Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Biochem J ; 480(15): 1147-1164, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37498748

RESUMO

Several decades after the discovery of the first antibiotic (penicillin) microbes have evolved novel mechanisms of resistance; endangering not only our abilities to combat future bacterial pandemics but many other clinical challenges such as acquired infections during surgeries. Antimicrobial resistance (AMR) is attributed to the mismanagement and overuse of these medications and is complicated by a slower rate of the discovery of novel drugs and targets. Bacterial peptidoglycan (PG), a three-dimensional mesh of glycan units, is the foundation of the cell wall that protects bacteria against environmental insults. A significant percentage of drugs target PG, however, these have been rendered ineffective due to growing drug resistance. Identifying novel druggable targets is, therefore, imperative. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is one of the key building blocks in PG production, biosynthesized by the bifunctional enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU). UDP-GlcNAc metabolism has been studied in many organisms, but it holds some distinctive features in bacteria, especially regarding the bacterial GlmU enzyme. In this review, we provide an overview of different steps in PG biogenesis, discuss the biochemistry of GlmU, and summarize the characteristic structural elements of bacterial GlmU vital to its catalytic function. Finally, we will discuss various studies on the development of GlmU inhibitors and their significance in aiding future drug discoveries.


Assuntos
Peptidoglicano , UDPglucose-Hexose-1-Fosfato Uridiltransferase , Glucosamina/metabolismo , Fosfatos , Difosfato de Uridina
2.
PLoS One ; 18(5): e0285576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37220133

RESUMO

Messenger RNA uridylation is pervasive and conserved among eukaryotes, but the consequences of this modification for mRNA fate are still under debate. Utilising a simple model organism to study uridylation may facilitate efforts to understand the cellular function of this process. Here we demonstrate that uridylation can be detected using simple bioinformatics approach. We utilise it to unravel widespread transcript uridylation in fission yeast and demonstrate the contribution of both Cid1 and Cid16, the only two annotated terminal uridyltransferases (TUT-ases) in this yeast. To detect uridylation in transcriptome data, we used a RNA-sequencing (RNA-seq) library preparation protocol involving initial linker ligation to fragmented RNA-an approach borrowed from small RNA sequencing that was commonly used in older RNA-seq protocols. We next explored the data to detect uridylation marks. Our analysis show that uridylation in yeast is pervasive, similarly to the one in multicellular organisms. Importantly, our results confirm the role of the cytoplasmic uridyltransferase Cid1 as the primary uridylation catalyst. However, we also observed an auxiliary role of the second uridyltransferase, Cid16. Thus both fission yeast uridyltransferases are involved in mRNA uridylation. Intriguingly, we found no physiological phenotype of the single and double deletion mutants of cid1 and cid16 and only minimal impact of uridylation on steady-state mRNA levels. Our work establishes fission yeast as a potent model to study uridylation in a simple eukaryote, and we demonstrate that it is possible to detect uridylation marks in RNA-seq data without the need for specific methodologies.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , RNA Mensageiro , Saccharomyces cerevisiae , RNA , Catálise , UDPglucose-Hexose-1-Fosfato Uridiltransferase , Nucleotidiltransferases
3.
mBio ; 14(2): e0007323, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36939339

