Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.383
Filtrar
1.
Immun Inflamm Dis ; 12(2): e1181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38415821

RESUMO

OBJECTIVE: This systematic review aimed to investigate the role of the C-X3-C motif ligand 1/chemokine receptor 1 C-X3-C motif (CX3CL1/CX3CR1) axis in the pathogenesis of periodontitis. Furthermore, as a secondary objective, we determine whether the CX3CL1/CX3CR1 axis could be considered complementary to clinical parameters to distinguish between periodontitis and rheumatoid arthritis (RA) and/or systemically healthy subjects. METHODS: The protocol used for this review was registered in OSF (10.17605/OSF.IO/KU8FJ). This study was designed following Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Records were identified using different search engines (PubMed/MEDLINE, Scopus, Science Direct, and Web of Science) from August 10, 2006, to September 15, 2023. The observational studies on human subjects diagnosed with periodontitis and RA and/or systemically healthy were selected to analyze CX3CL1 and CX3CR1 biomarkers. The methodological validity of the selected articles was assessed using NIH. RESULTS: Six articles were included. Biological samples (gingival crevicular fluid [GCF], saliva, gingival tissue biopsies, serum) from 379 subjects (n = 275 exposure group and n = 104 control group) were analyzed. Higher CX3CL1 and CX3CR1 chemokine levels were found in subjects with periodontitis and RA compared with periodontal and systemically healthy subjects. CONCLUSION: Very few studies highlight the role of the CX3CL1/CX3CR1 axis in the pathogenesis of periodontitis; however, increased levels of these chemokines are observed in different biological samples (GCF, gingival tissue, saliva, and serum) from subjects with periodontitis and RA compared with their healthy controls. Future studies should focus on long-term follow-up of subjects and monitoring changes in cytokine levels before and after periodontal therapy to deduce an appropriate interval in health and disease conditions.


Assuntos
Artrite Reumatoide , Periodontite , Humanos , Artrite Reumatoide/diagnóstico , Citocinas , Biomarcadores , Biópsia , Quimiocinas CC , Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1
2.
Sci Adv ; 10(5): eadj7500, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306437

RESUMO

The human CC chemokine receptor 8 (CCR8) is an emerging therapeutic target for cancer immunotherapy and autoimmune diseases. Understanding the molecular recognition of CCR8, particularly with nonpeptide ligands, is valuable for drug development. Here, we report three cryo-electron microscopy structures of human CCR8 complexed with Gi trimers in the ligand-free state or activated by nonpeptide agonists LMD-009 and ZK 756326. A conserved Y1.39Y3.32E7.39 motif in the orthosteric binding pocket is shown to play a crucial role in the chemokine and nonpeptide ligand recognition. Structural and functional analyses indicate that the lack of conservation in Y1143.33 and Y1724.64 among the CC chemokine receptors could potentially contribute to the selectivity of the nonpeptide ligand binding to CCR8. These findings present the characterization of the molecular interaction between a nonpeptide agonist and a chemokine receptor, aiding the development of therapeutics targeting related diseases through a structure-based approach.


Assuntos
Quimiocinas CC , Receptores CCR8 , Humanos , Microscopia Crioeletrônica , Ligantes , Receptores CCR8/química , Receptores CCR8/metabolismo , Receptores de Quimiocinas/metabolismo
3.
Cells ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38334630

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease of unknown origin, with a median patient survival time of ~3 years after diagnosis without anti-fibrotic therapy. It is characterized by progressive fibrosis indicated by increased collagen deposition and high numbers of fibroblasts in the lung. It has been demonstrated that CCL18 induces collagen and αSMA synthesis in fibroblasts. We aimed to identify the CCL18 receptor responsible for its pro-fibrotic activities. METHODS: We used a random phage display library to screen for potential CCL18-binding peptides, demonstrated its expression in human lungs and fibroblast lines by PCR and immunostaining and verified its function in cell lines. RESULTS: We identified CCR6 (CD196) as a CCL18 receptor and found its expression in fibrotic lung tissue and lung fibroblast lines derived from fibrotic lungs, but it was almost absent in control lines and tissue. CCL18 induced receptor internalization in a CCR6-overexpressing cell line. CCR6 blockade in primary human lung fibroblasts reduced CCL18-induced FGF2 release as well as collagen-1 and αSMA expression. Knockdown of CCR6 in a mouse fibroblast cell line abolished the induction of collagen and α-smooth muscle actin expression. CONCLUSION: Our data indicate that CCL18 triggers pro-fibrotic processes via CCR6, highlighting its role in fibrogenesis.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Humanos , Camundongos , Animais , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismo , Linhagem Celular , Colágeno/metabolismo , Quimiocinas CC/metabolismo , Receptores CCR6/metabolismo
4.
Bioorg Chem ; 145: 107181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354503

