Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.552
Filtrar
1.
J Biomed Sci ; 31(1): 36, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622637

RESUMO

BACKGROUND: This study addresses the urgent need for infection control agents driven by the rise of drug-resistant pathogens such as Acinetobacter baumannii. Our primary aim was to develop and assess a novel endolysin, Tha-PA90, designed to combat these challenges. METHODS: Tha-PA90 incorporates an antimicrobial peptide (AMP) called thanatin at its N-terminus, enhancing bacterial outer membrane permeability and reducing host immune responses. PA90 was selected as the endolysin component. The antibacterial activity of the purified Tha-PA90 was evaluated using an in vitro colony-forming unit (CFU) reduction assay and a membrane permeability test. A549 cells were utilized to measure the penetration into the cytosol and the cytotoxicity of Tha-PA90. Finally, infection control was monitored in A. baumannii infected mice following the intraperitoneal administration of Tha-PA90. RESULTS: Tha-PA90 demonstrated remarkable in vitro efficacy, completely eradicating A. baumannii strains, even drug-resistant variants, at a low concentration of 0.5 µM. Notably, it outperformed thanatin, achieving only a < 3-log reduction at 4 µM. Tha-PA90 exhibited 2-3 times higher membrane permeability than a PA90 and thanatin mixture or PA90 alone. Tha-PA90 was found within A549 cells' cytosol with no discernible cytotoxic effects. Furthermore, Tha-PA90 administration extended the lifespan of A. baumannii-infected mice, reducing bacterial loads in major organs by up to 3 logs. Additionally, it decreased proinflammatory cytokine levels (TNF-α and IL-6), reducing the risk of sepsis from rapid bacterial lysis. Our findings indicate that Tha-PA90 is a promising solution for combating drug-resistant A. baumannii. Its enhanced efficacy, low cytotoxicity, and reduction of proinflammatory responses render it a potential candidate for infection control. CONCLUSIONS: This study underscores the significance of engineered endolysins in addressing the pressing challenge of drug-resistant pathogens and offers insights into improved infection management strategies.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Endopeptidases , Animais , Camundongos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
Methods Mol Biol ; 2794: 341-351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630243

RESUMO

Single-cell RNA sequencing (scRNA-seq) has been widely applied in neuroscience research, enabling the investigation of cellular heterogeneity at the transcriptional level, the characterization of rare cell types, and the detailed analysis of the stochastic nature of gene expression. Isolation of single nerve cells in good health, especially from the adult rodent brain, is the most difficult and critical process for scRNA-seq. Here, we describe methods to optimize protease digestion of brain slices, which enable yield of millions of cells in good health from the adult brain.


Assuntos
Astrócitos , Neurônios , Animais , Camundongos , RNA-Seq , Encéfalo , Endopeptidases , Suspensões
3.
World J Microbiol Biotechnol ; 40(6): 170, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630319

RESUMO

Biological control using edible mushrooms as natural enemies is a sustainable alternative for pest management. Despite the well-established literature on toxins and secondary metabolites produced by these fungi in the biochemical control of nematodes, the nematicidal activity of proteases from different Pleurotus species is yet to be investigated. Therefore, this study aimed to correlate protease to the nematicidal activity of different mushrooms, Pleurotus sp., P. ostreatus (SB), P. ostreatus (Pearl), and P. djamor. For such a purpose, we performed motility assays of Panagrellus sp. at different time intervals, 6, 12, and 24 h for each of the mushrooms. In addition, the protease activity was measured using different pH (5, 7, and 9) and fermentation time intervals (45 and 75 days). Furthermore, we also evaluated the effect of this cell-free extract on Panagrellus sp. In response to these experiments, all edible mushrooms showed a reduction over 82% for the nematode-feeding activity (p < 0.01). The cell-free crude extract of each of the fungi studied showed nematocidal activity (p < 0.01). For the 45-day fermentation, P. djamor exhibited statistical significance (p < 0.01) compared with the others, reaching a reduction percentage of 73%. For the 75-day fermentation, Pleurotus sp. and P. ostreatus (Pearl) showed significant differences compared with the other fungi (p < 0.01), with reduction percentages of 64 and 62%, respectively. Herein, protease activity was associated with the nematicidal action of different Pleurotus species in controlling Panagrellus sp.