RESUMO

The cytosol of eukaryotic host cells is an intrinsically hostile environment for bacteria. Understanding how cytosolic pathogens adapt to and survive in the cytosol is critical to developing novel therapeutic interventions against these pathogens. The cytosolic pathogen Listeria monocytogenes requires glmR (previously known as yvcK), a gene of unknown function, for resistance to cell-wall stress, cytosolic survival, inflammasome avoidance, and, ultimately, virulence in vivo. In this study, a genetic suppressor screen revealed that blocking utilization of UDP N-acetylglucosamine (UDP-GlcNAc) by a nonessential wall teichoic acid decoration pathway restored resistance to lysozyme and partially restored virulence of ΔglmR mutants. In parallel, metabolomic analysis revealed that ΔglmR mutants are impaired in the production of UDP-GlcNAc, an essential peptidoglycan and wall teichoic acid (WTA) precursor. We next demonstrated that purified GlmR can directly catalyze the synthesis of UDP-GlcNAc from GlcNAc-1P and UTP, suggesting that it is an accessory uridyltransferase. Biochemical analysis of GlmR orthologues suggests that uridyltransferase activity is conserved. Finally, mutational analysis resulting in a GlmR mutant with impaired catalytic activity demonstrated that uridyltransferase activity was essential to facilitate cell-wall stress responses and virulence in vivo. Taken together, these studies indicate that GlmR is an evolutionary conserved accessory uridyltransferase required for cytosolic survival and virulence of L. monocytogenes. IMPORTANCE Bacterial pathogens must adapt to their host environment in order to cause disease. The cytosolic bacterial pathogen Listeria monocytogenes requires a highly conserved protein of unknown function, GlmR (previously known as YvcK), to survive in the host cytosol. GlmR is important for resistance to some cell-wall stresses and is essential for virulence. The ΔglmR mutant is deficient in production of an essential cell-wall metabolite, UDP-GlcNAc, and suppressors that increase metabolite levels also restore virulence. Purified GlmR can directly catalyze the synthesis of UDP-GlcNAc, and this enzymatic activity is conserved in both Bacillus subtilis and Staphylococcus aureus. These results highlight the importance of accessory cell wall metabolism enzymes in responding to cell-wall stress in a variety of Gram-positive bacteria.


Assuntos
Listeria monocytogenes , Virulência , Citosol/metabolismo , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo , Parede Celular/metabolismo , Difosfato de Uridina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566155

RESUMO

Targeting enzymes that play a role in the biosynthesis of the bacterial cell wall has long been a strategy for antibacterial discovery. In particular, the cell wall of Mycobacterium tuberculosis (Mtb) is a complex of three layers, one of which is Peptidoglycan, an essential component providing rigidity and strength. UDP-GlcNAc, a precursor for the synthesis of peptidoglycan, is formed by GlmU, a bi-functional enzyme. Inhibiting GlmU Uridyltransferase activity has been proven to be an effective anti-bacterial, but its similarity with human enzymes has been a deterrent to drug development. To develop Mtb selective hits, the Mtb GlmU substrate binding pocket was compared with structurally similar human enzymes to identify selectivity determining factors. Substrate binding pockets and conformational changes upon substrate binding were analyzed and MD simulations with substrates were performed to quantify crucial interactions to develop critical pharmacophore features. Thereafter, two strategies were applied to propose potent and selective bacterial GlmU Uridyltransferase domain inhibitors: (i) optimization of existing inhibitors, and (ii) identification by virtual screening. The binding modes of hits identified from virtual screening and ligand growing approaches were evaluated further for their ability to retain stable contacts within the pocket during 20 ns MD simulations. Hits that are predicted to be more potent than existing inhibitors and selective against human homologues could be of great interest for rejuvenating drug discovery efforts towards targeting the Mtb cell wall for antibacterial discovery.


Assuntos
Mycobacterium tuberculosis , UDPglucose-Hexose-1-Fosfato Uridiltransferase , Antibacterianos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Peptidoglicano/farmacologia
5.
Biochem J ; 478(11): 2081-2099, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33955473

RESUMO

N-acetyl glucosamine-1-phosphate uridyltransferase (GlmU) is a bifunctional enzyme involved in the biosynthesis of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is a critical precursor for the synthesis of peptidoglycan and other cell wall components. The absence of a homolog in eukaryotes makes GlmU an attractive target for therapeutic intervention. Mycobacterium tuberculosis GlmU (GlmUMt) has features, such as a C-terminal extension, that are not present in GlmUorthologs from other bacteria. Here, we set out to determine the uniqueness of GlmUMt by performing in vivo complementation experiments using RvΔglmU mutant. We find that any deletion of the carboxy-terminal extension region of GlmUMt abolishes its ability to complement the function of GlmUMt. Results show orthologs of GlmU, including its closest ortholog, from Mycobacterium smegmatis, cannot complement the function of GlmUMt. Furthermore, the co-expression of GlmUMt domain deletion mutants with either acetyl or uridyltransferase activities failed to rescue the function. However, co-expression of GlmUMt point mutants with either acetyl or uridyltransferase activities successfully restored the biological function of GlmUMt, likely due to the formation of heterotrimers. Based on the interactome experiments, we speculate that GlmUMt participates in unique interactions essential for its in vivo function.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Complexos Multienzimáticos/metabolismo , Mutação , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/microbiologia , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Conformação Proteica , Domínios Proteicos , UDPglucose-Hexose-1-Fosfato Uridiltransferase/química , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética
6.
J Inherit Metab Dis ; 43(5): 994-1001, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32441338