RESUMO

The human CC chemokine receptor 8 (CCR8) has been extensively pursued as target for the treatment of various inflammatory disorders. More recently, the importance of CCR8 in the tumor microenvironment has been demonstrated, spurring the interest in CCR8 antagonism as therapeutic strategy in immuno-oncology. On a previously described naphthalene sulfonamide with CCR8 antagonistic properties, the concept of isosterism was applied, leading to the discovery of novel CCR8 antagonists with IC50 values in the nM range in both the CCL1 competition binding and CCR8 calcium mobilization assay. The excellent CCR8 antagonistic activity of the most potent congeners was rationalized by homology molecular modeling.


Assuntos
Quimiocinas CC , Receptores de Quimiocinas , Humanos , Quimiocinas CC/metabolismo , Quimiocina CCL1/metabolismo , Receptores de Quimiocinas/química , Receptores de Quimiocinas/metabolismo , Amidas , Receptores CCR8 , Sulfonamidas/farmacologia , Naftalenos/farmacologia
5.
Cytokine ; 176: 156536, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325139

RESUMO

Chemokines, a family of chemotactic cytokines, mediate leukocyte migration to and entrance into inflamed tissue, contributing to the intensity of local inflammation. We performed an analysis of chemokine and immune cell responses to cardiac arrest (CA). Forty-two patients resuscitated from cardiac arrest were analyzed, and twenty-two patients who underwent coronary artery bypass grafting (CABG) surgery were enrolled. Quantitative antibody array, chemokines, and endotoxin quantification were performed using the patients blood. Analysis of CCL23 production in neutrophils obtained from CA patients and injected into immunodeficient mice after CA and cardiopulmonary resuscitation (CPR) were done using flow cytometry. The levels of CCL2, CCL4, and CCL23 are increased in CA patients. Temporal dynamics were different for each chemokine, with early increases in CCL2 and CCL4, followed by a delayed elevation in CCL23 at forty-eight hours after CA. A high level of CCL23 was associated with an increased number of neutrophils, neuron-specific enolase (NSE), worse cerebral performance category (CPC) score, and higher mortality. To investigate the role of neutrophil activation locally in injured brain tissue, we used a mouse model of CA/CPR. CCL23 production was increased in human neutrophils that infiltrated mouse brains compared to those in the peripheral circulation. It is known that an early intense inflammatory response (within hours) is associated with poor outcomes after CA. Our data indicate that late activation of neutrophils in brain tissue may also promote ongoing injury via the production of CCL23 and impair recovery after cardiac arrest.


Assuntos
Parada Cardíaca , Humanos , Camundongos , Animais , Parada Cardíaca/complicações , Quimiocinas , Quimiocinas CC
6.
Eur J Cancer ; 198: 113521, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171115

