Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.994
Filtrar
1.
Biochemistry ; 63(8): 1038-1050, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577885

RESUMO

The ethylene-forming enzyme (EFE) is an Fe(II), 2-oxoglutarate (2OG), and l-arginine (l-Arg)-dependent oxygenase that either forms ethylene and three CO2/bicarbonate from 2OG or couples the decarboxylation of 2OG to C5 hydroxylation of l-Arg. l-Arg binds with C5 toward the metal center, causing 2OG to change from monodentate to chelate metal interaction and OD1 to OD2 switch of D191 metal coordination. We applied anaerobic UV-visible spectroscopy, X-ray crystallography, and computational approaches to three EFE systems with high-resolution structures. The ineffective l-Arg analogue l-canavanine binds to the EFE with O5 pointing away from the metal center while promoting chelate formation by 2OG but fails to switch the D191 metal coordination from OD1 to OD2. Substituting alanine for R171 that interacts with 2OG and l-Arg inactivates the protein, prevents metal chelation by 2OG, and weakens l-Arg binding. The R171A EFE had electron density at the 2OG binding site that was identified by mass spectrometry as benzoic acid. The substitution by alanine of Y306 in the EFE, a residue 12 Å away from the catalytic metal center, generates an interior cavity that leads to multiple local and distal structural changes that reduce l-Arg binding and significantly reduce the enzyme activity. Flexibility analyses revealed correlated and anticorrelated motions in each system, with important distinctions from the wild-type enzyme. In combination, the results are congruent with the currently proposed enzyme mechanism, reinforce the importance of metal coordination by OD2 of D191, and highlight the importance of the second coordination sphere and longer range interactions in promoting EFE activity.


Assuntos
Canavanina , Compostos Ferrosos , Liases , Compostos Ferrosos/metabolismo , Sítios de Ligação , Alanina , Ácidos Cetoglutáricos/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1225-1239, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621969

RESUMO

Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to investigate the impacts of Pruni Semen processed with different methods(raw and fried) on the liver and spleen metabolism in mice. A total of 24 male mice were randomly assigned to three groups: raw Pruni Semen group, fried Pruni Semen group, and control(deionized water) group. Mice in the three groups were orally administrated with 0.01 g·mL~(-1) Pruni Semen decoction or deionized water for one week. After that, the liver and spleen tissues were collected, and liquid chromatography-mass spectrometry(LC-MS)-based metabolomic analysis was carried out to investigate the impact of Pruni Semen on the liver and spleen metabolism in mice. Compared with thte control group, the raw Pruni Semen group showed up-regulation of 11 metabolites and down-regulation of 57 metabolites in the spleen(P<0.05), as well as up-regulation of 15 metabolites and down-regulation of 58 metabolites in the liver(P<0.05). The fried Pruni Semen group showed up-regulation of 31 metabolites and down-regulation of 10 metabolites in the spleen(P<0.05), along with up-regulation of 26 metabolites and down-regulation of 61 metabolites in the liver(P<0.05). The differential metabolites identified in the raw Pruni Semen group were primarily associated with alanine, aspartate, and glutamate metabolism, purine metabolism, amino sugar and nucleotide sugar metabolism, and D-glutamine and D-glutamate metabolism. The differential metabolites identified in the fried Pruni Semen group predominantly involved riboflavin metabolism, amino sugar and nucleotide sugar metabolism, purine metabolism, alanine, aspartate, and glutamate metabolism, D-glutamine and D-glutamate metabolism, and glutathione metabolism. The findings suggest that both raw and fried Pruni Semen have the potential to modulate the metabolism of the liver and spleen in mice by influencing the glutamine and glutamate metabolism.


Assuntos
Ácido Glutâmico , Baço , Camundongos , Masculino , Animais , Sêmen , Glutamina , Ácido Aspártico , Metabolômica/métodos , Fígado/metabolismo , Alanina/metabolismo , Amino Açúcares/metabolismo , Água/metabolismo , Nucleotídeos/metabolismo , Purinas/metabolismo , Açúcares , Cromatografia Líquida de Alta Pressão , Biomarcadores/metabolismo
3.
RNA Biol ; 21(1): 1-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38629491

RESUMO

Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.