RESUMO

Nucleotide sugars (NS) are fundamental molecules in life and play a key role in glycosylation reactions and signal conduction. Several pathways are involved in the synthesis of NS. The Leloir pathway, the main pathway for galactose metabolism, is crucial for production of uridine diphosphate (UDP)-glucose and UDP-galactose. The most common metabolic disease affecting this pathway is galactose-1-phosphate uridylyltransferase (GALT) deficiency, that despite a lifelong galactose-restricted diet, often results in chronically debilitating complications. Alterations in the levels of UDP-sugars leading to galactosylation abnormalities have been hypothesized as a key pathogenic factor. However, UDP-sugar levels measured in patient cell lines have shown contradictory results. Other NS that might be affected, differences throughout development, as well as tissue specific profiles have not been investigated. Using recently established UHPLC-MS/MS technology, we studied the complete NS profiles in wildtype and galt knockout zebrafish (Danio rerio). Analyses of UDP-hexoses, UDP-hexosamines, CMP-sialic acids, GDP-fucose, UDP-glucuronic acid, UDP-xylose, CDP-ribitol, and ADP-ribose profiles at four developmental stages and in tissues (brain and gonads) in wildtype zebrafish revealed variation in NS levels throughout development and differences between examined tissues. More specifically, we found higher levels of CMP-N-acetylneuraminic acid, GDP-fucose, UDP-glucuronic acid, and UDP-xylose in brain and of CMP-N-glycolylneuraminic acid in gonads. Analysis of the same NS profiles in galt knockout zebrafish revealed no significant differences from wildtype. Our findings in galt knockout zebrafish, even when challenged with galactose, do not support a role for abnormalities in UDP-glucose or UDP-galactose as a key pathogenic factor in GALT deficiency, under the tested conditions.


Assuntos
Galactose/metabolismo , Galactosemias/enzimologia , UDPglucose-Hexose-1-Fosfato Uridiltransferase/deficiência , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo , Animais , Feminino , Galactosemias/genética , Cinética , Masculino , Espectrometria de Massas em Tandem , Peixe-Zebra
7.
Mol Cell ; 78(6): 1224-1236.e5, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32442398

RESUMO

Strand selection is a critical step in microRNA (miRNA) biogenesis. Although the dominant strand may change depending on cellular contexts, the molecular mechanism and physiological significance of such alternative strand selection (or "arm switching") remain elusive. Here we find miR-324 to be one of the strongly regulated miRNAs by arm switching and identify the terminal uridylyl transferases TUT4 and TUT7 to be the key regulators. Uridylation of pre-miR-324 by TUT4/7 re-positions DICER on the pre-miRNA and shifts the cleavage site. This alternative processing produces a duplex with a different terminus from which the 3' strand (3p) is selected instead of the 5' strand (5p). In glioblastoma, the TUT4/7 and 3p levels are upregulated, whereas the 5p level is reduced. Manipulation of the strand ratio is sufficient to impair glioblastoma cell proliferation. This study uncovers a role of uridylation as a molecular switch in alternative strand selection and implicates its therapeutic potential.


Assuntos
MicroRNAs/metabolismo , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Camundongos , MicroRNAs/genética , Cultura Primária de Células , RNA Nucleotidiltransferases/metabolismo , Ribonuclease III/metabolismo
8.
Comput Biol Med ; 117: 103583, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32072977