RESUMO

PURPOSE: Our previous study revealed that elevated C-C motif chemokine ligand 2 (CCL2) secretion by irradiated cancer cells recruited C-C motif chemokine receptor 2 (CCR2)-positive myeloid cells and polarized M2-type tumor-associated macrophages (TAMs), promoting lung metastasis in an established mouse model. This study investigated the impact of CCL2 and TAMs on adaptive immunity. METHODS: We assessed the influence of CCL2 and TAMs on adaptive immunity through two ectopic allograft mouse models constructed with MB49 bladder cancer cells and Lewis lung carcinoma cells. Both models exhibited delayed primary tumor growth following radiation therapy (RT), but RT promoted the development of pulmonary metastases in C57BL/6 mice. Additionally, we employed a direct coculture system to investigate the interaction between macrophages and target cells in the context of adaptive immunity. RESULTS: C-C motif chemokine receptor 4 (CCR4)-positive regulatory T cells (Tregs) were recruited to the postirradiated tumor microenvironment (TME). Utilizing a CCR4 antagonist to inhibit CCL2-CCR4 activation reversed the infiltration of CCR4 + Tregs and reduced the incidence of pulmonary metastases. In addition, a positive feedback loop between M2-type TAMs and Tregs was observed. The combined blockade of the CCL2-CCR4 and CCL2-CCR2 signaling pathways further decreased the risk of RT-promoted lung metastasis. CONCLUSION: The recruitment of CCR4 + Tregs to the postirradiated TME increases the metastatic potential of tumor cells through increased interactions with M2-type TAMs. A significant reduction in post-RT lung metastases in ectopic mouse models was achieved by disrupting the recruitment of both CCR4 + Tregs and CCR2 + myeloid cells, which are TAM precursors.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Macrófagos Associados a Tumor , Quimiocinas CC , Linfócitos T Reguladores , Camundongos Endogâmicos C57BL , Carcinoma Pulmonar de Lewis/radioterapia , Receptores de Quimiocinas , Neoplasias Pulmonares/radioterapia , Microambiente Tumoral , Linhagem Celular Tumoral , Receptores CCR4
7.
J Pathol ; 262(4): 495-504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287901

RESUMO

During cancer evolution, tumor cells attract and dynamically interact with monocytes/macrophages. To find biomarkers of disease progression in human melanoma, we used unbiased RNA sequencing and secretome analyses of tumor-macrophage co-cultures. Pathway analysis of genes differentially modulated in human macrophages exposed to melanoma cells revealed a general upregulation of inflammatory hallmark gene sets, particularly chemokines. A selective group of chemokines, including CCL8, CCL15, and CCL20, was actively secreted upon melanoma-macrophage co-culture. Because we previously described the role of CCL20 in melanoma, we focused our study on CCL8 and CCL15 and confirmed that in vitro both chemokines contributed to melanoma survival, proliferation, and 3D invasion through CCR1 signaling. In vivo, both chemokines enhanced primary tumor growth, spontaneous lung metastasis, and circulating tumor cell survival and lung colonization in mouse xenograft models. Finally, we explored the clinical significance of CCL8 and CCL15 expression in human skin melanoma, screening a collection of 67 primary melanoma samples, using multicolor fluorescence and quantitative image analysis of chemokine-chemokine receptor content at the single-cell level. Primary skin melanomas displayed high CCR1 expression, but there was no difference in its level of expression between metastatic and nonmetastatic cases. By contrast, comparative analysis of these two clinically divergent groups showed a highly significant difference in the cancer cell content of CCL8 (p = 0.025) and CCL15 (p < 0.0001). Kaplan-Meier curves showed that a high content of CCL8 or CCL15 in cancer cells correlated with shorter disease-free and overall survival (log-rank test, p < 0.001). Our results highlight the role of CCL8 and CCL15, which are highly induced by melanoma-macrophage interactions in biologically aggressive primary melanomas and could be clinically applicable biomarkers for patient profiling. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Camundongos , Animais , Melanoma/genética , Prognóstico , Neoplasias Cutâneas/genética , Quimiocinas/metabolismo , Macrófagos/metabolismo , Biomarcadores , Quimiocina CCL8/genética , Quimiocina CCL8/metabolismo , Proteínas Inflamatórias de Macrófagos , Quimiocinas CC/genética
8.
Cancer Sci ; 115(3): 777-790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228495

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a highly malignant and aggressive cancer whose incidence and mortality continue to increase, whereas its prognosis remains dismal. Tumor-associated macrophages (TAMs) promote malignant progression and immune microenvironment remodeling through direct contact and secreted mediators. Targeting TAMs has emerged as a promising strategy for ICC treatment. Here, we revealed the potential regulatory function of immune responsive gene 1 (IRG1) in macrophage polarization. We found that IRG1 expression remained at a low level in M2 macrophages. IRG1 overexpression can restrain macrophages from polarizing to the M2 type, which results in inhibition of the proliferation, invasion, and migration of ICC, whereas IRG1 knockdown exerts the opposite effects. Mechanistically, IRG1 inhibited the tumor-promoting chemokine CCL18 and thus suppressed ICC progression by regulating STAT3 phosphorylation. The intervention of IRG1 expression in TAMs may serve as a potential therapeutic target for delaying ICC progression.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/patologia , Macrófagos/metabolismo , Prognóstico , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Microambiente Tumoral , Quimiocinas CC/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
J Mol Med (Berl) ; 102(1): 81-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987774

