQ treatment on fasting blood glucose levels at 6 or 12 weeks of treatment. However, oral glucose tolerance testing at 12 weeks revealed impaired glucose tolerance in HFD-fed mice compared to control diet mice together with IMQ treatment exacerbating the impairment. Accordingly, these data suggest TLR7 activation also exacerbates HFD-induced dysregulation of glucose handling FVB/N mice, supporting the possibility that endogenous TLR7 activation may contribute to dysglycemia in patients with autoimmune disease.


Assuntos
Doenças Autoimunes , Síndrome Metabólica , Humanos , Feminino , Camundongos , Animais , Imiquimode/farmacologia , Dieta Hiperlipídica/efeitos adversos , Glicemia/metabolismo , Receptor 7 Toll-Like/metabolismo , Controle Glicêmico , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos
10.
Front Immunol ; 15: 1340467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348035

RESUMO

Background: Interleukin (IL)-17-producing γδT (γδT17) cells mediate inflammatory responses in barrier tissues. Dysregulated γδT17 cell activation can lead to the overproduction of IL-17 and IL-22 and the development of inflammatory diseases, including psoriasis. IL-23 and IL-1ß are known to synergistically activate γδT17 cells, but the regulatory mechanisms of γδT17 cells have not been fully elucidated. This study aimed to reveal the contribution of the inflammatory cytokine tumor necrosis factor-like ligand 1A (TL1A) to γδT17 cell activation and psoriasis development. Methods: Anti-TL1A antibody was injected into an imiquimod (IMQ)-induced murine psoriasis model. TL1A receptor expression was analyzed in splenic and dermal γδT cells. γδT cells were tested for cytokine production in vitro and in vivo under stimulation with IL-23, IL-1ß, and TL1A. TL1A was applied to a psoriasis model induced by intradermal IL-23 injection. Mice deficient in γδT cells were intradermally injected with IL-23 plus TL1A to verify the contribution of TL1A-dependent γδT-cell activation to psoriasis development. Results: Neutralization of TL1A attenuated γδT17 cell activation in IMQ-treated skin. TL1A induced cytokine production by splenic γδT17 cells in synergy with IL-23. Dermal γδT17 cells constitutively expressed a TL1A receptor at high levels and vigorously produced IL-22 upon intradermal IL-23 and TL1A injection but not IL-23 alone. TL1A exacerbated the dermal symptoms induced by IL-23 injection in wild-type but not in γδT cell-deficient mice. Conclusion: These findings suggest a novel regulatory mechanism of γδT cells through TL1A and its involvement in psoriasis pathogenesis as a possible therapeutic target.


Assuntos
Psoríase , Animais , Camundongos , Citocinas/metabolismo , Imiquimode/uso terapêutico , Interleucina-23 , Ligantes , Psoríase/patologia
11.
Skin Res Technol ; 30(2): e13606, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38363081

RESUMO

BACKGROUND: Dopamine (D) and serotonin (5-HT) pathways contribute to psoriasis pathobiology. Disruptions incite increased inflammatory mediators, keratinocyte activation and deterioration, and worsening symptoms. Brilaroxazine (RP5063), which displays potent high binding affinity to D2/3/4 and 5-HT1A/2A/2B/7 receptors and a moderate affinity to serotonin transporter (SERT), may affect the underlying psoriasis pathology. METHODS: An imiquimod-induced psoriatic mouse model (BALB/c) evaluated brilaroxazine's activity in a topical liposomal-aqueous gel (Lipogel) formulation. Two of the three groups (n = 6 per) underwent induction with 5% imiquimod, and one group received topical brilaroxazine Lipogel (Days 1-11). Assessments included (1) Psoriasis Area and Severity Index (PASI) scores (Days 1-12), skin histology for Baker score based on H&E stained tissue (Day 12), and serum blood collection for serum cytokine analysis (Day 12). One-way ANOVA followed by post hoc Dunnett's t-test evaluated significance (p < 0.05). RESULTS: Imiquimod-induced animal Baker scores were higher versus Sham non-induced control's results (p < 0.001). Brilaroxazine Lipogel had significantly (p = 0.003) lower Baker scores versus the induced Psoriasis group. Brilaroxazine PASI scores were lower (p = 0.03) versus the induced Psoriasis group (Days 3-12), with the greatest effect in the last 3 days. The induced Psoriasis group showed higher Ki-67 and TGF-ß levels versus non-induced Sham controls (p = 0.001). The brilaroxazine Lipogel group displayed lower levels of these cytokines versus the induced Psoriasis group, Ki-67 (p = 0.001) and TGF-ß (p = 0.008), and no difference in TNF-α levels versus Sham non-induced controls. CONCLUSION: Brilaroxazine Lipogel displayed significant activity in imiquimod-induced psoriatic animals, offering a novel therapeutic strategy.