RESUMO

Type I galactosemia is a very rare autosomal recessive genetic metabolic disorder that occurs because of the mutations present in the galactose-1-phosphate uridyl transferase (GALT) gene, resulting in a deficiency of the GALT enzyme. The action of the GALT enzyme is to convert galactose-1-phosphate and uridine diphosphate glucose into glucose-1-phosphate (G1P) and uridine diphosphate-galactose, a crucial second step of the Leloir pathway. A missense mutation in the GALT enzyme leads to variable galactosemia's clinical presentations, ranging from mild to severe. Our study aimed to employ a comprehensive computational pipeline to analyze the most prevalent missense mutations (p.S135L, p.K285 N, p.Q188R, and p.N314D) responsible for galactosemia; these genes could serve as potential targets for chaperone therapy. We analyzed the four mutations through different computational analyses, including amino acid conservation, in silico pathogenicity and stability predictions, and macromolecular simulations (MMS) at 50 ns The stability and pathogenicity predictors showed that the p.Q188R and p.S135L mutants are the most pathogenic and destabilizing. In agreement with these results, MMS analysis demonstrated that the p.Q188R and p.S135L mutants possess higher deviation patterns, reduced compactness, and intramolecular H-bonds of the protein. This could be due to the physicochemical modifications that occurred in the mutants p.S135L and p.Q188R compared to the native. Evolutionary conservation analysis revealed that the most prevalent mutations positions were conserved among different species except N314. The proposed research study is intended to provide a basis for the therapeutic development of drugs and future treatment of classical galactosemia and possibly other genetic diseases using chaperone therapy.


Assuntos
Galactosemias , UTP-Hexose-1-Fosfato Uridililtransferase , Galactosemias/genética , Galactosefosfatos , Humanos , Mutação/genética , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/genética
9.
Xenotransplantation ; 27(1): e12550, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31435990

RESUMO

BACKGROUND: In vivo pig liver xenotransplantation preclinical trials appear to have poor efficiency compared to heart or kidney xenotransplantation because of xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia. In contrast, ex vivo pig liver (wild type) perfusion systems have been proven to be effective in "bridging" liver failure patients until subsequent liver allotransplantation, and transgenic (human CD55/CD59) modifications have even prolonged the duration of pig liver perfusion. Despite the fact that hepatocyte cell lines have also been proposed for extracorporeal blood circulation in conditions of acute liver failure, porcine hepatocyte cell lines, and the GalT-KO background in particular, have not been developed and applied in this field. Herein, we established immortalized wild-type and GalT-KO porcine hepatocyte cell lines, which can be used for artificial liver support systems, cell transplantation, and even in vitro studies of xenotransplantation. METHODS: Primary hepatocytes extracted from GalT-KO and wild-type pigs were transfected with SV40 LT lentivirus to establish immortalized GalT-KO porcine hepatocytes (GalT-KO-hep) and wild-type porcine hepatocytes (WT). Hepatocyte biomarkers and function-related genes were assessed by immunofluorescence, periodic acid-Schiff staining, indocyanine green (ICG) uptake, biochemical analysis, ELISA, and RT-PCR. Furthermore, the tumorigenicity of immortalized cells was detected. In addition, a complement-dependent cytotoxicity (CDC) assay was performed with GalT-KO-hep and WT cells. Cell death and viability rates were assessed by flow cytometry and CCK-8 assay. RESULTS: GalT-KO and wild-type porcine hepatocytes were successfully immortalized and maintained the characteristics of primary porcine hepatocytes, including albumin secretion, ICG uptake, urea and glycogen production, and expression of hepatocyte marker proteins and specific metabolic enzymes. GalT-KO-hep and WT cells were confirmed as having no tumorigenicity. In addition, GalT-KO-hep cells showed less apoptosis and more viability than WT cells when exposed to complement and xenogeneic serum. CONCLUSIONS: Two types of immortalized cell lines of porcine hepatocytes with GalT-KO and wild-type backgrounds were successfully established. GalT-KO-hep cells exhibited higher viability and injury resistance against a xenogeneic immune response.


Assuntos
Transtornos da Coagulação Sanguínea/imunologia , Rejeição de Enxerto/imunologia , Hepatócitos/fisiologia , Transplante de Fígado , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética , Animais , Carcinogênese , Linhagem Celular Transformada , Células Cultivadas , Técnicas de Inativação de Genes , Sobrevivência de Enxerto , Humanos , Suínos , Trombocitopenia , Transplante Heterólogo
10.
Cell Res ; 29(3): 221-232, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30617251