Assuntos
Aminoacil-tRNA Sintetases , Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/genética , Anticódon/genética , Leucina/genética , RNA de Transferência de Leucina/genética , Código Genético , Códon , RNA de Transferência/genética , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Alanina/genética , Mamíferos/genética
4.
PLoS One ; 19(4): e0300319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557648

RESUMO

The dietary habits of seals play a pivotal role in shaping management and administration policies, especially in regions with potential interactions with fisheries. Previous studies have utilized various methods, including traditional approaches, to predict seal diets by retrieving indigestible prey parts, such as calcified structures, from intestines, feces, and stomach contents. Additionally, methods evaluating nitrogen and stable isotopes of carbon have been employed. The metabolomics approach, capable of quantifying small-scale molecules in biofluids, holds promise for specifying dietary exposures and estimating disease risk. This study aimed to assess the diet composition of five seal species-Arctocephalus pusillus pusillus, Lobodon carcinophaga, Ommatophoca rossii, and Arctocephalus tropicalis 1 and 2-by analyzing stomach and colon contents collected from stranded dead seals at various locations. Metabolite concentrations in the seal stomach and colon contents were determined using Nuclear Magnetic Resonance Spectroscopy. Among the colon and stomach contents, 29 known and 8 unknown metabolites were identified. Four metabolites (alanine, fumarate, lactate, and proline) from stomach contents and one metabolite (alanine) from colon contents showed no significant differences between seal species (p>0.05). This suggests that traces of these metabolites in the stomach and colon contents may be produced by the seals' gut microbiome or derived from other animals, possibly indicating reliance on fish caught at sea. Despite this insight, the cause of death for stranded seals remains unclear. The study highlights the need for specific and reliable biomarkers to precisely indicate dietary exposures across seal populations. Additionally, there is a call for the development of relevant metabolite and disease interaction networks to explore disease-related metabolites in seals. Ultimately, the metabolomic method employed in this study reveals potential metabolites in the stomach and colon contents of these seal species.


Assuntos
Otárias , Focas Verdadeiras , Animais , Conteúdo Gastrointestinal , Regiões Antárticas , Estômago , Alanina , Colo
5.
Sci Rep ; 14(1): 8161, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589540

RESUMO

Tenofovir disoproxil fumarate (TDF) seems to prevent hepatocellular carcinoma (HCC) in patients with chronic hepatitis B virus (HBV). However, the mechanism is still little known. This study aimed to investigate the the roles and mechanisms of TDF, tenofovir alafenamide fumarate (TAF), and entecavir (ETV) on the malignant characteristics of liver cancer cells. Using the wound-healing assays, transwell assays, matrigel transwell assays, and cell counting kit-8 (CCK-8) assays, it was possible to identify that TDF/TAF, inhibited migration, invasion, and proliferation of HepG2 cells and Huh7 cells. To investigate the mechanisms, we performed TOP/FOP-Flash system, Western blot, and RT-qPCR assays of liver cancer cells cultured with TDF/TAF and found a lower activity of Wnt/ß-catenin signaling pathway compared with control cells. Finally, Hepatitis C virus p7 trans-regulated protein 3 (p7TP3), a tumor suppressor in liver cancers, was significantly increased in HepG2 cells and Huh7 cells that treated with TDF/TAF. However, entecavir (ETV)-treated liver cancer cells showed no significant difference in the malignant characteristics of liver cancer cells, activity of Wnt/ß-catenin signaling pathway, and expression of p7TP3, compared with the control groups. To conclude, TDF/TAF maybe novel promising therapeutic strategy for liver cancers, including HCC and hepatoblastoma, via Wnt/ß-catenin signaling pathway, by up-regulating expression of the tumor suppressor, p7TP3.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Tenofovir/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Alanina/uso terapêutico , Adenina/uso terapêutico , Processos Neoplásicos , Movimento Celular , Antivirais/uso terapêutico
6.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612464

