Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.594
Filtrar
1.
Nat Commun ; 14(1): 8125, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065934

RESUMO

Peptide hormones and neuropeptides are signaling molecules that control diverse aspects of mammalian homeostasis and physiology. Here we provide evidence for the endogenous presence of a sequence diverse class of blood-borne peptides that we call "capped peptides." Capped peptides are fragments of secreted proteins and defined by the presence of two post-translational modifications - N-terminal pyroglutamylation and C-terminal amidation - which function as chemical "caps" of the intervening sequence. Capped peptides share many regulatory characteristics in common with that of other signaling peptides, including dynamic physiologic regulation. One capped peptide, CAP-TAC1, is a tachykinin neuropeptide-like molecule and a nanomolar agonist of mammalian tachykinin receptors. A second capped peptide, CAP-GDF15, is a 12-mer peptide cleaved from the prepropeptide region of full-length GDF15 that, like the canonical GDF15 hormone, also reduces food intake and body weight. Capped peptides are a potentially large class of signaling molecules with potential to broadly regulate cell-cell communication in mammalian physiology.


Assuntos
Neuropeptídeos , Hormônios Peptídicos , Animais , Neuropeptídeos/metabolismo , Taquicininas/metabolismo , Comunicação Celular , Processamento de Proteína Pós-Traducional , Hormônios Peptídicos/metabolismo , Mamíferos/metabolismo
2.
J Biol Chem ; 299(12): 105438, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944618

RESUMO

The tachykinin receptors neurokinin 1 (NK1R) and neurokinin 2 (NK2R) are G protein-coupled receptors that bind preferentially to the natural peptide ligands substance P and neurokinin A, respectively, and have been targets for drug development. Despite sharing a common C-terminal sequence of Phe-X-Gly-Leu-Met-NH2 that helps direct biological function, the peptide ligands exhibit some degree of cross-reactivity toward each other's non-natural receptor. Here, we investigate the detailed structure-activity relationships of the ligand-bound receptor complexes that underlie both potent activation by the natural ligand and cross-reactivity. We find that the specificity and cross-reactivity of the peptide ligands can be explained by the interactions between the amino acids preceding the FxGLM consensus motif of the bound peptide ligand and two regions of the receptor: the ß-hairpin of the extracellular loop 2 (ECL2) and a N-terminal segment leading into transmembrane helix 1. Positively charged sidechains of the ECL2 (R177 of NK1R and K180 of NK2R) are seen to play a vital role in the interaction. The N-terminal positions 1 to 3 of the peptide ligand are entirely dispensable. Mutated and chimeric receptor and ligand constructs neatly swap around ligand specificity as expected, validating the structure-activity hypotheses presented. These findings will help in developing improved agonists or antagonists for NK1R and NK2R.


Assuntos
Receptores da Neurocinina-1 , Taquicininas , Animais , Humanos , Linhagem Celular , Chlorocebus aethiops , Ligantes , Neurocinina A/metabolismo , Antagonistas dos Receptores de Neurocinina-1 , Receptores da Neurocinina-1/agonistas , Receptores da Neurocinina-1/metabolismo , Substância P , Taquicininas/metabolismo , Receptores da Neurocinina-2/metabolismo
3.
Lancet Microbe ; 4(8): e642-e650, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327802

RESUMO

The most prevalent symptoms of post-COVID-19 condition are pulmonary dysfunction, fatigue and muscle weakness, anxiety, anosmia, dysgeusia, headaches, difficulty in concentrating, sexual dysfunction, and digestive disturbances. Hence, neurological dysfunction and autonomic impairments predominate in post-COVID-19 condition. Tachykinins including the most studied substance P are neuropeptides expressed throughout the nervous and immune systems, and contribute to many physiopathological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems and participate in inflammation, nociception, and cell proliferation. Substance P is a key molecule in neuroimmune crosstalk; immune cells near the peripheral nerve endings can send signals to the brain with cytokines, which highlights the important role of tachykinins in neuroimmune communication. We reviewed the evidence that relates the symptoms of post-COVID-19 condition to the functions of tachykinins and propose a putative pathogenic mechanism. The antagonism of tachykinins receptors can be a potential treatment target.