Assuntos
Fármacos Dermatológicos , Psoríase , Animais , Camundongos , Imiquimode/efeitos adversos , Antígeno Ki-67/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Serotonina/uso terapêutico , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele/patologia , Fármacos Dermatológicos/farmacologia , Citocinas/metabolismo , Citocinas/farmacologia , Citocinas/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/uso terapêutico , Modelos Animais de Doenças
12.
BMC Complement Med Ther ; 24(1): 100, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402151

RESUMO

Topical ROCEN (Roc), liposomal arthrocen hydrogel, is a robust anti-inflammatory formulation which has been developed for skin diseases such as eczema. Therefore, we aimed to evaluate the efficacy of Roc 2% on the healing of imiquimod (Imiq)-induced psoriasis in a mouse model. Psoriasis was induced by applying Imiq topically to the mice's back skin once daily for five consecutive days. Moreover, a group of animal experiments was treated with Cyclosporine A (CsA), as a standard drug, for comparison with Roc treated group. The efficacy of Roc on skin lesions was evaluated by employing Psoriasis Area and Severity Index (PASI) scores. Subsequently, the skin samples were assessed using Baker's scoring system and Masson's trichrome staining, immunohistochemistry, and real-time PCR analysis. The observational and histopathological results indicated that topical application of Roc significantly reduced the PASI and Baker's scores in the plaque-type psoriasis model. Moreover, biochemical assessments showed that Roc suppressed significantly the increase of IL-17, IL-23, and TNF-α cytokines gene expression in the lesion site of psoriatic animals. In conclusion topical Roc 2% could significantly alleviate major pathological aspects of Imiq-induced psoriasis through inflammation inhibition which was comparable to the CsA drug. The beneficial outcomes of Roc application in the psoriasis model suggest its potential usage in complementary medicine.


Assuntos
Ciclosporina , Psoríase , Animais , Camundongos , Ciclosporina/farmacologia , Modelos Animais de Doenças , Pele/patologia , Psoríase/tratamento farmacológico , Citocinas/metabolismo , Imiquimode/efeitos adversos
13.
J Pharmacol Sci ; 154(3): 192-202, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395520

RESUMO

Salidroside (SAL) is a glucoside of tyrosol commonly existing in the roots of Rhodiola rosea. This study unveils the protective effect of SAL on skin inflammation in imiquimod (IMQ)-induced psoriasis. The mouse model of psoriasis was established by local application of IMQ, and SAL efficacy was evaluated through PASI scoring, H&E staining, and skin tissue pathology observation. The HaCaT cell model was established by interferon (IFN)-γ induction, followed by MTT assay detection of cell viability, detection of ROS, SOD, MDA, and CAT levels in skin tissues and cells using reagent kits, ELISA detection of inflammatory factors (TNF-α, IL-6, IL-1ß), and qRT-PCR detection of psoriasis-related genes (S100a9, Cxcl1, Cxcl2) as well as miR-369-3p and SMAD2 expressions. The binding relationship between miR-369-3p and SMAD2 was validated using dual-luciferase reporter assay. SAL treatment reduced PASI scores and alleviated psoriasis symptoms of IMQ-induced mice, and also augmented the viability and subsided the oxidative stress and inflammation of IFN-γ-treated HaCaT cells. SAL treatment restrained miR-369-3p expression but elevated SMAD2 expression. Mechanistically, miR-369-3p targeted SMAD2 expression. miR-369-3p overexpression or SMAD2 inhibition partially offset the alleviating effect of SAL on psoriasis skin inflammation. In conclusion, SAL alleviates skin inflammation in IMQ-induced psoriasis mice via the miR-369-3p/SMAD2 axis.