RESUMO

Several developmental stages of spermatogenesis are transcriptionally quiescent which presents major challenges associated with the regulation of gene expression. Here we identify that the zygotene to pachytene transition is not only associated with the resumption of transcription but also a wave of programmed mRNA degradation that is essential for meiotic progression. We explored whether terminal uridydyl transferase 4- (TUT4-) or TUT7-mediated 3' mRNA uridylation contributes to this wave of mRNA degradation during pachynema. Indeed, both TUT4 and TUT7 are expressed throughout most of spermatogenesis, however, loss of either TUT4 or TUT7 does not have any major impact upon spermatogenesis. Combined TUT4 and TUT7 (TUT4/7) deficiency results in embryonic growth defects, while conditional gene targeting revealed an essential role for TUT4/7 in pachytene progression. Loss of TUT4/7 results in the reduction of miRNA, piRNA and mRNA 3' uridylation. Although this reduction does not greatly alter miRNA or piRNA expression, TUT4/7-mediated uridylation is required for the clearance of many zygotene-expressed transcripts in pachytene cells. We find that TUT4/7-regulated transcripts in pachytene spermatocytes are characterized by having long 3' UTRs with length-adjusted enrichment for AU-rich elements. We also observed these features in TUT4/7-regulated maternal transcripts whose dosage was recently shown to be essential for sculpting a functional maternal transcriptome and meiosis. Therefore, mRNA 3' uridylation is a critical determinant of both male and female germline transcriptomes. In conclusion, we have identified a novel requirement for 3' uridylation-programmed zygotene mRNA clearance in pachytene spermatocytes that is essential for male meiotic progression.


Assuntos
Prófase Meiótica I/genética , Estágio Paquíteno/genética , Processamento Pós-Transcricional do RNA/fisiologia , Espermatogênese/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estabilidade de RNA/genética , RNA Mensageiro/genética , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo
11.
PLoS One ; 13(6): e0198207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856812

RESUMO

GALT is an important antigen of Actinobacillus pleuropneumoniae (APP), which was shown to provide partial protection against APP infection in a previous study in our lab. The main purpose of the present study is to investigate GALT induced cross-protection between different APP serotypes and elucidate key mechanisms of the immune response to GALT antigenic stimulation. Bioinformatic analysis demonstrated that galT is a highly conserved gene in APP, widely distributed across multiple pathogenic strains. Homologies between any two strains ranges from 78.9% to 100% regarding the galT locus. Indirect enzyme-linked immunosorbent assay (ELISA) confirmed that GALT specific antibodies could not be induced by inactivated APP L20 or MS71 whole cell bacterin preparations. A recombinant fusion GALT protein derived from APP L20, however has proven to be an effective cross-protective antigen against APP sevorar 1 MS71 (50%, 4/8) and APP sevorar 5b L20 (75%, 6/8). Histopathological examinations have confirmed that recombinant GALT vaccinated animals showed less severe pathological signs in lung tissues than negative controls after APP challenge. Immunohistochemical (IHC) analysis indicated that the infiltration of neutrophils in the negative group is significantly increased compared with that in the normal control (P<0.001) and that in surviving animals is decreased compared to the negative group. Anti-GALT antibodies were shown to mediate phagocytosis of neutrophils. After interaction with anti-GALT antibodies, survival rate of APP challenged vaccinated animals was significantly reduced (P<0.001). This study demonstrated that GALT is an effective cross-protective antigen, which could be used as a potential vaccine candidate against multiple APP serotypes.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/imunologia , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Pleuropneumonia/veterinária , Doenças dos Suínos/prevenção & controle , UDPglucose-Hexose-1-Fosfato Uridiltransferase/imunologia , Infecções por Actinobacillus/prevenção & controle , Actinobacillus pleuropneumoniae/classificação , Actinobacillus pleuropneumoniae/genética , Animais , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Sequência Conservada , Avaliação Pré-Clínica de Medicamentos/veterinária , Ensaio de Imunoadsorção Enzimática , Feminino , Imunização Secundária , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/imunologia , Fagocitose/imunologia , Pleuropneumonia/patologia , Pleuropneumonia/prevenção & controle , Distribuição Aleatória , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sorogrupo , Suínos , Doenças dos Suínos/imunologia , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética , Vacinação/veterinária
12.
Hum Mutat ; 39(1): 52-60, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961353

RESUMO

Galactosemia Proteins Database 2.0 is a Web-accessible resource collecting information about the structural and functional effects of the known variations associated to the three different enzymes of the Leloir pathway encoded by the genes GALT, GALE, and GALK1 and involved in the different forms of the genetic disease globally called "galactosemia." It represents an evolution of two available online resources we previously developed, with new data deriving from new structures, new analysis tools, and new interfaces and filters in order to improve the quality and quantity of information available for different categories of users. We propose this new resource both as a landmark for the entire world community of galactosemia and as a model for the development of similar tools for other proteins object of variations and involved in human diseases.