Assuntos
COVID-19 , Neuropeptídeos , Humanos , Substância P/fisiologia , Taquicininas/fisiologia , Neuropeptídeos/fisiologia , Receptores de Taquicininas
4.
Gene ; 879: 147592, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37356741

RESUMO

Tachykinins belong to a large, evolutionarily conserved family of brain/gut peptides that are involved in a variety of physiological functions in mammals, such as reproductive regulation. However, little information was available about tachykinins in ancient fish lineage. In the present study, we firstly identified three tachykinin genes (named tac1, tac3 and tac4) and three neurokinin receptors (named nk1r, nk2r and nk3r) from Chinese sturgeon brain and pituitary. Sequence analysis showed that tac1 encoded substance P (SP) and neurokinin A (NKA), tac3 encoded neurokinin B (NKB) and NKB-related peptide (NKBRP), and tac4 encoded hemokin 1 (HK-1) and hemokin 2 (HK-2), respectively. The luciferase reporter assay results showed that NK1R preferentially selected asSP, NK2R preferentially selected asNKA, and NK3R preferentially selected asNKB. Tissue expression analysis showed that the three tac genes were highly detected in the telencephalon and hypothalamus, whereas nkr genes were widely expressed in peripheral tissues. Spatio-temporal expression analysis showed that all three tac genes were highly expressed in unknown sex individuals. Intraperitoneal injection experiments showed that both asSP and asNKB could stimulate luteinizing hormone (LH) release in Chinese sturgeon serum. At the transcriptional level, asSP and asNKB could significantly reduce pituitary follicle-stimulating hormone beta (fshß) mRNA expression, but induce pituitary growth hormone (gh) mRNA expression. In addition, estradiol (E2) could stimulate tac3 mRNA expression in hypothalamus. Taken together, this study provided information on the tachykinin family in Chinese sturgeon and demonstrates that asNKB and asSP could be involved in reproductive and growth regulation in pituitary.


Assuntos
Hipófise , Taquicininas , Animais , Taquicininas/genética , Hipófise/metabolismo , Hormônio Luteinizante/metabolismo , Neurocinina B/genética , Neurocinina B/metabolismo , Peixes/genética , Peixes/metabolismo , RNA Mensageiro/metabolismo , Mamíferos/genética
5.
Gen Comp Endocrinol ; 337: 114262, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36925021

RESUMO

Ciona intestinalis Type A (Ciona robusta) is a cosmopolitan species belonging to the phylum Urochordata, invertebrate chordates that are phylogenetically the most closely related to the vertebrates. Therefore, this species is of interest for investigation of the evolution and comparative physiology of endocrine, neuroendocrine, and nervous systems in chordates. Our group has identified>30 Ciona neuropeptides (80% of all identified ascidian neuropeptides) primarily using peptidomic approaches combined with reference to genome sequences. These neuropeptides are classified into two groups: homologs or prototypes of vertebrate neuropeptides and novel (Ciona-specific) neuropeptides. We have also identified the cognate receptors for these peptides. In particular, we elucidated multiple receptors for Ciona-specific neuropeptides by a combination of a novel machine learning system and experimental validation of the specific interaction of the predicted neuropeptide-receptor pairs, and verified unprecedented phylogenies of receptors for neuropeptides. Moreover, several neuropeptides were found to play major roles in the regulation of ovarian follicle development. Ciona tachykinin facilitates the growth of vitellogenic follicles via up-regulation of the enzymatic activities of proteases. Ciona vasopressin stimulates oocyte maturation and ovulation via up-regulation of maturation-promoting factor- and matrix metalloproteinase-directed collagen degradation, respectively. Ciona cholecystokinin also triggers ovulation via up-regulation of receptor tyrosine kinase signaling and the subsequent activation of matrix metalloproteinase. These studies revealed that the neuropeptidergic system plays major roles in ovarian follicle growth, maturation, and ovulation in Ciona, thus paving the way for investigation of the biological roles for neuropeptides in the endocrine, neuroendocrine, nervous systems of Ciona, and studies of the evolutionary processes of various neuropeptidergic systems in chordates.