Assuntos
Agaricales , Pleurotus , Proteólise , Antinematódeos/farmacologia , Peptídeo Hidrolases , Endopeptidases
4.
Nutrients ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612961

RESUMO

Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.


Assuntos
Gelatinases , Metaloproteinase 9 da Matriz , Humanos , Adolescente , Metaloproteinase 2 da Matriz , Cloreto de Sódio , Cloreto de Sódio na Dieta , HDL-Colesterol , Endopeptidases
5.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38613010

RESUMO

Immunoreactive gluten peptides that are not digested by peptidases produced by humans can trigger celiac disease, allergy and non-celiac gluten hypersensitivity. The aim of this study was to evaluate the ability of selected probiotic strains to hydrolyze immunoreactive gliadin peptides and to identify peptidase-encoding genes in the genomes of the most efficient strains. Residual gliadin immunoreactivity was measured after one- or two-step hydrolysis using commercial enzymes and bacterial peptidase preparations by G12 and R5 immunoenzymatic assays. Peptidase preparations from Lacticaseibacillus casei LC130, Lacticaseibacillus paracasei LPC100 and Streptococcus thermophilus ST250 strains significantly reduced the immunoreactivity of gliadin peptides, including 33-mer, and this effect was markedly higher when a mixture of these strains was used. In silico genome analyses of L. casei LC130 and L. paracasei LPC100 revealed the presence of genes encoding peptidases with the potential to hydrolyze bonds in proline-rich peptides. This suggests that L. casei LC130, L. paracasei LPC100 and S. thermophilus ST250, especially when used as a mixture, have the ability to hydrolyze immunoreactive gliadin peptides and could be administered to patients on a restricted gluten-free diet to help treat gluten-related diseases.


Assuntos
Hipersensibilidade , Lactobacillales , Probióticos , Humanos , Glutens , Lactobacillales/genética , Gliadina , Peptídeos , Peptídeo Hidrolases , Endopeptidases
6.
Biochem J ; 481(7): 515-545, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572758

RESUMO

Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.


Assuntos
Peptídeo Hidrolases , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitinação , Processamento de Proteína Pós-Traducional , Ubiquitinas/genética , Ubiquitinas/metabolismo , Dano ao DNA , Endopeptidases/metabolismo , Instabilidade Genômica
7.
Microb Biotechnol ; 17(4): e14465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593316

RESUMO

Bacteriophage endolysin is a novel antibacterial agent that has attracted much attention in the prevention and control of drug-resistant bacteria due to its unique mechanism of hydrolysing peptidoglycans. Although endolysin exhibits excellent bactericidal effects on Gram-positive bacteria, the presence of the outer membrane of Gram-negative bacteria makes it difficult to lyse them extracellularly, thus limiting their application field. To enhance the extracellular activity of endolysin and facilitate its crossing through the outer membrane of Gram-negative bacteria, researchers have adopted physical, chemical, and molecular methods. This review summarizes the characterization of endolysin targeting Gram-negative bacteria, strategies for endolysin modification, and the challenges and future of engineering endolysin against Gram-negative bacteria in clinical applications, to promote the application of endolysin in the prevention and control of Gram-negative bacteria.


Assuntos
Antibacterianos , Bacteriófagos , Antibacterianos/farmacologia , Antibacterianos/química , Endopeptidases/genética , Endopeptidases/farmacologia , Bacteriófagos/genética , Bactérias Gram-Negativas
8.
Elife ; 122024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619391

RESUMO

Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.


Assuntos
Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Animais , Endopeptidases , Mamíferos , Inibidores de Proteassoma/farmacologia
9.
GM Crops Food ; 15(1): 1-15, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38625676

RESUMO

Poplar stands as one of the primary afforestation trees globally. We successfully generated transgenic poplar trees characterized by enhanced biomass under identical nutrient conditions, through the overexpression of the pivotal nitrogen assimilation gene, pxAlaAT3. An environmental risk assessment was conducted for investigate the potential changes in rhizosphere soil associated with these overexpressing lines (OL). The results show that acid phosphatase activity was significantly altered under ammonium in OL compared to the wild-type control (WT), and a similar difference was observed for protease under nitrate. 16SrDNA sequencing indicated no significant divergence in rhizosphere soil microbial community diversity between WT and OL. Metabolomics analysis revealed that the OL caused minimal alterations in the metabolites of the rhizosphere soil, posing no potential harm to the environment. With these findings in mind, we anticipate that overexpressed plants will not adversely impact the surrounding soil environment.