RESUMO

Immunodominant alloantigens in pig sperm membranes include 15 known gene products and a previously undiscovered Mr 20,000 sperm membrane-specific protein (SMA20). Here we characterize SMA20 and identify it as the unannotated pig ortholog of PMIS2. A composite SMA20 cDNA encoded a 126 amino acid polypeptide comprising two predicted transmembrane segments and an N-terminal alanine- and proline (AP)-rich region with no apparent signal peptide. The Northern blots showed that the composite SMA20 cDNA was derived from a 1.1 kb testis-specific transcript. A BLASTp search retrieved no SMA20 match from the pig genome, but it did retrieve a 99% match to the Pmis2 gene product in warthog. Sequence identity to predicted PMIS2 orthologs from other placental mammals ranged from no more than 80% overall in Cetartiodactyla to less than 60% in Primates, with the AP-rich region showing the highest divergence, including, in the extreme, its absence in most rodents, including the mouse. SMA20 immunoreactivity localized to the acrosome/apical head of methanol-fixed boar spermatozoa but not live, motile cells. Ultrastructurally, the SMA20 AP-rich domain immunolocalized to the inner leaflet of the plasma membrane, the outer acrosomal membrane, and the acrosomal contents of ejaculated spermatozoa. Gene name search failed to retrieve annotated Pmis2 from most mammalian genomes. Nevertheless, individual pairwise interrogation of loci spanning Atp4a-Haus5 identified Pmis2 in all placental mammals, but not in marsupials or monotremes. We conclude that the gene encoding sperm-specific SMA20/PMIS2 arose de novo in Eutheria after divergence from Metatheria, whereupon rapid molecular evolution likely drove the acquisition of a species-divergent function unique to fertilization in placental mammals.


Assuntos
Placenta , Sêmen , Masculino , Feminino , Gravidez , Suínos , Animais , Camundongos , DNA Complementar , Espermatozoides , Eutérios , Alanina , Isoantígenos/genética , Fertilização/genética
7.
Neurologia (Engl Ed) ; 39(4): 340-344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616061

RESUMO

BACKGROUND AND PURPOSE: The aim of this study was to assess the possible pharmacological interactions between safinamide and antidepressants, and in particular the appearance of serotonin syndrome with data from real life. METHODS: We conducted a retrospective observational study of patients with Parkinson's disease from our Movement Disorders Unit, who were under treatment with any antidepressant drug and safinamide. Specifically, symptoms suggestive of serotonin syndrome were screened for. Also, we collected time of simultaneous use, doses of levodopa and other antiparkinsonian drugs. RESULTS: Clinical records were reviewed for the study period of September 2018 to September 2019. Seventy-eight PD patients who were treated with safinamide of which 25 (32.05%) had a concomitant treatment with an antidepressant drug, being sertraline and escitalopram the most frequent. Mean age was 80 years±8.43 and H&Y stage was 3 [2-4]. Mean dose of levodopa used was 703.75mg±233.15. Median duration of concomitant treatment with safinamide and antidepressant drug was 6 months (IQR 20.5), and over eighteen months in 5 cases. No case of serotonin syndrome was recorded, neither was any of its typical manifestations combined or in isolation. CONCLUSIONS: Our real clinical practice study suggests that concomitant use of safinamide with antidepressant drugs in PD patients seemed to be safe and well tolerated, even in the long term. However, caution is warranted, individualizing treatment regimens and monitoring the potential appearance of adverse effects.


Assuntos
Alanina/análogos & derivados , Benzilaminas , Doença de Parkinson , Síndrome da Serotonina , Humanos , Idoso de 80 Anos ou mais , Levodopa/efeitos adversos , Antidepressivos/efeitos adversos , Doença de Parkinson/tratamento farmacológico
8.
J Biochem ; 175(4): 439-446, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38616642

RESUMO

Aspartate/alanine exchange transporter (AspT) is a secondary transporter isolated from the lactic acid bacterium Tetragenococcus halophilus D10 strain. This transporter cooperates with aspartate decarboxylase to produce proton-motive force through decarboxylative phosphorylation. A method that successfully analyzes the AspT mechanism could serve as a prototype for elucidating the substrate transport mechanism of other exchange transporters; therefore, the purpose of this study was to search for conditions that improve the thermal stability of AspT for 3D structure analysis. We used the fluorescence size-exclusion chromatography-based thermostability assay to evaluate conditions that contribute to AspT stability. We found that the AspT thermostability was enhanced at pH 5.0 to 6.0 and in the presence of Na+ and Li+. Pyridoxal phosphate, a coenzyme of aspartate decarboxylase, also had a thermostabilizing effect on AspT. Under the conditions obtained from these results, it was possible to increase the temperature at which 50% of dimer AspT remained by 14°C. We expect these conditions to provide useful information for future structural analysis of AspT.