Assuntos
Ciona intestinalis , Neuropeptídeos , Animais , Feminino , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Vertebrados/genética , Receptores de Neuropeptídeos/metabolismo , Taquicininas/metabolismo
6.
J Neurosci ; 43(19): 3394-3420, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977580

RESUMO

Neuropeptides influence animal behaviors through complex molecular and cellular mechanisms, the physiological and behavioral effects of which are difficult to predict solely from synaptic connectivity. Many neuropeptides can activate multiple receptors, whose ligand affinity and downstream signaling cascades are often different from one another. Although we know that the diverse pharmacological characteristics of neuropeptide receptors form the basis of unique neuromodulatory effects on distinct downstream cells, it remains unclear exactly how different receptors shape the downstream activity patterns triggered by a single neuronal neuropeptide source. Here, we uncovered two separate downstream targets that are differentially modulated by tachykinin, an aggression-promoting neuropeptide in Drosophila Tachykinin from a single male-specific neuronal type recruits two separate downstream groups of neurons. One downstream group, synaptically connected to the tachykinergic neurons, expresses the receptor TkR86C and is necessary for aggression. Here, tachykinin supports cholinergic excitatory synaptic transmission between the tachykinergic and TkR86C downstream neurons. The other downstream group expresses the TkR99D receptor and is recruited primarily when tachykinin is overexpressed in the source neurons. Differential activity patterns in the two groups of downstream neurons correlate with levels of male aggression triggered by the tachykininergic neurons. These findings highlight how the amount of neuropeptide released from a small number of neurons can reshape the activity patterns of multiple downstream neuronal populations. Our results lay the foundation for further investigations into the neurophysiological mechanism by which a neuropeptide controls complex behaviors.SIGNIFICANCE STATEMENT Neuropeptides control a variety of innate behaviors, including social behaviors, in both animals and humans. Unlike fast-acting neurotransmitters, neuropeptides can elicit distinct physiological responses in different downstream neurons. How such diverse physiological effects coordinate complex social interactions remains unknown. This study uncovers the first in vivo example of a neuropeptisde from a single neuronal source eliciting distinct physiological responses in multiple downstream neurons that express different neuropeptide receptors. Understanding the unique motif of neuropeptidergic modulation, which may not be easily predicted from a synaptic connectivity map, can help elucidate how neuropeptides orchestrate complex behaviors by modulating multiple target neurons simultaneously.


Assuntos
Drosophila , Neuropeptídeos , Animais , Humanos , Masculino , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Taquicininas , Receptores de Neuropeptídeos , Agressão
7.
Neuroscience ; 517: 105-116, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898496

RESUMO

Many threats activate parabrachial neurons expressing calcitonin gene-related peptide (CGRPPBN) which transmit alarm signals to forebrain regions. Most CGRPPBN neurons also express tachykinin 1 (Tac1), but there are also Tac1-expressing neurons in the PBN that do not express CGRP (Tac1+;CGRP- neurons). Chemogenetic or optogenetic activation of all Tac1PBN neurons in mice elicited many physiological/behavioral responses resembling the activation of CGRPPBN neurons, e.g., anorexia, jumping on a hot plate, avoidance of photostimulation; however, two key responses opposed activation of CGRPPBN neurons. Activating Tac1PBN neurons did not produce conditioned taste aversion and it elicited dynamic escape behaviors rather than freezing. Activating Tac1+;CGRP- neurons, using an intersectional genetic targeting approach, resembles activating all Tac1PBN neurons. These results reveal that activation of Tac1+;CGRP- neurons can suppress some functions attributed to the CGRPPBN neurons, which provides a mechanism to bias behavioral responses to threats.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Núcleos Parabraquiais , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Núcleos Parabraquiais/fisiologia , Comportamento Alimentar , Neurônios/metabolismo , Taquicininas
8.
J Med Chem ; 66(10): 6617-6630, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36893465

RESUMO

Wound healing is a complex process that can be delayed in some pathological conditions, such as infection and diabetes. Following skin injury, the neuropeptide substance P (SP) is released from peripheral neurons to promote wound healing by multiple mechanisms. Human hemokinin-1 (hHK-1) has been identified as an SP-like tachykinin peptide. Surprisingly, hHK-1 shares similar structural features with antimicrobial peptides (AMPs), but it does not display efficient antimicrobial activity. Therefore, a series of hHK-1 analogues were designed and synthesized. Among these analogues, AH-4 was found to display the greatest antimicrobial activity against a broad spectrum of bacteria. Furthermore, AH-4 rapidly killed bacteria by membrane disruption, similar to most AMPs. More importantly, AH-4 showed favorable healing activity in all tested mouse full-thickness excisional wound models. Overall, this study suggests that the neuropeptide hHK-1 can be used as a desirable template for developing promising therapeutics with multiple functions for wound healing.