RESUMO

Tumor-associated macrophages (TAMs) represent a key factor in the tumor immune microenvironment (TME), exerting significant influence over tumor migration, invasion, immunosuppressive features, and drug resistance. Collagen triple helix repeat containing 1 (CTHRC1), a 30 KDa protein which was secreted during the tissue-repair process, is highly expressed in several malignant tumors, including colorectal cancer (CRC). Previous studies demonstrated that CTHRC1 expression in TAMs was positively correlated to M2 macrophage polarization and liver metastasis, while our discovery suggesting a novel mechanism that CTHRC1 secreted from cancer cell could indirectly interplay with TAMs. In this study, the high expression level of CTHRC1 was evaluated in CRC based on GEO and TCGA databases. Further, CTHRC1 was detected high in all stages of CRC patients by ELISA and was correlated to poor prognosis. Multispectral imaging of IHC demonstrated that M2 macrophage infiltration was increased accompanied with CTHRC1 enrichment, suggesting that CTHRC1 may have chemotactic effect on macrophages. In vitro, CTHRC1 could have chemotactic ability of macrophage in the presence of HT-29 cell line. Cytokine microarray revealed that CTHRC1 could up-regulate the CCL15 level of HT-29, pathway analysis demonstrated that CTHRC1 could regulate CCL15 by controlling the TGFß activation and Smad phosphorylation level. In vivo, knocking down of CTHRC1 from CT-26 also inhibits tumor formation. In conclusion, CTHRC1 could promote the chemotactic ability of macrophages by up-regulating CCL15 via TGFß/Smad pathway; additionally, a high level of CTHRC1 could promote macrophage's M2 polarization. This discovery may be related to tumor immune tolerance and tumor immunotherapy resistance in CRC. KEY MESSAGES: CTHRC1 promotes CRC progression by up-regulating CCL15 via TGF-ß/Smad pathways to further recruit tumor-associated macrophages. By the means of autocrine or paracrine, CTHRC1 can indeed promote macrophage chemotaxis and enhance the infiltration of macrophages in tumor tissues but in the presence of tumor cells. CAFs were another source of CTHRC1, indicating CTHRC1 can infiltrate tumor islet as well as the stomal and be secreted from both tumor cells and CAFs. This study validated CTHRC1 as a potential immune therapy target CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Regulação para Cima , Transdução de Sinais , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Colorretais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Proteínas Inflamatórias de Macrófagos/metabolismo , Quimiocinas CC/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
10.
Nat Commun ; 14(1): 7940, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040762

RESUMO

The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein coupled receptor that has emerged as a promising therapeutic target in cancer. Targeting CCR8 with an antibody has appeared to be an attractive therapeutic approach, but the molecular basis for chemokine-mediated activation and antibody-mediated inhibition of CCR8 are not fully elucidated. Here, we obtain an antagonist antibody against human CCR8 and determine structures of CCR8 in complex with either the antibody or the endogenous agonist ligand CCL1. Our studies reveal characteristic antibody features allowing recognition of the CCR8 extracellular loops and CCL1-CCR8 interaction modes that are distinct from other chemokine receptor - ligand pairs. Informed by these structural insights, we demonstrate that CCL1 follows a two-step, two-site binding sequence to CCR8 and that antibody-mediated inhibition of CCL1 signaling can occur by preventing the second binding event. Together, our results provide a detailed structural and mechanistic framework of CCR8 activation and inhibition that expands our molecular understanding of chemokine - receptor interactions and offers insight into the development of therapeutic antibodies targeting chemokine GPCRs.