Assuntos
Populus , Rizosfera , Biomassa , Endopeptidases , Nitrogênio , Populus/genética , Solo
10.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611874

RESUMO

Oral cancer is a common malignancy with a high mortality rate. Although surgery is the best treatment option for patients with cancer, this approach is ineffective for advanced metastases. Molecular agents are irreplaceable in preventing and treating distant metastases. This review aims to summarise the molecular agents used for the treatment of oral cancer in the last decade and describe their sources and curative effects. These agents are classified into phenols, isothiocyanates, anthraquinones, statins, flavonoids, terpenoids, and steroids. The mechanisms of action of these agents include regulating the expression of cell signalling pathways and related proteases to affect the proliferation, autophagy, migration, apoptosis, and other biological aspects of oral cancer cells. This paper may serve as a reference for subsequent studies on the treatment of oral cancer.


Assuntos
Neoplasias Bucais , Humanos , Neoplasias Bucais/tratamento farmacológico , Antraquinonas , Apoptose , Autofagia , Endopeptidases
11.
Curr Microbiol ; 81(6): 146, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634927

RESUMO

Two strains of bacteria, PsyLou2AT and PsyPon4B, were isolated from adult braconid wasps Psyttalia lounsburyii and Psyttalia ponerophaga, respectively. These laboratory-reared wasps were investigated as agents for biological control of the olive fruit fly, Bactrocera oleae. Analysis of 16S rRNA genes of the two isolates demonstrated that they were highly related and belonged to the genus Serratia. Genomic sequencing of these isolates revealed genomes of 5,152,551 bp and 5,154,385 bp for PsyLou2AT and PsyPon4B, respectively, and both genomes had a mol% G+C content of 59.6%. Phylogenetic analyses using BLAST-based average nucleotide identity (ANIb), and digital DNA-DNA hybridization methods indicated that PsyLou2AT was most closely related to Serratia nevei S15T, producing ANIb and dDDH values of 96.11% and 70.2%, respectively. Since these values were literally on the species cutoff threshold, additional S. nevei genome assemblies were analyzed using ANIb and dDDH calculations. This revealed that among assemblies that were clearly identifiable as S. nevei, S. nevei S15T was the most closely related to PsyLou2AT, and that a majority of assemblies produced dDDH values of 68.3-68.7% relative to PsyLou2AT. Additionally, PsyLou2AT differed biochemically from S. nevei S15T in that it produced positive Voges Proskauer tests, produced protease, lacked arginine dihydrolase, and did not utilize D-lactose. Hence, PsyLou2AT represents a novel taxon within the Serratia, for which we propose the name Serratia montpellierensis sp. nov. The type strain is PsyLou2AT (=LMG 32817T =NRRL B-65689T).


Assuntos
Vespas , Animais , Filogenia , RNA Ribossômico 16S , Endopeptidases , DNA
13.
Am J Physiol Cell Physiol ; 326(4): C1193-C1202, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581669