Assuntos
Anti-Infecciosos , Neuropeptídeos , Humanos , Animais , Camundongos , Taquicininas/farmacologia , Neuropeptídeos/farmacologia , Peptídeos Antimicrobianos , Modelos Animais de Doenças , Cicatrização
9.
Dev Comp Immunol ; 142: 104669, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36791872

RESUMO

Tachykinin-related peptides (TRPs) are one of the most prominent families of neuropeptides in the animal kingdom. Insect TRPs display strong structural and functional homology to vertebrate tachykinins (TKs). To study functional homologies between these two neuropeptide families, the influence of human substance P (SP, one of the essential vertebrate TKs) on the immune system of the mealworm beetle, Tenebrio molitor L., was analysed. Human SP influences the phagocytic abilities of T. molitor haemocytes. Peptide injection leads to an increase in the number of haemocytes participating in the phagocytosis of latex beads. In contrast, incubation of haemocytes from non-injected beetles in a solution of physiological saline and SP causes a decrease in phagocytic activity. Treatment with human SP also led to increased adhesion of haemocytes, but no changes in the arrangement of the F-actin cytoskeleton were observed. Interestingly, 6 h after human SP injection, increased DNA integrity in T. molitor haemocytes was reported. The opposite effects were observed 24 h after SP injection. Human SP caused the upregulation of humoral immune responses, such as phenoloxidase (PO) activity in the T. molitor haemolymph, and the downregulation of immune-related genes encoding coleoptericin A, tenecin 3 and Toll receptor. However, genes encoding attacin 2 and cecropin were upregulated. Despite these differences, the antimicrobial activity of T. molitor haemolymph was significantly lower in beetles injected with SP than in control beetles. Moreover, an analysis of the direct influence of SP on lysozyme activity was performed. Our results suggest that SP at a concentration of 10-6 M can directly inhibit lysozyme activity. However, an opposite effect was reported after the application of SP at a concentration of 10-4 M. The presented results suggest structural and functional homology between TK signalling in vertebrates and insects. Primarily, this was visible in the context of the humoral response and general antimicrobial activity of T. molitor haemolymph. However, some of the results related to haemocyte function may also indicate the importance of the TK and TRP sequences for evoking immunological effects.


Assuntos
Anti-Infecciosos , Besouros , Neuropeptídeos , Tenebrio , Humanos , Animais , Substância P , Muramidase , Taquicininas , Sistema Imunitário
10.
Reprod Sci ; 30(1): 258-269, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35739351

RESUMO

Neurokinin B (NKB) and its cognate receptor, NK3R, play a key role in the regulation of reproduction. NKB belongs to the family of tachykinins, which also includes substance P and neurokinin A, both encoded by the by the gene TAC1, and hemokinin-1, encoded by the TAC4 gene. In addition to NK3R, tachykinin effects are mediated by NK1R and NK2R, encoded by the genes TACR1 and TACR2, respectively. The role of these other tachykinins and receptors in the regulation of women infertility is mainly unknown. We have analyzed the expression profile of TAC1, TAC4, TACR1, and TACR2 in mural granulosa and cumulus cells from women presenting different infertility etiologies, including polycystic ovarian syndrome, advanced maternal age, low ovarian response, and endometriosis. We also studied the expression of MME, the gene encoding neprilysin, the most important enzyme involved in tachykinin degradation. Our data show that TAC1, TAC4, TACR1, TACR2, and MME expression is dysregulated in a different manner depending on the etiology of women infertility. The abnormal expression of these tachykinins and their receptors might be involved in the decreased fertility of these patients, offering a new insight regarding the diagnosis and treatment of women infertility.


Assuntos
Células da Granulosa , Infertilidade Feminina , Taquicininas , Feminino , Humanos , Células da Granulosa/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Neprilisina , Receptores da Neurocinina-1/metabolismo , Substância P/metabolismo , Taquicininas/genética , Taquicininas/metabolismo
11.
Gastroenterology ; 164(4): 642-654, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36581089