Assuntos
Ácido Aspártico , Enterococcaceae , Alanina , Cromatografia em Gel , Proteínas de Membrana Transportadoras
10.
Science ; 383(6688): eadk6176, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484056

RESUMO

Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.


Assuntos
Alanina , Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Nucleosídeos , Pró-Fármacos , Animais , Administração Oral , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Macaca fascicularis , Nucleosídeos/administração & dosagem , Nucleosídeos/farmacologia , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/farmacologia , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Antivirais/administração & dosagem , Antivirais/farmacologia
11.
J Agric Food Chem ; 72(11): 5878-5886, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38462902

RESUMO

The involvement of exogenous alanine was observed to inhibit the generation of 2-furfural during the thermal degradation of the Amadori rearrangement product (ARP). To clarify the reason for the reduced yield of 2-furfural triggered by exogenous alanine, the evolution of the precursors of 2-furfural formed in the ARP model and ARP-alanine model was investigated, and a model including ARP and 15N-labeled alanine was used to differentiate the role of endogenous and exogenous alanine in the degradation of ARP. It was found that the condensation between ARP and 3-deoxyxylosone could occur during thermal treatment. Nevertheless, the interaction of ARP with 3-deoxyxylosone exhibited an accelerated pace in the presence of exogenous alanine. In this way, exogenous alanine blocked the recovery of endogenous alanine while simultaneously enhancing the consumption of ARP and 3-deoxyxylosone during the Maillard reaction. Hence, the yield of 2-furfural was diminished with the interference of exogenous alanine. Furthermore, the promotion of the reaction between ARP and deoxyxylosone induced by exogenous alanine blocked their retro-aldolization reaction to short-chain α-dicarbonyls (α-DCs) and consequently resulted in a lack of pyrazine formation during the ARP degradation. The present study provided a feasible method for the controlled formation of 2-furfural during the thermal treatment of ARP derived from alanine.


Assuntos
Alanina , Furaldeído , Reação de Maillard
12.
Bioconjug Chem ; 35(4): 517-527, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38482815

RESUMO

Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent "click" cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide-alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.


Assuntos
Azidas , Peptidoglicano , Humanos , Animais , Camundongos , Azidas/química , Distribuição Tecidual , Tomografia por Emissão de Pósitrons , Bactérias , Aminoácidos , Alanina , Radioisótopos de Flúor/química
13.
J Agric Food Chem ; 72(14): 8039-8051, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38545740

RESUMO

d-Amino acids (d-AAs) have wide applications in industries such as pharmaceutical, food, and cosmetics due to their unique properties. Currently, the production of d-AAs has relied on chemical synthesis or enzyme catalysts, and it is challenging to produce d-AAs via direct fermentation from glucose. We observed that Corynebacterium glutamicum exhibits a remarkable tolerance to high concentrations of d-Ala, a crucial characteristic for establishing a successful fermentation process. By optimizing meso-diaminopilmelate dehydrogenases in different C. glutamicum strains and successively deleting l-Ala biosynthetic pathways, we developed an efficient d-Ala fermentation system. The d-Ala titer was enhanced through systems metabolic engineering, which involved strengthening glucose assimilation and pyruvate supply, reducing the formation of organic acid byproducts, and attenuating the TCA cycle. During fermentation in a 5-L bioreactor, a significant accumulation of l-Ala was observed in the broth, which was subsequently diminished by introducing an l-amino acid deaminase. Ultimately, the engineered strain DA-11 produced 85 g/L d-Ala with a yield of 0.30 g/g glucose, accompanied by an optical purity exceeding 99%. The fermentation platform has the potential to be extended for the synthesis of other d-AAs, as demonstrated by the production of d-Val and d-Glu.