Assuntos
Bases de Dados de Proteínas , Navegador , Galactosemias/genética , Galactosemias/metabolismo , Variação Genética , Humanos , Conformação Proteica , Relação Estrutura-Atividade , UDPglucose 4-Epimerase/química , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , UDPglucose-Hexose-1-Fosfato Uridiltransferase/química , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo
13.
J Inherit Metab Dis ; 40(3): 325-342, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28281081

RESUMO

Classic galactosemia is a rare inherited disorder of galactose metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme of the Leloir pathway. It presents in the newborn period as a life-threatening disease, whose clinical picture can be resolved by a galactose-restricted diet. The dietary treatment proves, however, insufficient in preventing severe long-term complications, such as cognitive, social and reproductive impairments. Classic galactosemia represents a heavy burden on patients' and their families' lives. After its first description in 1908 and despite intense research in the past century, the exact pathogenic mechanisms underlying galactosemia are still not fully understood. Recently, new important insights on molecular and cellular aspects of galactosemia have been gained, and should open new avenues for the development of novel therapeutic strategies. Moreover, an international galactosemia network has been established, which shall act as a platform for expertise and research in galactosemia. Herein are reviewed some of the latest developments in clinical practice and research findings on classic galactosemia, an enigmatic disorder with many unanswered questions warranting dedicated research.


Assuntos
Galactosemias/enzimologia , Galactosemias/metabolismo , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo , Animais , Galactose/metabolismo , Humanos
14.
J Inherit Metab Dis ; 40(1): 131-137, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27783170

RESUMO

Despite adequate dietary management, patients with classic galactosemia continue to have increased risks of cognitive deficits, speech dyspraxia, primary ovarian insufficiency, and abnormal motor development. A recent evaluation of a new galactose-1 phosphate uridylyltransferase (GALT)-deficient mouse model revealed reduced fertility and growth restriction. These phenotypes resemble those seen in human patients. In this study, we further assess the fidelity of this new mouse model by examining the animals for the manifestation of a common neurological sequela in human patients: cerebellar ataxia. The balance, grip strength, and motor coordination of GALT-deficient and wild-type mice were tested using a modified rotarod. The results were compared to composite phenotype scoring tests, typically used to evaluate neurological and motor impairment. The data demonstrated abnormalities with varying severity in the GALT-deficient mice. Mice of different ages were used to reveal the progressive nature of motor impairment. The varying severity and age-dependent impairments seen in the animal model agree with reports on human patients. Finally, measurements of the cerebellar granular and molecular layers suggested that mutant mice experience cerebellar hypoplasia, which could have resulted from the down-regulation of the PI3K/Akt signaling pathway.


Assuntos
Ataxia/genética , Galactosemias/genética , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética , Animais , Modelos Animais de Doenças , Regulação para Baixo/genética , Camundongos , Atividade Motora/genética , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética
15.
Carbohydr Res ; 413: 70-4, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26101844

RESUMO

N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a bifunctional enzyme that catalyzes both acetyltransfer and uridyltransfer reactions in the prokaryotic UDP-GlcNAc biosynthesis pathway. Our previous study demonstrated that the uridyltransferase domain of GlmU (tGlmU) exhibited a flexible substrate specificity, which could be further applied in unnatural sugar nucleotides preparation. However, the structural basis of tolerating variant substrates is still not clear. Herein, we further investigated the roles of several highly conserved amino acid residues involved in substrate binding and recognition by structure- and sequence-guided site-directed mutagenesis. Out of total 16 mutants designed, tGlmU Q76E mutant which had a novel catalytic activity to convert CTP and GlcNAc-1P into unnatural sugar nucleotide CDP-GlcNAc was identified. Furthermore, tGlmU Y103F and N169R mutants were also investigated to have enhanced uridyltransferase activities compared with wide-type tGlmU.