RESUMO

Satellite cells (SCs) and fibroadipogenic progenitors (FAPs) are progenitor populations found in muscle that form new myofibers postinjury. Muscle development, regeneration, and tissue-engineering experiments require robust progenitor populations, yet their isolation and expansion are difficult given their scarcity in muscle, limited muscle biopsy sizes in humans, and lack of methodological detail in the literature. Here, we investigated whether a dispase and collagenase type 1 and 2 cocktail could allow dual isolation of SCs and FAPs, enabling significantly increased yield from human skeletal muscle. Postdissociation, we found that single cells could be sorted into CD56 + CD31-CD45- (SC) and CD56-CD31-CD45- (FAP) cell populations, expanded in culture, and characterized for lineage-specific marker expression and differentiation capacity; we obtained ∼10% SCs and ∼40% FAPs, with yields twofold better than what is reported in current literature. SCs were PAX7+ and retained CD56 expression and myogenic fusion potential after multiple passages, expanding up to 1012 cells. Conversely, FAPs expressed CD140a and differentiated into either fibroblasts or adipocytes upon induction. This study demonstrates robust isolation of both SCs and FAPs from the same muscle sample with SC recovery more than two times higher than previously reported, which could enable translational studies for muscle injuries.NEW & NOTEWORTHY We demonstrated that a dispase/collagenase cocktail allows for simultaneous isolation of SCs and FAPs with 2× higher SC yield compared with other studies. We provide a thorough characterization of SC and FAP in vitro expansion that other studies have not reported. Following our dissociation, SCs and FAPs were able to expand by up to 1012 cells before reaching senescence and maintained differentiation capacity in vitro demonstrating their efficacy for clinical translation for muscle injury.


Assuntos
Endopeptidases , Músculo Esquelético , Células Satélites de Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Diferenciação Celular/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Fibroblastos/metabolismo
14.
Cell Mol Life Sci ; 81(1): 148, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509419

RESUMO

Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.


Assuntos
Vírus da Febre Aftosa , Animais , Suínos , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Imunidade Inata , Endopeptidases/genética , Endopeptidases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antivirais/metabolismo
15.
Eur J Med Chem ; 268: 116275, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452725

RESUMO

USP2 and USP8 are crucial in the development and progression of breast cancer, primarily through the stabilization of protein substrates such as Her2 and ERα. The dual-target inhibitor ML364, targeting both USP2 and USP8, has garnered significant interest in recent research. In this study, we developed a series of ML364 derivatives using ligand-based drug design strategies. The standout compound, LLK203, demonstrated enhanced inhibitory activity, showing a 4-fold increase against USP2 and a 9-fold increase against USP8, compared to the parent molecule. In MCF-7 breast cancer cells, LLK203 effectively degraded key proteins involved in cancer progression and notably inhibited cell proliferation. Moreover, LLK203 exhibited potent in vivo efficacy in the 4T1 homograft model, while maintaining a low toxicity profile. These results underscore the potential of LLK203 as a promising dual-target inhibitor of USP2/USP8 for breast cancer treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Células MCF-7 , Proliferação de Células , Ubiquitina Tiolesterase , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/farmacologia
16.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474583

RESUMO

Tobacco etch virus protease (TEVp) is wildly exploited for various biotechnological applications. These applications take advantage of TEVp's ability to cleave specific substrate sequences to study protein function and interactions. A major limitation of this enzyme is its relatively slow catalytic rate. In this study, MD simulations were conducted on TEV enzymes and known highly active mutants (eTEV and uTEV3) to explore the relationship between mutation, conformation, and catalytic function. The results suggest that mutations distant from the active site can influence the substrate-binding pocket through interaction networks. MD analysis of eTEV demonstrates that, by stabilizing the orientation of the substrate at the catalytic site, mutations that appropriately enlarge the substrate-binding pocket will be beneficial for Kcat, enhancing the catalytic efficiency of the enzyme. On the contrary, mutations in uTEV3 reduced the flexibility of the active pocket and increased the hydrogen bonding between the substrate and enzyme, resulting in higher affinity. At the same time, the MD simulation demonstrates that mutations outside of the active site residues could affect the dynamic movement of the binding pocket by altering residue networks and communication pathways, thereby having a profound impact on reactivity. These findings not only provide a molecular mechanistic explanation for the excellent mutants, but also serve as a guiding framework for rational computational design.