Assuntos
MicroRNAs , Fenóis , Psoríase , Camundongos , Animais , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/genética , Pele , Glucosídeos/efeitos adversos , Inflamação/metabolismo , MicroRNAs/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
14.
Int J Rheum Dis ; 27(2): e15085, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38402443

RESUMO

BACKGROUND: Psoriasis, a common chronic inflammatory skin condition, impacts around 2%-3% of the global population. Theacrine is recognized for its potential anti-inflammatory and antioxidant properties. However, the role of theacrine in psoriasis remains unclear. PURPOSES: To investigate the effects of theacrine on psoriasis and explore the underlying signaling pathways. METHODS: For imiquimod (IMQ)-induced Psoriasis-like mice, the psoriatic inflammation was monitored using Psoriasis Area and Severity Index (PASI). The skin damage was observed using Hematoxylin and Eosin staining. The KI67 and CD4 in skin tissues were assessed using Immunohistochemistry analysis. Western blots were performed to evaluate the expression of Keratin 1 (KRT1), KRT6, LC3, P62, Beclin1, T-bet, GATA3, RAR-related orphan receptor (ROR)-γt, Sirtuin-3 (SIRT3), Forkhead Box O3a (FOXO3a) and Parkin. Additionally, LC3B expression was analyzed using an immunofluorescent assay, while flow cytometry was performed to analyze the percentage of Th17, Th1, and Th2 positive cells in skin-draining lymph node. RESULTS: Theacrine improved skin condition by reducing hyperkeratosis and acanthosis, lowering PASI scores, and decreasing KI67-positive cells. Theacrine also modulated keratin expression, elevating KRT1 while reducing KRT6 levels. Theacrine enhanced autophagy indicated by an increased LC3-II/LC3-I ratio and Beclin1, while reduced P62 levels. Additionally, Theacrine reduced CD4-positive cells and suppressed Th17 and Th1 cell activation. Theacrine activated the FOXO3a/Parkin pathway by upregulating SIRT3 expression, and down-regulation of SIRT3 counteracted theacrine's effects in psoriasis-like mice. CONCLUSION: Theacrine inhibits skin damage, promotes autophagy, and mediates inflammation in IMQ-induced psoriasis mice via upregulating SIRT3 to activate FOXO3a/Parkin pathway, positioning theacrine as a candidate for psoriasis treatment.


Assuntos
Psoríase , Sirtuína 3 , Ácido Úrico/análogos & derivados , Animais , Camundongos , Sirtuína 3/efeitos adversos , Proteína Beclina-1 , Antígeno Ki-67 , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Inflamação/induzido quimicamente , Psoríase/induzido quimicamente , Pele , Imiquimode/efeitos adversos , Autofagia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Células Th17
15.
Skin Res Technol ; 30(2): e13603, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332513

RESUMO

BACKGROUND: Psoriasis is a prevalent, long-term skin condition characterized by inflammation. Keratinocytes (KCs) are important effector cells that release inflammatory factors and chemokines to promote the inflammatory cascade in psoriasis. However, the mechanisms underlying the activation of KCs in psoriasis remain unclear. Livin suppresses apoptotic proteins and directly affects the growth and spread of cancer cells. Livin expression reportedly increases significantly in lesions of patients with psoriasis; however, its specific role in KC activation remains unknown. This study aimed to examine the impact of Livin on KC activation and the subsequent release of inflammatory mediators. METHODS: Immunofluorescence staining, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA), and western blotting were used to assess Livin expression in patients with psoriasis, an imiquimod (IMQ)-induced psoriasis-like mouse model, and M5-treated HaCaT cells. To investigate the role of Livin in KCs, we performed RNA sequencing and proteomic analysis of Livin-knockdown (knockdown-HaCaT) and negative control (NC-HaCaT) cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used for enrichment analyses. Moreover, the effect of Livin expression on the release of inflammatory mediators in KCs was verified using ELISA. RESULTS: Livin expression was higher in KCs of patients with psoriasis than in those healthy controls. Livin expression in HaCaT cells treated with M5 increased significantly over time. Livin expression was higher in the skin lesions of the IMQ mouse model than in the control group. Proteomic analysis and RNA sequencing used to investigate the function of Livin in HaCaT cells revealed its potential role in mediating KC activation and inflammatory mediator release, which affected the pathology of psoriasis. CONCLUSIONS: Livin expression played an effect on KCs activation, which induced release of inflammatory mediators and up-regulation of keratin. This study provides a new effector molecule for the mechanism of inflammatory response in psoriasis.