Assuntos
Domínio Catalítico , Sequência Conservada , Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Mutagênese Sítio-Dirigida , UDPglucose-Hexose-1-Fosfato Uridiltransferase/química , Acetilglucosamina/metabolismo , Biocatálise , Proteínas de Escherichia coli/genética , Modelos Moleculares , Complexos Multienzimáticos/genética , Mutação , Estrutura Secundária de Proteína
16.
Gene ; 559(2): 112-8, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25592817

RESUMO

Classical galactosemia is an autosomal recessive inborn error of metabolism due to mutations of the GALT gene leading to toxic accumulation of galactose and derived metabolites. With the benefit of early diagnosis by neonatal screening and early therapy, the acute presentation of classical galactosemia can be prevented. However, despite early diagnosis and treatment, the long term outcome for these patients is still unpredictable because they may go on to develop cognitive disability, speech problems, neurological and/or movement disorders and, in females, ovarian dysfunction. The objectives of the current study were to report our experience with a group of galactosemic patients identified through the neonatal screening programs in northeastern Italy during the last 30years. No neonatal deaths due to galactosemia complications occurred after the introduction of the neonatal screening program. However, despite the early diagnosis and dietary treatment, the patients with classical galactosemia showed one or more long-term complications. A total of 18 different variations in the GALT gene were found in the patient cohort: 12 missense, 2 frameshift, 1 nonsense, 1 deletion, 1 silent variation, and 1 intronic. Six (p.R33P, p.G83V, p.P244S, p.L267R, p.L267V, p.E271D) were new variations. The most common variation was p.Q188R (12 alleles, 31.5%), followed by p.K285N (6 alleles, 15.7%) and p.N314D (6 alleles, 15.7%). The other variations comprised 1 or 2 alleles. In the patients carrying a new mutation, the biochemical analysis of GALT activity in erythrocytes showed an activity of <1%. In silico analysis (SIFT, PolyPhen-2 and the computational analysis on the static protein structure) showed potentially damaging effects of the six new variations on the GALT protein, thus expanding the genetic spectrum of GALT variations in Italy. The study emphasizes the difficulty in establishing a genotype-phenotype correlation in classical galactosemia and underlines the importance of molecular diagnostic testing prior to making any treatment.


Assuntos
Galactosemias/genética , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Galactosemias/diagnóstico , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Mutação de Sentido Incorreto , Triagem Neonatal , Adulto Jovem
17.
Eur J Hum Genet ; 23(4): 500-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25052314

RESUMO

In recent years, antisense therapy has emerged as an increasingly important therapeutic approach to tackle several genetic disorders, including inborn errors of metabolism. Intronic mutations activating cryptic splice sites are particularly amenable to antisense therapy, as the canonical splice sites remain intact, thus retaining the potential for restoring constitutive splicing. Mutational analysis of Portuguese galactosemic patients revealed the intronic variation c.820+13A>G as the second most prevalent mutation, strongly suggesting its pathogenicity. The aim of this study was to functionally characterize this intronic variation, to elucidate its pathogenic molecular mechanism(s) and, ultimately, to correct it by antisense therapy. Minigene splicing assays in two distinct cell lines and patients' transcript analyses showed that the mutation activates a cryptic donor splice site, inducing an aberrant splicing of the GALT pre-mRNA, which in turn leads to a frameshift with inclusion of a premature stop codon (p.D274Gfs*17). Functional-structural studies of the recombinant wild-type and truncated GALT showed that the latter is devoid of enzymatic activity and prone to aggregation. Finally, two locked nucleic acid oligonucleotides, designed to specifically recognize the mutation, successfully restored the constitutive splicing, thus establishing a proof of concept for the application of antisense therapy as an alternative strategy for the clearly insufficient dietary treatment in classic galactosemia.


Assuntos
DNA Antissenso/farmacologia , Galactosemias/terapia , Splicing de RNA , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética , Animais , Células COS , Estudos de Casos e Controles , Chlorocebus aethiops , Dicroísmo Circular , Fragmentação do DNA , Galactosemias/genética , Testes Genéticos , Variação Genética , Células HeLa , Humanos , Íntrons , Mutação , Oligonucleotídeos/farmacologia , Precursores de RNA/genética , Sítios de Splice de RNA , RNA Mensageiro/genética , Análise de Sequência de DNA
18.
Genetics ; 198(4): 1559-69, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25298520

RESUMO

Type III galactosemia is a metabolic disorder caused by reduced activity of UDP-galactose-4-epimerase, which participates in galactose metabolism and the generation of various UDP-sugar species. We characterized gale-1 in Caenorhabditis elegans and found that a complete loss-of-function mutation is lethal, as has been hypothesized for humans, whereas a nonlethal partial loss-of-function allele causes a variety of developmental abnormalities, likely resulting from the impairment of the glycosylation process. We also observed that gale-1 mutants are hypersensitive to galactose as well as to infections. Interestingly, we found interactions between gale-1 and the unfolded protein response.