Assuntos
Aminoácidos , Corynebacterium glutamicum , Aminoácidos/metabolismo , Fermentação , Alanina/metabolismo , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica , Glucose/metabolismo
14.
AJNR Am J Neuroradiol ; 45(4): 461-467, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453417

RESUMO

BACKGROUND AND PURPOSE: Due to high chemical shift displacement, challenges emerge at ultra-high fields when measuring metabolites using 1H-MRS. Our goal was to investigate how well the high SNR and high bandwidth spin-echo (HISE) technique perform at 5T for detecting target metabolites in brain tumors. MATERIALS AND METHODS: Twenty-six subjects suspected of having brain tumors were enrolled. HISE and point-resolved spectroscopy (PRESS) single-voxel spectroscopy scans were collected with a 5T clinical scanner with an intermediate TE (TE = 144 ms). The main metabolites, including total NAA, Cr, and total Cho, were accessed and compared between HISE and PRESS using a paired Student t test, with full width at half maximum and SNR as covariates. The detection rate of specific metabolites, including lactate, alanine, and lipid, and subjective spectral quality were accessed and compared between HISE and PRESS. RESULTS: Twenty-three pathologically confirmed brain tumors were included. Only the full width at half maximum for total NAA was significantly lower with HISE than with PRESS (P < .05). HISE showed a significantly higher SNR for total NAA, Cr, and total Cho compared with PRESS (P < .05). Lactate was detected in 21 of the 23 cases using HISE, but in only 4 cases using PRESS. HISE detected alanine in 8 of 9 meningiomas, whereas PRESS detected alanine in just 3 meningiomas. PRESS found lipid in more cases than HISE, while HISE outperformed PRESS in terms of subjective spectral quality. CONCLUSIONS: HISE outperformed the clinical standard PRESS technique in detecting target metabolites of brain tumors at 5T, particularly lactate and alanine.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Humanos , Espectroscopia de Ressonância Magnética/métodos , Meningioma/diagnóstico por imagem , Reprodutibilidade dos Testes , Neoplasias Encefálicas/metabolismo , Ácido Láctico/metabolismo , Alanina/metabolismo , Lipídeos , Encéfalo/metabolismo
15.
Biomacromolecules ; 25(4): 2554-2562, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38426942

RESUMO

Our group recently developed a family of side-chain amino acid-functionalized poly(S-alkyl-l-homocysteines), Xaa-CH (Xaa = generic amino acid), which possess the ability to form environmentally responsive coacervates in water. In an effort to further study how the molecular structure affects polypeptide coacervate formation, we prepared side-chain amino acid-functionalized poly(S-alkyl-rac-cysteines), Xaa-rac-C, via post-polymerization modification of poly(dehydroalanine), ADH. The use of the ADH platform allowed straightforward synthesis of a diverse range of side-chain amino acid-functionalized polypeptides via direct reaction of unprotected l-amino acid 2-mercaptoethylamides with ADH. Despite their differences in the main-chain structure, we found that Xaa-rac-C can form coacervates with properties similar to those seen with Xaa-CH. These results suggest that the incorporation of side-chain amino acids onto polypeptides may be a way to generally favor coacervation. The incorporation of l-methionine in Met-rac-C allowed the preparation of coacervates with improved stability against high ionic strength media. Further, the presence of additional thioether groups in Met-rac-C resulted in an increased solubility change upon oxidation allowing facile reversible redox switching of coacervate formation in aqueous media.


Assuntos
Alanina/análogos & derivados , Aminoácidos , Peptídeos , Peptídeos/química , Alanina/química , Cisteína
16.
J Psychopharmacol ; 38(4): 395-403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38481078