Assuntos
Psoríase , Dermatopatias , Animais , Humanos , Camundongos , Proliferação de Células , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Mediadores da Inflamação/efeitos adversos , Mediadores da Inflamação/metabolismo , Queratinócitos/metabolismo , Proteômica , Psoríase/patologia , Dermatopatias/metabolismo
16.
ACS Appl Mater Interfaces ; 16(7): 8403-8416, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334116

RESUMO

Cancer immunotherapy is expected to achieve tumor treatment mainly by stimulating the patient's own immune system to kill tumor cells. However, the low immunogenicity of the tumor and the poor efficiency of tumor antigen presentation result in a variety of solid tumors that do not respond to immunotherapy. Herein, we designed a proton-gradient-driven porphyrin-based liposome (PBL) with highly efficient Toll-like receptor 7 (TLR7) agonist (imiquimod, R837) encapsulation (R837@PBL). R837@PBL rapidly released R837 in the acid microenvironment to activate the TLR in the endosome inner membrane to promote bone-marrow-derived dendritic cell maturation and enhance antigen presentation. R837@PBL upon laser irradiation triggered immunogenic cell death of tumor cells and tumor-associated antigen release after subcutaneous injection, activated TLR7, formed in situ tumor nanoadjuvants, and enhanced the antigen presentation efficiency. Photoimmunotherapy promoted the infiltration of cytotoxic T lymphocytes into tumor tissues, inhibited the growth of the treated and abscopal tumors, and exerted highly effective photoimmunotherapeutic effects. Hence, our designed in situ tumor nanoadjuvants are expected to be an effective treatment for treated and abscopal tumors, providing a novel approach for synergistic photoimmunotherapy of tumors.


Assuntos
Neoplasias , Porfirinas , Humanos , Imiquimode/farmacologia , Lipossomos/farmacologia , Receptor 7 Toll-Like/agonistas , Prótons , Porfirinas/farmacologia , Neoplasias/terapia , Imunoterapia , Adjuvantes Imunológicos/farmacologia , Antígenos de Neoplasias , Microambiente Tumoral , Linhagem Celular Tumoral
17.
J Ethnopharmacol ; 325: 117856, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38316220