Assuntos
Caenorhabditis elegans/genética , Galactosemias/genética , Galactosemias/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Desintegrinas/metabolismo , Hexosaminas/metabolismo , Redes e Vias Metabólicas , Metaloendopeptidases/metabolismo , Morfogênese/genética , Mutação , Fenótipo , Transporte Proteico , Transdução de Sinais , UDPglucose-Hexose-1-Fosfato Uridiltransferase/deficiência , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética , Resposta a Proteínas não Dobradas , Açúcares de Uridina Difosfato/metabolismo
19.
Clin Chim Acta ; 436: 298-302, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24973740

RESUMO

BACKGROUND: The California newborn screening program uses newborns' dried blood spots (DBS) to screen for more than 45 genetic disorders. Deficiency of galactose-1-phosphate uridyl transferase (GALT) is one of the metabolic genetic disorders screened using newborn DBS. During follow-up tests, common mutations of the GALT gene have been identified using whole blood samples. To avoid the stress of drawing an additional blood sample from newborns who are identified as presumptive positive for galactosemia, we developed a method to test common mutations in the GALT gene using blood spots. METHODS: This method involves DNA extraction from DBS, followed by polymerase chain reaction (PCR), and single nucleotide extension (SNE). SNE products were detected by capillary electrophoresis. RESULTS: In a double-blind study, GALT gene common mutations/variants: IVS2-2A>G, p.S135L, p.T138M, p.Q188R, p.L195P, p.Y209C, p.L218L, p.K285N, and p.N314D were detected in seventy-three DBS which had previously been screened and confirmed as positive in the California Newborn Screening Program. Mutations found using blood spots gave 100% concordance with mutations from previously genotyped whole blood samples. CONCLUSIONS: This blood spot method decreases the genomic test turnaround time of GALT screened positive patients and potentially reduces emotional stress on families required to provide an additional blood draw.


Assuntos
Análise Mutacional de DNA/métodos , Teste em Amostras de Sangue Seco , Mutação , UDPglucose-Hexose-1-Fosfato Uridiltransferase/sangue , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética , Método Duplo-Cego , Técnicas de Genotipagem , Humanos , Recém-Nascido
20.
Appl Environ Microbiol ; 79(22): 7028-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014529

RESUMO

The GNB/LNB (galacto-N-biose/lacto-N-biose) pathway plays a crucial role in bifidobacteria during growth on human milk or mucin from epithelial cells. It is thought to be the major route for galactose utilization in Bifidobacterium longum as it is an energy-saving variant of the Leloir pathway. Both pathways are present in B. bifidum, and galactose 1-phosphate (gal1P) is considered to play a key role. Due to its toxic nature, gal1P is further converted into its activated UDP-sugar through the action of poorly characterized uridylyltransferases. In this study, three uridylyltransferases (galT1, galT2, and ugpA) from Bifidobacterium bifidum were cloned in an Escherichia coli mutant and screened for activity on the key intermediate gal1P. GalT1 and GalT2 showed UDP-glucose-hexose-1-phosphate uridylyltransferase activity (EC 2.7.7.12), whereas UgpA showed promiscuous UTP-hexose-1-phosphate uridylyltransferase activity (EC 2.7.7.10). The activity of UgpA toward glucose 1-phosphate was about 33-fold higher than that toward gal1P. GalT1, as part of the bifidobacterial Leloir pathway, was about 357-fold more active than GalT2, the functional analog in the GNB/LNB pathway. These results suggest that GalT1 plays a more significant role than previously thought and predominates when B. bifidum grows on lactose and human milk oligosaccharides. GalT2 activity is required only during growth on substrates with a GNB core such as mucin glycans.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium/enzimologia , Oligossacarídeos/metabolismo , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosefosfatos/metabolismo , Deleção de Genes , Humanos , Leite Humano/química , Dados de Sequência Molecular , Família Multigênica , Plasmídeos/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...