Assuntos
Endopeptidases , Simulação de Dinâmica Molecular , Endopeptidases/metabolismo , Biotecnologia , Mutação
17.
Bioorg Chem ; 145: 107239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428282

RESUMO

Antimicrobial resistance (AMR) is a serious global concern and a huge burden on the healthcare system. Antimicrobial peptides (AMPs) are considered as a solution of AMR due to their membrane-lytic and intracellular mode of action and therefore resistance development against AMPs is less frequent. One such AMPs, temporin-L (TL) is a 13-mer peptide reported as a potent and broad-spectrum antibacterial agent with significant immunomodulatory activity. However, TL is toxic to human erythrocytes at their antibacterial concentrations and therefore various analogues were synthesized with potent antimicrobial activity and lower hemolytic activity. In this work, we have selected a non-toxic engineered analogue of TL (eTL) and performed hydrocarbon stapling of amino acid residues at i to i + 4 positions at different part of sequence. The synthesized peptides were investigated against both the gram-positive and gram-negative bacteria as well as methicillin resistant S. aureus, its MIC was measured in the concentrations range of 0.9-15.2 µM. All analogues were found equal or better antibacterial as compared to parent peptide. Interestingly one analogue eTL [5-9] was found to be non-cytotoxic and stable in presence of the human serum. Mode of action studies revealed membrane depolarizing and disruptive mode of action with live MRSA. Further in vivo studies of antimicrobial against MRSA infection and anti-endotoxin activities in mice model revealed potential activity of the stapled peptide analogue. Overall, this reports on stapled analogue of the AMPs highlights an important strategy for the development of new antibacterial therapeutics against AMR.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Camundongos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeo Hidrolases , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Endopeptidases , Hidrocarbonetos , Testes de Sensibilidade Microbiana
18.
Viruses ; 16(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543732

RESUMO

Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.


Assuntos
Antivirais , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/metabolismo , Antivirais/uso terapêutico , Endopeptidases , SARS-CoV-2/metabolismo , Proteases Virais
19.
Viruses ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543751

RESUMO

Bacteria of the genus Staphylococcus are significant challenge for medicine, as many species are resistant to multiple antibiotics and some are even to all of the antibiotics we use. One of the approaches to developing new therapeutics to treat staphylococcal infections is the use of bacteriophages specific to these bacteria or the lytic enzymes of such bacteriophages, which are capable of hydrolyzing the cell walls of these bacteria. In this study, a new bacteriophage vB_SepP_134 (St 134) specific to Staphylococcus epidermidis was described. This podophage, with a genome of 18,275 bp, belongs to the Andhravirus genus. St 134 was able to infect various strains of 12 of the 21 tested coagulase-negative Staphylococcus species and one clinical strain from the Staphylococcus aureus complex. The genes encoding endolysin (LysSte134_1) and tail tip lysin (LysSte134_2) were identified in the St 134 genome. Both enzymes were cloned and produced in Escherichia coli cells. The endolysin LysSte134_1 demonstrated catalytic activity against peptidoglycans isolated from S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus warneri. LysSte134_1 was active against S. aureus and S. epidermidis planktonic cells and destroyed the biofilms formed by clinical strains of S. aureus and S. epidermidis.


Assuntos
Bacteriófagos , Endopeptidases , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Bacteriófagos/genética , Staphylococcus , Staphylococcus epidermidis , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes
20.
J Colloid Interface Sci ; 665: 814-824, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555749

RESUMO

The outer bacterial membrane of drug-resistant bacteria is a significant barrier to many antimicrobials. Therefore, the development of new antibacterials primarily focuses on damaging the outer bacterial membrane of Gram-negative bacteria. Among many membrane-disrupting substances, the most promising are cationic dendritic systems. However, the mode of action may vary among different strains due to variations in the lipid compositions of the membrane. Here, we investigated the interaction of two types of cationic imidazolium carbosilane dendrimers: one with a single cationic group (methyl imidazolium) and the other with the same cationic group but attached to a functional group (a pendant pyridyl moiety), capable of establishing interactions with membranes through H-bonding or ion-dipole electrostatic interactions. We used different models of the outer membrane of Gram-negative bacteria - Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Additionally, we assessed the combined effect of the dendrimers and the antibacterial endolysin on P. aeruginosa. Our results show that the mechanism of action depends on the type of dendrimer and the lipid composition of the membrane. We also demonstrate that the alteration of membrane fluidity and permeability to endolysin by the methyl imidazolium and pyridyl imidazolium dendrimers may play a more significant role in antimicrobial activity compared to membrane damage caused by positively charged dendrimers.


Assuntos
Dendrímeros , Endopeptidases , Silanos , Dendrímeros/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Permeabilidade , Lipídeos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...