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hua Zhuo Ning Fu Decoction (HZD) is an empirical prescription from traditional Chinese medicine that shows excellent clinical results for psoriasis patients. Uncertainty lingered over HZD's potential anti-psoriasis mechanisms. AIM OF THE STUDY: The study's objective is to investigate the pharmacological processes and therapeutic effects of HZD on psoriasis. MATERIALS AND METHODS: In the initial phase of the study, an investigation was conducted to assess the effects of HZD on psoriasis-afflicted mice using an imiquimod (IMQ)-induced murine model. The experimental mice were randomly allocated to different groups, including the IMQ-induced model group, the control group, the HZD therapy groups with varying dosage levels (low, medium, and high), and Dexamethasone (DEX, the positive control medicine) group. Bioinformatics analysis and molecular docking were subsequently employed to identify the primary components and molecular targets associated with the therapeutic action of HZD in the context of psoriasis. Additionally, to find the impacts on metabolite regulation, plasma metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was used. It's interesting to note that the combined mechanisms from metabolomics were examined in tandem with the targets. In vivo tests were the last step in validating the potential mechanism. Throughout the trial, the following data were recorded: body weight, psoriasis area and severity index (PASI). The molecular targets connected to HZD's anti-psoriasis activities were revealed using histological examination, western blot (WB), and ELISA investigation. RESULTS: In mice induced with IMQ, HZD shown good anti-psoriasis effects in terms of PASI score and epidermal acanthosis. 95 HZD targets and 77 bioactive chemicals connected to psoriasis were found by bioinformatics research; of these, 7 key targets (EPHX2, PLA2G2A, TBXAS1, MAOA, ALDH1A3, ADH1A, and ADH1B) were linked to the mechanisms of HZD, the combination degree of which was finally expressed by the score of docking. In addition, HZD regulated nine metabolites. In line with this, HZD modified three metabolic pathways. Additionally, a combined examination of 7 key targets and 9 metabolites suggested that the metabolism of arachidonic acid might be the key metabolic route, which was identified by ELISA analysis. The in vivo investigation shown that HZD could control cytokines associated to inflammation (IL-10, TGF-ß, IL-17A, and IL-23), as well as important antioxidant system markers (ROS, GSH, and MDA). Moreover, HZD controlled iron levels and the expression of ferroptosis-related proteins (ACSL4 and GPX4), suggesting that ferroptosis played a crucial role in this process. CONCLUSIONS: Our findings demonstrated the whole mechanism and anti-psoriasis effectiveness of HZD, which will promote its clinical application and aid in the investigation of new bioactive components of HZD against psoriasis.


Assuntos
Medicamentos de Ervas Chinesas , Psoríase , Humanos , Camundongos , Animais , Simulação de Acoplamento Molecular , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/patologia , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolômica , Imiquimode , Biologia Computacional
18.
Curr Mol Pharmacol ; 17: e18761429254358, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38389423

RESUMO

AIM: To investigate the effects and mechanism of Ginsenoside Compound K (GCK) on psoriasis, focusing on the glucocorticoid receptor (GR) in keratinocytes. METHODS: An imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model was generated to evaluate the anti-inflammatory effect of GCK. Hematoxylin and eosin (H&E) staining was used to assess skin pathological changes. Protein expression of K17 and p-p65 in mice skin was assayed by immunohistochemical. Protein expression and phosphorylation of p65 IκB were assayed by Western blot. Protein expression of K1, K6, K10, K16, K17, and GR were assayed by Western blot and immunofluorescence. Enzyme-linked immunosorbent assay (ELISA) was used to determine cytokine levels of TNF-α, IL-6, CXCL-8, and ICAM-1. Real-time polymerase chain reaction (RT-PCR) was used to quantify TNF-α, IL-6, IL-8, and ICAM-1 mRNA expression. Cell viability was determined by Cell Counting Kit-8(CCK-8) assay. A high-content cell-imaging system was used to assay cell proliferation. Nuclear translocation of p65 and GR was assayed by imaging flow cytometry and immunofluorescence microscopy. Small interfering RNA was used to confirm the role of GR in the anti-inflammatory and immunoregulatory effect of GCK in normal human epidermal keratinecytes (NHEKs). RESULTS: GCK reduced the psoriasis area, severity index, and epidermal thickening in IMQ-induced mice. GCK significantly attenuated the mRNA levels of IL-6, IL-8, TNF-α, and ICAM-1 and reduced epidermal hyperproliferation in the skin of IMQ-induced mice. GCK inhibited in vitro activation of NF-κB, leading to attenuated release of inflammatory mediators (IL-6, IL-8, TNF-α, and ICAM-1) and suppression of NHEK hyperproliferation and abnormal differentiation. These inhibitory effects of GCK were diminished by GR silencing in NHEKs. CONCLUSION: GCK suppressed psoriasis-related inflammation by suppressing keratinocyte activation, which may be related to promoting GR nuclear translocation and inhibiting NF-κB activation. In summary, GCK appears to be a GR activator and a promising therapeutic candidate for antipsoriatic agents.