RESUMO

BACKGROUND & AIMS: Although there have been multiple drugs tested in gastroparesis, their relative efficacy and safety are unknown. We evaluated this in a network meta-analysis of randomized controlled trials (RCTs). METHODS: We searched the literature to September 7, 2022. We judged the efficacy of drugs based on global symptoms of gastroparesis; individual symptoms, including nausea, vomiting, abdominal pain, bloating, or fullness; and safety according to total adverse events and adverse events leading to withdrawal. We extracted data as intention-to-treat analyses, assuming dropouts to be treatment failures and reporting pooled relative risks (RRs) of not improving with 95% confidence intervals (CIs), ranking drugs according to P-score. RESULTS: We identified 29 RCTs (3772 patients). Based on global symptoms, clebopride ranked first for efficacy (RR, 0.30; 95% CI, 0.16-0.57; P-score = .99) followed by domperidone (RR, 0.68; 95% CI, 0.48-0.98; P-score = .76). No other drug was superior to placebo. Only 2 drug classes were efficacious: in rank order, oral dopamine antagonists (RR, 0.58; 95% CI, 0.44-0.77; P-score = .96) and tachykinin-1 antagonists (RR, 0.69; 95% CI, 0.52-0.93; P-score = .83). For individual symptoms, oral metoclopramide ranked first for nausea (RR 0.46; 95% CI, 0.21-1.00; P-score = .95), fullness (RR 0.67; 95% CI, 0.35-1.28; P-score = .86), and bloating (RR 0.53; 95% CI, 0.30-0.93; P-score = .97), based on only 1 small trial. Only prucalopride was more likely to be associated with adverse events than placebo. CONCLUSIONS: In a network meta-analysis, oral dopamine antagonists and tachykinin-1 antagonists were more efficacious than placebo for gastroparesis, but confidence in the evidence was low to moderate for most comparisons. There is an unmet need for efficacious therapies for gastroparesis.


Assuntos
Gastroparesia , Humanos , Gastroparesia/tratamento farmacológico , Metanálise em Rede , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Antagonistas de Dopamina/uso terapêutico , Taquicininas/uso terapêutico
12.
Neuropeptides ; 97: 102300, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36370658

RESUMO

BACKGROUND AND AIMS: The contractile effects of tachykinins on the gastrointestinal tract are well-known, but how they modulate slow-waves, particularly in species capable of emesis, remains largely unknown. We aimed to elucidate the effects of tachykinins on myoelectric and contractile activity of isolated gastrointestinal tissues of the Suncus murinus. METHODS: The effects of substance P (SP), neurokinin (NK)A, NKB and selective NK1 (CP122,721, CP99,994), NK2 (SR48,968, GR159,897) and NK3 (SB218,795, SB222,200) receptor antagonists on isolated stomach, duodenum, ileum and colon segments were studied. Mechanical contractile activity was recorded using isometric force displacement transducers. Electrical pacemaker activity was recorded using a microelectrode array. RESULTS: Compared with NKA, SP induced larger contractions in stomach tissue and smaller contractions in intestinal segments, where oscillation magnitudes increased in intestinal segments, but not the stomach. CP122,721 and GR159,897 inhibited electrical field stimulation-induced contractions of the stomach, ileum and colon. NKB and NK3 had minor effects on contractile activity. The inhibitory potencies of SP and NKA on the peristaltic frequency of the colon and ileum, respectively, were correlated with those on electrical pacemaker frequency. SP, NKA and NKB inhibited pacemaker activity of the duodenum and ileum, but increased that of the stomach and colon. SP elicited a dose-dependent contradictive pacemaker frequency response in the colon. CONCLUSION: This study revealed distinct effects of tachykinins on the mechanical and electrical properties of the stomach and colon vs. the proximal intestine, providing a unique aspect on neuromuscular correlation in terms of the effects of tachykinin on peristaltic and pacemaker activity in gastrointestinal-related symptoms.


Assuntos
Eméticos , Musaranhos , Animais , Eméticos/farmacologia , Taquicininas/farmacologia , Íleo , Substância P/farmacologia , Neurocinina A , Estômago , Duodeno , Colo , Músculo Liso , Contração Muscular/fisiologia , Receptores da Neurocinina-2
13.
Insect Biochem Mol Biol ; 150: 103858, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244651

RESUMO

The regulatory hormones known as tachykinin-related peptides (TRPs) are identified as brain-gut peptides in insects. Dietary components from mulberry leaves, including glucose, induce secretion of TRPs from Bombyx mori midgut. However, the sensory molecules that recognize these compounds are still unknown. Here, we identified the gustatory receptor, BmGr4, as a sucrose and glucose receptor using Ca2+ imaging. Immunostaining revealed BmGr4 expression not only in the midgut, but also in the brain. In addition, BmGr4 expression was found to co-localize with TRP-expressing cells in both midgut enteroendocrine cells (EECs) and brain neurosecretory cells (NSCs). Furthermore, dietary nutrients after food intake result in an increase of TRP-level in hemolymph of silkworm larvae. These results provide significant circumstantial evidence for the involvement of the sucrose and glucose receptor, BmGr4, in the elicitation of TRP secretion in midgut EECs and brain NSCs.