Assuntos
Quimiocinas CC , Receptores de Quimiocinas , Humanos , Quimiocinas CC/metabolismo , Quimiocinas CC/farmacologia , Receptores CCR8/genética , Ligantes , Quimiocina CCL1/metabolismo , Receptores de Quimiocinas/genética , Anticorpos
11.
PLoS Pathog ; 19(12): e1011793, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064525

RESUMO

Like all herpesviruses, cytomegaloviruses (CMVs) code for many immunomodulatory proteins including chemokines. The human cytomegalovirus (HCMV) CC chemokine pUL128 has a dual role in the infection cycle. On one hand, it forms the pentameric receptor-binding complex gHgLpUL(128,130,131A), which is crucial for the broad cell tropism of HCMV. On the other hand, it is an active chemokine that attracts leukocytes and shapes their activation. All animal CMVs studied so far have functionally homologous CC chemokines. In murine cytomegalovirus (MCMV), the CC chemokine is encoded by the m131/m129 reading frames. The MCMV CC chemokine is called MCK2 and forms a trimeric gHgLMCK2 entry complex. Here, we have generated MCK2 mutant viruses either unable to form gHgLMCK2 complexes, lacking the chemokine function or lacking both functions. By using these viruses, we could demonstrate that gHgLMCK2-dependent entry and MCK2 chemokine activity are independent functions of MCK2 in vitro and in vivo. The gHgLMCK2 complex promotes the tropism for leukocytes like macrophages and dendritic cells and secures high titers in salivary glands in MCMV-infected mice independent of the chemokine activity of MCK2. In contrast, reduced early antiviral T cell responses in MCMV-infected mice are dependent on MCK2 being an active chemokine and do not require the formation of gHgLMCK2 complexes. High levels of CCL2 and IFN-γ in spleens of infected mice and MCMV virulence depend on both, the formation of gHgLMCK2 complexes and the MCK2 chemokine activity. Thus, independent and concerted functions of MCK2 serving as chemokine and part of a gHgL entry complex shape antiviral immunity and virus dissemination.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Animais , Camundongos , Humanos , Citomegalovirus/metabolismo , Quimiocinas CC , Quimiocinas/metabolismo , Tropismo , Proteínas Virais/genética
12.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139161

RESUMO

Persistent host inflammatory and immune responses to biofilm play a critical role in the mechanisms that govern soft and hard tissue destruction in periodontal disease. Among the less explored facets of these mechanisms are chemokines, including CCL5 (C-C motif chemokine ligand 5), also known as RANTES (regulated on activation, normal T cell expressed and secreted), a proinflammatory CC subfamily chemokine synthesized by T lymphocytes. Despite its importance, there is currently no comprehensive review of the role of CCL5 in periodontitis in the literature. Therefore, this paper aims to fill this gap by summarizing the existing knowledge on the involvement of CCL5 in the onset and progression of periodontitis. In addition, we aim to stimulate interest in this relatively overlooked factor among periodontitis researchers, potentially accelerating the development of drugs targeting CCL5 or its receptors. The review examines the association of CCL5 with periodontitis risk factors, including aging, cigarette smoking, diabetes, and obesity. It discusses the involvement of CCL5 in pathological processes during periodontitis, such as connective tissue and bone destruction. The data show that CCL5 expression is observed in affected gums and gingival crevicular fluid of periodontitis patients, with bacterial activity contributing significantly to this increase, but the reviewed studies of the association between CCL5 expression and periodontal disease have yielded inconclusive results. Although CCL5 has been implicated in the pathomechanism of periodontitis, a comprehensive understanding of its molecular mechanisms and significance remains elusive, hindering the development of drugs targeting this chemokine or its receptors.


Assuntos
Quimiocina CCL5 , Periodontite , Humanos , Quimiocina CCL5/metabolismo , Quimiocinas/análise , Quimiocinas CC , Líquido do Sulco Gengival , Periodontite/metabolismo , Linfócitos T/química , Animais
13.
J Transl Med ; 21(1): 865, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017505