RESUMO

BACKGROUND: Due to non-consistent reports in the literature, there are uncertainties about the potential benefits and harms of selective serotonin reuptake inhibitors (SSRIs) in patients with Coronavirus disease 2019 (COVID-19). AIM: To investigate associations of SSRIs with clinical characteristics and unwanted outcomes among real-life severe and critical COVID-19 patients and their relationship with remdesivir (RDV) use. METHODS: This retrospective cohort study evaluated a total of 1558 COVID-19 patients of the white race treated in a tertiary center institution, among them 779 patients treated with RDV and 779 1:1 case-matched patients. RESULTS: A total of 78 (5%) patients were exposed to SSRIs during hospitalization, similarly distributed among patients treated with RDV and matched patients (5.1 and 4.9%). No significant associations of SSRI use with age, sex, comorbidity burden, and COVID-19 severity were present in either of the two cohorts (p > 0.05 for all analyses). In multivariate analyses adjusted for clinically meaningful variables, SSRI use was significantly associated with higher mortality among RDV (adjusted odds ratio (aOR) 2.0, p = 0.049) and matched patients (aOR 2.22, p = 0.044) and with higher risk for mechanical-ventilation (aOR 2.57, p = 0.006), venous-thromboembolism (aOR 3.69, p = 0.007), and bacteremia (aOR 2.22, p = 0.049) among RDV treated patients. CONCLUSIONS: Adverse outcomes associated with SSRI use in COVID-19 patients might be potentiated by RDV use, and clinically significant interactions between these two drug classes might exist. Although our findings raise important considerations for clinical practice, they are limited by retrospective nature of the study, lack of ethnic diversity, and the potential for unmeasured confounding factors. Future studies exploring underlying biological mechanisms are needed.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , COVID-19 , Inibidores Seletivos de Recaptação de Serotonina , Humanos , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Estudos Retrospectivos , Tratamento Farmacológico da COVID-19
17.
Medicine (Baltimore) ; 103(13): e27853, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552045

RESUMO

BACKGROUND: PKD1, which has a relatively high mutation rate, is highly polymorphic, and the role of PKD1 is incompletely defined. In the current study, in order to determine the molecular etiology of a family with autosomal dominant polycystic kidney disease, the pathogenicity of an frameshift mutation in the PKD1 gene, c.9484delC, was evaluated. METHODS: The family clinical data were collected. Whole exome sequencing analysis determined the level of this mutation in the proband's PKD1, and Sanger sequencing and bioinformatics analysis were performed. SIFT, Polyphen2, and MutationTaster were used to evaluate the conservation of the gene and pathogenicity of the identified mutations. SWISS-MODEL was used to predict and map the protein structure of PKD1 and mutant neonate proteins. RESULTS: A novel c.9484delC (p.Arg3162Alafs*154) mutation of the PKD1 gene was identified by whole exome sequencing in the proband, which was confirmed by Sanger sequencing in his sister (II7). The same mutation was not detected in the healthy pedigree members. Random screening of 100 normal and end-stage renal disease patients did not identify the c.9484delC mutation. Bioinformatics analysis suggested that the mutation caused the 3162 nd amino acid substitution of arginine by alanine and a shift in the termination codon. As a result, the protein sequence was shortened from 4302 amino acids to 3314 amino acids, the protein structure was greatly changed, and the PLAT/LH2 domain was destroyed. Clustal analysis indicated that the altered amino acids were highly conserved in mammals. CONCLUSION: A novel mutation in the PKD1 gene has been identified in an affected Chinese family. The mutation is probably responsible for a range of clinical manifestations for which reliable prenatal diagnosis and genetic counseling may be provided.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Recém-Nascido , Alanina , China , Proteínas Mutantes , Mutação , Linhagem , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética
18.
Antimicrob Agents Chemother ; 68(4): e0095623, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38446062