Assuntos
Bombyx , Glucose , Animais , Glucose/metabolismo , Sacarose/farmacologia , Sacarose/metabolismo , Bombyx/metabolismo , Taquicininas/metabolismo , Células Enteroendócrinas/metabolismo , Larva/metabolismo
14.
Sci Rep ; 12(1): 17277, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241888

RESUMO

Tachykinins (TKs) are a group of conserved neuropeptides. In insects, tachykinin-related peptides (TRPs) are important modulators of several functions such as nociception and lipid metabolism. Recently, it has become clear that TRPs also play a role in regulating the insect immune system. Here, we report a transcriptomic analysis of changes in the expression levels of immune-related genes in the storage pest Tenebrio molitor after treatment with Tenmo-TRP-7. We tested two concentrations (10-8 and 10-6 M) at two time points, 6 and 24 h post-injection. We found significant changes in the transcript levels of a wide spectrum of immune-related genes. Some changes were observed 6 h after the injection of Tenmo-TRP-7, especially in relation to its putative anti-apoptotic action. Interestingly, 24 h after the injection of 10-8 M Tenmo-TRP-7, most changes were related to the regulation of the cellular response. Applying 10-6 M Tenmo-TRP-7 resulted in the downregulation of genes associated with humoral responses. Injecting Tenmo-TRP-7 did not affect beetle survival but led to a reduction in haemolymph lysozyme-like antibacterial activity, consistent with the transcriptomic data. The results confirmed the immunomodulatory role of TRP and shed new light on the functional homology between TRPs and TKs.


Assuntos
Besouros , Neuropeptídeos , Tenebrio , Animais , Antibacterianos/metabolismo , Besouros/fisiologia , Expressão Gênica , Muramidase/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Taquicininas/genética , Tenebrio/metabolismo
15.
Front Endocrinol (Lausanne) ; 13: 994863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187101

RESUMO

Tachykinin (TK) families, including the first neuropeptide substance P, have been intensively explored in bilaterians. Knowledge of signaling of TK receptors (TKRs) has enabled the comprehension of diverse physiological processes. However, TK signaling systems are largely unknown in Lophotrochozoa. This study identified two TK precursors and two TKR isoforms in the Pacific abalone Haliotis discus hannai (Hdh), and characterized Hdh-TK signaling. Hdh-TK peptides harbored protostomian TK-specific FXGXRamide or unique YXGXRamide motifs at the C-termini. A phylogenetic analysis showed that lophotrochozoan TKRs, including Hdh-TKRs, form a monophyletic group distinct from arthropod TKRs and natalisin receptor groups. Although reporter assays demonstrated that all examined Hdh-TK peptides activate intracellular cAMP accumulation and Ca2+ mobilization in Hdh-TKR-expressing mammalian cells, Hdh-TK peptides with N-terminal aromatic residues and C-terminal FXGXRamide motifs were more active than shorter or less aromatic Hdh-TK peptides with a C-terminal YXGXRamide. In addition, we showed that ligand-stimulated Hdh-TKRs mediate ERK1/2 phosphorylation in HEK293 cells and that ERK1/2 phosphorylation is inhibited by PKA and PKC inhibitors. In three-dimensional in silico Hdh-TKR binding modeling, higher docking scores of Hdh-TK peptides were consistent with the lower EC50 values in the reporter assays. The transcripts for Hdh-TK precursors and Hdh-TKR were highly expressed in the neural ganglia, with lower expression levels in peripheral tissues. When abalone were starved for 3 weeks, Hdh-TK1 transcript levels, but not Hdh-TK2, were increased in the cerebral ganglia (CG), intestine, and hepatopancreas, contrasting with the decreased lipid content and transcript levels of sterol regulatory element-binding protein (SREBP). At 24 h post-injection in vivo, the lower dose of Hdh-TK1 mixture increased SREBP transcript levels in the CG and hepatopancreas and accumulative food consumption of abalone. Higher doses of Hdh-TK1 and Hdh-TK2 mixtures decreased the SREBP levels in the CG. When Hdh-TK2-specific siRNA was injected into abalone, intestinal SREBP levels were significantly increased, whereas administration of both Hdh-TK1 and Hdh-TK2 siRNA led to decreased SREBP expression in the CG. Collectively, our results demonstrate the first TK signaling system in gastropod mollusks and suggest a possible role for TK peptides in regulating lipid metabolism in the neural and peripheral tissues of abalone.