RESUMO

BACKGROUND: Previous studies have demonstrated that natural killer (NK) cells migrated into the liver from peripheral organs and exerted cytotoxic effects on hepatocytes in virus-induced liver failure. AIM: This study aimed to investigate the potential therapeutic role of chemokine receptors in the migration of NK cells in a murine hepatitis  virus strain 3 (MHV-3)-induced fulminant hepatic failure (MHV-3-FHF) model and its mechanism. RESULTS: By gene array analysis, chemokine (C-C motif) receptor 5 (CCR5) was found to have remarkably elevated expression levels in hepatic NK cells after MHV-3 infection. The number of hepatic CCR5+ conventional NK (cNK) cells increased and peaked at 48 h after MHV-3 infection, while the number of hepatic resident NK (rNK) cells steadily declined. Moreover, the expression of CCR5-related chemokines, including macrophage inflammatory protein (MIP)-1α, MIP-1ß and regulated on activation, normal T-cell expressed and secreted (RANTES) was significantly upregulated in MHV-3-infected hepatocytes. In an in vitro Transwell migration assay, CCR5-blocked splenic cNK cells showed decreased migration towards MHV-3-infected hepatocytes, and inhibition of MIP-1ß or RANTES but not MIP-1α decreased cNK cell migration. Moreover, CCR5 knockout (KO) mice displayed reduced infiltration of hepatic cNK cells after MHV-3 infection, accompanied by attenuated liver injury and improved mouse survival time. Adoptive transfer of cNK cells from wild-type mice into CCR5 KO mice resulted in the abundant accumulation of hepatic cNK cells and aggravated liver injury. Moreover, pharmacological inhibition of CCR5 by maraviroc reduced cNK cell infiltration in the liver and liver injury in the MHV-3-FHF model. CONCLUSION: The CCR5-MIP-1ß/RANTES axis played a critical role in the recruitment of cNK cells to the liver during MHV-3-induced liver injury. Targeted inhibition of CCR5 provides a therapeutic approach to ameliorate liver damage during virus-induced acute liver injury.


Assuntos
Falência Hepática Aguda , Vírus da Hepatite Murina , Animais , Camundongos , Quimiocina CCL3 , Quimiocina CCL4 , Quimiocina CCL5 , Quimiocinas , Quimiocinas CC , Células Matadoras Naturais , Receptores CCR5 , Receptores de Quimiocinas
14.
Exp Neurol ; 370: 114561, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37802382

RESUMO

Intraventricular hemorrhage (IVH) commonly occurs as an extension of intracerebral hemorrhage (ICH) into the brain ventricular system, leading to worse outcomes without effective management. Using a mouse model of IVH, we found that impaired neurogenesis is evident in the subventricular zone (SVZ), along with persistent microglia activation, leukocyte infiltration and cell death. Pharmacological depletion of microglia using PLX3397, an inhibitor of colony stimulating factor 1 receptor (CSF1R), promotes neurogenesis, and alleviated delayed functional impairments in IVH mice. Meanwhile, an elevated level of microglia-derived CC chemokine ligand 20 (CCL20) is observed in the SVZ following IVH, which can induce the upregulation of pro-inflammatory factors in microglia and impair the proliferation and survival of neural stem cells (NSCs) in vitro. Blocking CCL20 in microglia leads to downregulation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/the nuclear factor-κB (NF-κB) signaling pathway, which may contribute to CCL20-dependent pro-inflammatory responses and neural injury. These findings demonstrate a detrimental role of microglia in the neurogenesis and neurorepair after IVH in which CCL20 likely plays a role.


Assuntos
Quimiocinas CC , Microglia , Humanos , Microglia/metabolismo , Quimiocinas CC/metabolismo , Ligantes , Hemorragia Cerebral/metabolismo , Neurogênese/fisiologia , Quimiocina CCL20/metabolismo
15.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762404

RESUMO

Murine cytomegalovirus (MCMV), and, in particular, recombinant virus derived from MCMV-bacmid pSM3fr, is widely used as the small animal infection model for human cytomegalovirus (HCMV). We sequenced the complete genomes of MCMV strains and recombinants for quality control. However, we noticed deviances from the deposited reference sequences of MCMV-bacmid pSM3fr. This prompted us to re-analyze pSM3fr and reannotate the reference sequence, as well as that for the commonly used MCMV-m157luc reporter virus. A correct reference sequence for this frequently used pSM3fr, containing a repaired version of m129 (MCK-2) and the luciferase gene instead of ORF m157, was constructed. The new reference also contains the original bacmid sequence, and it has a hybrid origin from MCMV strains Smith and K181.