Assuntos
Ginsenosídeos , Molécula 1 de Adesão Intercelular , Psoríase , Humanos , Animais , Camundongos , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/farmacologia , Molécula 1 de Adesão Intercelular/uso terapêutico , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/uso terapêutico , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Interleucina-8/uso terapêutico , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Psoríase/patologia , Queratinócitos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Imiquimode/efeitos adversos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro/metabolismo
19.
Curr Med Sci ; 44(1): 232-240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38393530

RESUMO

OBJECTIVE: Secoemestrin C (SC), an epitetrathiodioxopiperazine isolated from Aspergillus nidulans, has been previously reported to have immunomodulatory and hepatoprotective effects against acute autoimmune hepatitis. However, the effect of SC on regulating the inflammation and its underlying mechanisms in the pathogenesis of psoriasis remain unclear. This study aimed to evaluate the effects of SC on inflammatory dermatosis both in vitro and in vivo. METHODS: In vitro, HaCaT cells were induced with tumor necrosis factor-alpha (TNF-α, 10 ng/mL) to establish an inflammatory injury model, and the expression of nuclear transcription factor-κB (NF-κB) pathway components was measured using qRT-PCR and Western blotting. An in vivo mouse model of imiquimod (IMQ)-induced psoriasis-like skin inflammation was used to evaluate the effectiveness of SC in alleviating psoriasis. RESULTS: SC significantly blocked the activation of NF-κB signaling in TNF-α-stimulated HaCaT cells. In addition, systemic and local administration of SC improved psoriatic dermatitis in the IMQ-induced mouse model. SC reduced skin scale and significantly inhibited the secretion of inflammatory factors in skin lesions. CONCLUSION: The protective effect of SC against psoriatic-associated inflammation reveals its potential therapeutic value for treating psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Camundongos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/efeitos adversos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/genética , Dermatite/complicações , Dermatite/tratamento farmacológico , Transdução de Sinais , Imiquimode/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente
20.
Int Immunopharmacol ; 130: 111679, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38377853

RESUMO

Psoriasis is a chronic immune-mediated inflammatory skin disease that involves dysregulated proliferation of keratinocytes. Psoriatic skin lesions are characterized by redness, thickness, and scaling. The interleukin axis of IL-23/IL-17 is critically involved in the development of human psoriasis. Imiquimod (IMQ), an agonist of TLR7 is known to induce psoriatic-like skin inflammation in mice. The topical application of IMQ induces systemic inflammation with increased proinflammatory cytokines in serum and secondary lymphoid organs. Further, matrix metalloproteases (MMPs) have been implicated in the pathophysiology of psoriatic-like skin inflammation. The increased MMP9 activity and gene expression of proinflammatory cytokines in IMQ-induced psoriatic skin is mediated by the activation of the MAPK pathway. Moreover, the increased expression of neutrophil-specific chemokines confirmed the infiltration of neutrophils at the site of psoriatic skin inflammation. In contrast, expression of IL-10, an anti-inflammatory cytokine gene expression is reduced in IMQ-treated mice skin. Topical application of unconjugated bilirubin (UCB) and its derivative dimethyl ester of bilirubin (BD1) on IMQ-induced psoriatic mice skin significantly mitigated the symptoms of psoriasis by inhibiting the activity of MMP9. Further, UCB and BD1 reduced neutrophil infiltration as evidenced by decreased myeloperoxidase (MPO) activity and reduced gene expression of proinflammatory cytokines, and neutrophil-specific chemokines. Apart from these modulations UCB and BD1 reduced MAPK phosphorylation and upregulated anti-inflammatory cytokines. To conclude, UCB and BD1 immunomodulated the psoriatic skin inflammation induced by IMQ in mice by inhibiting neutrophil mediated MMP9, decreased proinflammatory cytokines gene expression and modulating the MAPK pathway.


Assuntos
Dermatite , Psoríase , Humanos , Animais , Camundongos , Imiquimode/uso terapêutico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Pele/patologia , Queratinócitos/metabolismo , Dermatite/patologia , Citocinas/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/efeitos adversos , Quimiocinas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...