Assuntos
Gastrópodes , Neuropeptídeos , Animais , Gastrópodes/química , Gastrópodes/genética , Gastrópodes/metabolismo , Células HEK293 , Humanos , Ligantes , Metabolismo dos Lipídeos , Lipídeos , Mamíferos/genética , Moluscos/genética , Moluscos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Filogenia , RNA Interferente Pequeno , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Esteróis/metabolismo , Substância P/metabolismo , Taquicininas/metabolismo
16.
J Am Chem Soc ; 144(32): 14614-14626, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35917596

RESUMO

Amyloid ß (Aß) protein is responsible for Alzheimer's disease, and one of its important fragments, Aß(25-35), is found in the brain and has been shown to be neurotoxic. Tachykinin neuropeptides, including Neuromedin K (NK), Kassinin, and Substance P, have been reported to reduce Aß(25-35)'s toxicity in cells even though they share similar primary structures with Aß(25-35). Here, we seek to understand the molecular mechanisms of how these peptides interact with Aß(25-35) and to shed light on why some peptides with similar primary structures are toxic and others nontoxic. We use both experimental and computational methods, including ion mobility mass spectrometry and enhanced-sampling replica-exchange molecular dynamics simulations, to study the aggregation pathways of Aß(25-35), NK, Kassinin, Substance P, and mixtures of the latter three with Aß(25-35). NK and Substance P were observed to remove the higher-order oligomers (i.e., hexamers and dodecamers) of Aß(25-35), which are related to its toxicity, although Substance P did so more slowly. In contrast, Kassinin was found to promote the formation of these higher-order oligomers. This result conflicts with what is expected and is elaborated on in the text. We also observe that even though they have significant structural homology with Aß(25-35), NK, Kassinin, and Substance P do not form hexamers with a ß-sheet structure like Aß(25-35). The hexamer structure of Aß(25-35) has been identified as a cylindrin, and this structure has been strongly correlated to toxic species. The reasons why the three tachykinin peptides behave so differently when mixed with Aß(25-35) are discussed.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Taquicininas , Doença de Alzheimer/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/química , Humanos , Cassinina/química , Fragmentos de Peptídeos/química , Substância P/química , Taquicininas/química
17.
Br J Pharmacol ; 179(20): 4878-4896, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35818835

RESUMO

BACKGROUND AND PURPOSE: Over past decades, targeted therapies and immunotherapy have improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF-melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH: We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS: Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. A truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumours in xenograft melanoma mice and zebrafish. CONCLUSION AND IMPLICATIONS: We unravel the intrinsic anti-tumoural properties of a tachykinin peptide. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in vitro and prevents tumour progression in vivo, providing a foundation for a therapy against melanoma.


Assuntos
Antineoplásicos , Melanoma , Trifosfato de Adenosina , Animais , Antineoplásicos/farmacologia , Cálcio , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Mutação , Octopodiformes/química , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , RNA Mensageiro , Espécies Reativas de Oxigênio , Taquicininas/genética , Taquicininas/uso terapêutico , Peixe-Zebra/genética
18.
Proc Natl Acad Sci U S A ; 119(24): e2114309119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675424

RESUMO

Viruses transmitted by Aedes mosquitoes are an increasingly important global cause of disease. Defining common determinants of host susceptibility to this large group of heterogenous pathogens is key for informing the rational design of panviral medicines. Infection of the vertebrate host with these viruses is enhanced by mosquito saliva, a complex mixture of salivary-gland-derived factors and microbiota. We show that the enhancement of infection by saliva was dependent on vascular function and was independent of most antisaliva immune responses, including salivary microbiota. Instead, the Aedes gene product sialokinin mediated the enhancement of virus infection through a rapid reduction in endothelial barrier integrity. Sialokinin is unique within the insect world as having a vertebrate-like tachykinin sequence and is absent from Anopheles mosquitoes, which are incompetent for most arthropod-borne viruses, whose saliva was not proviral and did not induce similar vascular permeability. Therapeutic strategies targeting sialokinin have the potential to limit disease severity following infection with Aedes-mosquito-borne viruses.