Assuntos
Muromegalovirus , Animais , Humanos , Camundongos , Muromegalovirus/genética , Citomegalovirus/genética , Modelos Animais , Controle de Qualidade , Proteínas Virais , Quimiocinas CC
16.
Front Immunol ; 14: 1242531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554323

RESUMO

Immune responses highly depend on the effective trafficking of immune cells into and within secondary lymphoid organs (SLOs). Atypical chemokine receptors (ACKRs) scavenge chemokines to eliminate them from the extracellular space, thereby generating gradients that guide leukocytes. In contrast to canonical chemokine receptors, ACKRs do not induce classical intracellular signaling that results in cell migration. Recently, the closest relative of ACKR3, GPR182, has been partially deorphanized as a potential novel ACKR. We confirm and extend previous studies by identifying further ligands that classify GPR182 as a broadly scavenging chemokine receptor. We validate the "atypical" nature of the receptor, wherein canonical G-protein-dependent intracellular signaling is not activated following ligand stimulation. However, ß-arrestins are required for ligand-independent internalization and chemokine scavenging whereas the C-terminus is in part dispensable. In the absence of GPR182 in vivo, we observed elevated chemokine levels in the serum but also in SLO interstitium. We also reveal that CXCL13 and CCL28, which do not bind any other ACKR, are bound and efficiently scavenged by GPR182. Moreover, we found a cooperative relationship between GPR182 and ACKR3 in regulating serum CXCL12 levels, and between GPR182 and ACKR4 in controlling CCL20 levels. Furthermore, we unveil a new phenotype in GPR182-KO mice, in which we observed a reduced marginal zone (MZ), both in size and in cellularity, and thus in the T-independent antibody response. Taken together, we and others have unveiled a novel, broadly scavenging chemokine receptor, which we propose should be named ACKR5.


Assuntos
Quimiocinas CC , Receptores de Quimiocinas , Transdução de Sinais , Animais , Camundongos , Ligantes , Receptores de Quimiocinas/metabolismo
17.
Front Immunol ; 14: 1164669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545521

RESUMO

Background: Despite encouraging results from immunotherapy combined with targeted therapy for hepatocellular carcinoma (HCC), the prognosis remains poor. Chemokines and their receptors are an essential component in the development of HCC, but their significance in HCC have not yet been fully elucidated. We aimed to establish chemokine-related prognostic signature and investigate the association between the genes and tumor immune microenvironment (TIME). Methods: 342 HCC patients have screened from the TCGA cohort. A prognostic signature was developed using least absolute shrinkage and selection operator regression and Cox proportional risk regression analysis. External validation was performed using the LIHC-JP cohort deployed from the ICGC database. Single-cell RNA sequencing (scRNA-seq) data from the GEO database. Two nomograms were developed to estimate the outcome of HCC patients. RT-qPCR was used to validate the differences in the expression of genes contained in the signature. Results: The prognostic signature containing two chemokines-(CCL14, CCL20) and one chemokine receptor-(CCR3) was successfully established. The HCC patients were stratified into high- and low-risk groups according to their median risk scores. We found that patients in the low-risk group had better outcomes than those in the high-risk group. The results of univariate and multivariate Cox regression analyses suggested that this prognostic signature could be considered an independent risk factor for the outcome of HCC patients. We discovered significant differences in the infiltration of various immune cell subtypes, tumor mutation burden, biological pathways, the expression of immune activation or suppression genes, and the sensitivity of different groups to chemotherapy agents and small molecule-targeted drugs in the high- and low-risk groups. Subsequently, single-cell analysis results showed that the higher expression of CCL20 was associated with HCC metastasis. The RT-qPCR results demonstrated remarkable discrepancies in the expression of CCL14, CCL20, and CCR3 between HCC and its paired adjacent non-tumor tissues. Conclusion: In this study, a novel prognostic biomarker explored in depth the association between the prognostic model and TIME was developed and verified. These results may be applied in the future to improve the efficacy of immunotherapy or targeted therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Quimiocinas CC , Imunoterapia , Fatores de Risco , Microambiente Tumoral/genética
18.
Am J Transplant ; 23(10): 1536-1550, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37394140