RESUMO

Viral RNA-dependent RNA polymerase (RdRp), a highly conserved molecule in RNA viruses, has recently emerged as a promising drug target for broad-acting inhibitors. Through a Vero E6-based anti-cytopathic effect assay, we found that BPR3P0128, which incorporates a quinoline core similar to hydroxychloroquine, outperformed the adenosine analog remdesivir in inhibiting RdRp activity (EC50 = 0.66 µM and 3 µM, respectively). BPR3P0128 demonstrated broad-spectrum activity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. When introduced after viral adsorption, BPR3P0128 significantly decreased SARS-CoV-2 replication; however, it did not affect the early entry stage, as evidenced by a time-of-drug-addition assay. This suggests that BPR3P0128's primary action takes place during viral replication. We also found that BPR3P0128 effectively reduced the expression of proinflammatory cytokines in human lung epithelial Calu-3 cells infected with SARS-CoV-2. Molecular docking analysis showed that BPR3P0128 targets the RdRp channel, inhibiting substrate entry, which implies it operates differently-but complementary-with remdesivir. Utilizing an optimized cell-based minigenome RdRp reporter assay, we confirmed that BPR3P0128 exhibited potent inhibitory activity. However, an enzyme-based RdRp assay employing purified recombinant nsp12/nsp7/nsp8 failed to corroborate this inhibitory activity. This suggests that BPR3P0128 may inhibit activity by targeting host-related RdRp-associated factors. Moreover, we discovered that a combination of BPR3P0128 and remdesivir had a synergistic effect-a result likely due to both drugs interacting with separate domains of the RdRp. This novel synergy between the two drugs reinforces the potential clinical value of the BPR3P0128-remdesivir combination in combating various SARS-CoV-2 variants of concern.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , COVID-19 , Pirazóis , Quinolinas , Humanos , SARS-CoV-2/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Simulação de Acoplamento Molecular , Tratamento Farmacológico da COVID-19 , Antivirais/química
19.
J Agric Food Chem ; 72(15): 8760-8773, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38536213

RESUMO

Roasting is pivotal for enhancing the flavor of Wuyi rock tea (WRT). A study investigated a novel compound that enhances the umami taste of WRT. Metabolomics of Shuixian tea (SXT) and Rougui tea (RGT) under light roasting (LR), medium roasting (MR), and heavy roasting (HR) revealed significant differences in nonvolatiles compounds. Compared LR reducing sugars and amino acids notably decreased in MR and HR, with l-alanine declining by 69%. Taste-guided fractionation identified fraction II-B as having high umami and sweet intensities. A surprising taste enhancer, N-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (alapyridaine), was discovered and identified. It formed via the Maillard reaction, positively correlated with roasting in SXT and RGT. Alapyridaine levels were highest in SXT among the five oolong teas. Roasting tea with glucose increased alapyridaine levels, while EGCG inhibited its formation. HR-WRT exhibited enhanced umami and sweet taste, highlighting alapyridaine's impact on WRT's flavor profile. The formation of alapyridaine during the roasting process provides new insights into the umami and sweet perception of oolong tea.


Assuntos
Alanina/análogos & derivados , Reação de Maillard , Piridinas , Paladar , Alanina/química , Chá
20.
Gene ; 911: 148358, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467313

RESUMO

BACKGROUND: Paired-like Homeobox 2B (PHOX2B) is considered the causative gene of Congenital Central Hypoventilation Syndrome (CCHS), a dominant genetic disorder characterized by impaired central respiratory control and subsequent hypoventilation during sleep. METHODS: Herein, we present a family with recurrent severe CCHS. The potential causative genetic variant was confirmed through Whole-Exome Sequencing (WES), Sanger sequencing, and droplet digital PCR (ddPCR). Furthermore, prenatal diagnosis was performed on the proband's mother at 20 weeks of her fourth pregnancy upon request. RESULTS: The proband and her brother were both carriers of the PHOX2B polyalanine expansion variant: c.744_758dupCGCGGCAGCGGCGGCGGCGGC. Sanger sequencing revealed that the proband's father had a small variant peak in the gene position, implying potential somatic mosaicism. In addition, ddPCR results showed that the proband's father had germline mosaicism, with a mosaicism proportion of 14.3%. Notably, the detect p.(Ala241[26]) variant was not detected in the fetus. CONCLUSIONS: These findings have important implications for improving genetic counseling of CCHS families as they suggest that even parents without CCHS symptoms may have somatic chimerism, necessitating careful genetic counseling and consideration of prenatal testing for subsequent pregnancies.


Assuntos
Proteínas de Homeodomínio , Hipoventilação , Hipoventilação/congênito , Apneia do Sono Tipo Central , Humanos , Masculino , Feminino , Gravidez , Hipoventilação/genética , Proteínas de Homeodomínio/genética , Mosaicismo , Mutação , Alanina , Fatores de Transcrição/genética , Pai
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...