Assuntos
Aedes , Infecções por Arbovirus , Arbovírus , Saliva , Taquicininas , Viroses , Aedes/genética , Aedes/virologia , Animais , Infecções por Arbovirus/transmissão , Arbovírus/genética , Arbovírus/metabolismo , Saliva/virologia , Taquicininas/genética , Taquicininas/metabolismo , Viroses/transmissão
19.
Reprod Biol Endocrinol ; 20(1): 91, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729637

RESUMO

BACKGROUND: Kisspeptin released from Kiss-1 neurons in the hypothalamus plays an essential role in the control of the hypothalamic-pituitary-gonadal axis by regulating the release of gonadotropin-releasing hormone (GnRH). In this study, we examined how androgen supplementation affects the characteristics of Kiss-1 neurons. METHODS: We used a Kiss-1-expressing mHypoA-55 cell model that originated from the arcuate nucleus (ARC) of the mouse hypothalamus. These cells are KNDy neurons that co-express neurokinin B (NKB) and dynorphin A (DynA). We stimulated these cells with androgens and examined them. We also examined the ARC region of the hypothalamus in ovary-intact female rats after supplementation with androgens. RESULTS: Stimulation of mHypoA-55 cells with 100 nM testosterone significantly increased Kiss-1 gene expression by 3.20 ± 0.44-fold; testosterone also increased kisspeptin protein expression. The expression of Tac3, the gene encoding NKB, was also increased by 2.69 ± 0.64-fold following stimulation of mHypoA-55 cells with 100 nM testosterone. DynA gene expression in these cells was unchanged by testosterone stimulation, but it was significantly reduced at the protein level. Dihydrotestosterone (DHT) had a similar effect to testosterone in mHypoA-55 cells; kisspeptin and NKB protein expression was significantly increased by DHT, whereas it significantly reduced DynA expression. In ovary-intact female rats, DTH administration significantly increased the gene expression of Kiss-1 and Tac3, but not DynA, in the arcuate nucleus. Exogenous NKB and DynA stimulation failed to modulate Kiss-1 gene expression in mHypoA-55 cells. Unlike androgen stimulation, prolactin stimulation did not modulate kisspeptin, NKB, or DynA protein expression in these cells. CONCLUSIONS: Our observations imply that hyperandrogenemia affects KNDy neurons and changes their neuronal characteristics by increasing kisspeptin and NKB levels and decreasing DynA levels. These changes might cause dysfunction of the hypothalamic-pituitary-gonadal axis.


Assuntos
Dinorfinas , Hiperandrogenismo , Androgênios/metabolismo , Animais , Dinorfinas/genética , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Hiperandrogenismo/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos , Neurocinina B/genética , Neurocinina B/metabolismo , Neurocinina B/farmacologia , Neurônios/metabolismo , Ratos , Taquicininas , Testosterona/metabolismo , Testosterona/farmacologia
20.
Mol Cell Endocrinol ; 551: 111654, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469849

RESUMO

The mechanisms regulating puberty still remain elusive, as do the underlying causes for sex differences in puberty onset (girls before boys) and pubertal disorders. Neuroendocrine puberty onset is signified by increased pulsatile GnRH secretion, yet how and when various upstream reproductive neural circuits change developmentally to govern this process is poorly understood. We previously reported day-by-day peri-pubertal increases (Kiss1, Tac2) or decreases (Rfrp) in hypothalamic gene expression of female mice, with several brain mRNA changes preceding external pubertal markers. However, similar pubertal measures in males were not previously reported. Here, to identify possible neural sex differences underlying sex differences in puberty onset, we analyzed peri-pubertal males and directly compared them with female littermates. Kiss1 expression in male mice increased over the peri-pubertal period in both the AVPV and ARC nuclei but with lower levels than in females at several ages. Likewise, Tac2 expression in the male ARC increased between juvenile and older peri-pubertal stages but with levels lower than females at most ages. By contrast, both DMN Rfrp expressionand Rfrp neuronal activation strongly decreased in males between juvenile and peri-pubertal stages, but with similar levels as females. Neither ARC KNDy neuronal activation nor Kiss1r expression in GnRH neurons differed between males and females or changed with age. These findings delineate several peri-pubertal changes in neural populations in developing males, with notable sex differences in kisspeptin and NKB neuron developmental patterns. Whether these peri-pubertal hypothalamic sex differences underlie sex differences in puberty onset deserves future investigation.


Assuntos
Kisspeptinas , Taquicininas , Animais , Feminino , Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/biossíntese , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , Puberdade/genética , Caracteres Sexuais , Maturidade Sexual/genética , Taquicininas/biossíntese , Taquicininas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...