RESUMO

The present study aims to elucidate the possible involvement of H19 in primary graft dysfunction (PGD) following lung transplantation (LT) and the underlying mechanism. The transcriptome data were obtained through high-throughput sequencing analysis, and the differential long noncoding RNAs and messenger RNAs were screened for coexpression analysis. The interaction among H19, KLF5 and CCL28 was analyzed. A hypoxia-induced human pulmonary microvascular endothelial cell injury model was established, in which H19 was knocked down to elucidate its effect on the lung function, inflammatory response, and cell apoptosis. An orthotopic left LT model was constructed for in vivo mechanistic validation. High-throughput transcriptome sequencing analysis revealed the involvement of the H19/KLF5/CCL28 signaling axis in PGD. Silencing of H19 reduced inflammatory response and thus improved PGD. CCL28 secreted by human pulmonary microvascular endothelial cells after LT recruited neutrophils and macrophages. Mechanistic investigations indicated that H19 augmented the expression of CCL28 by binding to the transcription factor KLF5. Abundant expression of CCL28 reversed the alleviating effect of H19 silencing on PGD. In conclusion, the results point out that H19 exerts a promoting effect on PGD through increasing KLF5 expression and the subsequent CCL28 expression. Our study provides a novel insight into the mechanism of action of H19.


Assuntos
Transplante de Pulmão , MicroRNAs , Disfunção Primária do Enxerto , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Células Endoteliais/metabolismo , Disfunção Primária do Enxerto/etiologia , Regulação da Expressão Gênica , Transplante de Pulmão/efeitos adversos , MicroRNAs/genética , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
19.
Nat Commun ; 14(1): 4204, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452046

RESUMO

Chemokines are key regulators of leukocyte trafficking and attractive targets for anti-inflammatory therapy. Evasins are chemokine-binding proteins from tick saliva, whose application as anti-inflammatory therapeutics will require manipulation of their chemokine target selectivity. Here we describe subclass A3 evasins, which are unique to the tick genus Amblyomma and distinguished from "classical" class A1 evasins by an additional disulfide bond near the chemokine recognition interface. The A3 evasin EVA-AAM1001 (EVA-A) bound to CC chemokines and inhibited their receptor activation. Unlike A1 evasins, EVA-A was not highly dependent on N- and C-terminal regions to differentiate chemokine targets. Structures of chemokine-bound EVA-A revealed a deep hydrophobic pocket, unique to A3 evasins, that interacts with the residue immediately following the CC motif of the chemokine. Mutations to this pocket altered the chemokine selectivity of EVA-A. Thus, class A3 evasins provide a suitable platform for engineering proteins with applications in research, diagnosis or anti-inflammatory therapy.


Assuntos
Carrapatos , Animais , Carrapatos/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Quimiocinas/metabolismo , Quimiocinas CC/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
20.
Radiat Res ; 200(3): 281-288, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450610

RESUMO

Connexin26 (Cx26) plays an important role in ionizing radiation-induced damage, and CC chemokine ligand 27 (CCL27) regulates the skin immune response. However, the relationship between Cx26 and CCL27 in radiation-induced skin damage is unclear. After X-ray irradiation, clonogenic survival and micronucleus formation were assessed in immortalized human keratinocytes (HaCaT). Proteins in the mitogen activated protein kinase (MAPK) signaling pathway and CCL27-related proteins were detected by immunoblotting. HaCaTCx26-/- cells were constructed to verify the effects of Cx26 on CCL27 secretion. A mouse model was established to examine the expression of CCL27 and skin inflammation in vivo. The degree of skin injury induced by 6 MV of X rays was closely related to CCL27. The phosphorylation of ERK, p38 and NF-κB was significantly increased in irradiated cells. The secretion of CCL27 was significantly decreased in HaCaT wild-type cells relative to HaCaTCx26-/- cells. Whereas cell survival fractions decreased, and the micronuclei formation rate increased as a function of increasing X-ray dose in HaCaT cells, the opposite trend occurred in HaCaTCx26-/- cells. Our findings show that Cx26 likely plays a role in the activation of the MAPK and NF-κB/COX-2 signaling pathways and regulates the secretion of CCL27 in keratinocytes after X-ray radiation-induced skin damage.


Assuntos
Quimiocina CCL27 , Radiodermatite , Animais , Humanos , Camundongos , Quimiocina CCL27/metabolismo , Quimiocina CCL27/farmacologia , Quimiocinas/metabolismo , Quimiocinas CC/metabolismo , Quimiocinas CC/farmacologia , Queratinócitos/metabolismo , Ligantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/farmacologia , NF-kappa B/metabolismo , Radiodermatite/etiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...