Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.192
Filtrar
2.
Cells ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38607003

RESUMO

Originally identified in Drosophila melanogaster in 1995, the Hippo signaling pathway plays a pivotal role in organ size control and tumor suppression by inhibiting proliferation and promoting apoptosis. Large tumor suppressors 1 and 2 (LATS1/2) directly phosphorylate the Yki orthologs YAP (yes-associated protein) and its paralog TAZ (also known as WW domain-containing transcription regulator 1 [WWTR1]), thereby inhibiting their nuclear localization and pairing with transcriptional coactivators TEAD1-4. Earnest efforts from many research laboratories have established the role of mis-regulated Hippo signaling in tumorigenesis, epithelial mesenchymal transition (EMT), oncogenic stemness, and, more recently, development of drug resistances. Hippo signaling components at the heart of oncogenic adaptations fuel the development of drug resistance in many cancers for targeted therapies including KRAS and EGFR mutants. The first U.S. food and drug administration (US FDA) approval of the imatinib tyrosine kinase inhibitor in 2001 paved the way for nearly 100 small-molecule anti-cancer drugs approved by the US FDA and the national medical products administration (NMPA). However, the low response rate and development of drug resistance have posed a major hurdle to improving the progression-free survival (PFS) and overall survival (OS) of cancer patients. Accumulating evidence has enabled scientists and clinicians to strategize the therapeutic approaches of targeting cancer cells and to navigate the development of drug resistance through the continuous monitoring of tumor evolution and oncogenic adaptations. In this review, we highlight the emerging aspects of Hippo signaling in cross-talk with other oncogenic drivers and how this information can be translated into combination therapy to target a broad range of aggressive tumors and the development of drug resistance.


Assuntos
Via de Sinalização Hippo , Neoplasias , Estados Unidos , Animais , Humanos , Drosophila melanogaster/metabolismo , Transativadores/metabolismo , Proteínas de Sinalização YAP , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Resistência a Medicamentos
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 541-552, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597446

RESUMO

OBJECTIVE: To investigate the role of JAK1/STAT3/KHSRP axis in mediating the regulatory effect of LINC00626 on progression of esophagogastric junction adenocarcinoma. METHODS: We collected surgical tumor and adjacent tissue specimens from 64 patients with esophagogastric junction adenocarcinoma and examined the expression levels of LINC00626 and KHSRP. qRT-PCR was used to detect the expressions of LINC00626 and KHSRP in 6 esophageal adenocarcinoma cell lines (OE-19, TE-7, Bic-1, Flo-1, SK-GT-4, and BE-3) and a normal esophageal epithelial cell line (HET-1A). OE-19 and TE-7 cell lines with stable LINC00626 knockdown and FLO-1 and SK-GT-4 cells stably overexpressing LINC00626 were constructed by lentiviral transfection, and the changes in proliferation, migration and invasion of the cells were evaluated using Cell Counting Kit-8 (CCK-8) assay and Transwell migration/invasion assay. The expressions of KHSRP and JAK/STAT pathway proteins in the transfected cells were detected with Western blotting. The effects of LINC006266 knockdown and overexpression on subcutaneous tumor formation and lung metastasis of OE-19 and FLO-1 cell xenografts were tested in nude mice. RESULTS: The expression levels of LINC00626 and KHSRP were significantly increased in esophagogastric junction adenocarcinoma tissues and in esophageal adenocarcinoma cells. LINC00626 knockdown obviously inhibited the proliferation, migration and invasion of esophageal adenocarcinoma cells in vitro and decreased their tumor formation and lung metastasis abilities in nude mice, while overexpression of LINC00626 produced the opposite effects. In esophageal adenocarcinoma cells, LINC0626 knockdown significantly decreased and LINC00626 overexpression strongly enhanced the phosphorylation of JAK1 and STAT3. CONCLUSION: High LINC00626 expression promotes esophageal-gastric junction adenocarcinoma metastasis by activating the JAK1/STAT3/KHSRP signal axis.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Janus Quinase 1 , Neoplasias Pulmonares , Proteínas de Ligação a RNA , Animais , Camundongos , Humanos , Camundongos Nus , Janus Quinases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Adenocarcinoma/metabolismo , Neoplasias Pulmonares/metabolismo , Junção Esofagogástrica/metabolismo , Junção Esofagogástrica/patologia , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição STAT3/metabolismo , Transativadores
4.
Nat Commun ; 15(1): 3040, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589445

RESUMO

RfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an α-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a ß-barrel, which binds the ribosome. Here, we report structures of ops-paused transcription elongation complexes alone and bound to the autoinhibited and activated RfaH, which reveal swiveled, pre-translocated pause states stabilized by an ops hairpin in the non-template DNA. Autoinhibited RfaH binds and twists the ops hairpin, expanding the RNA:DNA hybrid to 11 base pairs and triggering the KOW release. Once activated, RfaH hyper-stabilizes the pause, which thus requires anti-backtracking factors for escape. Our results suggest that the entire RfaH cycle is solely determined by the ops and RfaH sequences and provide insights into mechanisms of recruitment and metamorphosis of NusG homologs across all life.


Assuntos
Proteínas de Escherichia coli , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transativadores/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , DNA
5.
Methods Mol Biol ; 2795: 183-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594539

RESUMO

Phytochromes are red (R) and far-red (FR) light photoreceptors in plants. Upon light exposure, photoactivated phytochromes translocate into the nucleus, where they interact with their partner proteins to transduce light signals. The yeast two-hybrid (Y2H) system is a powerful technique for rapidly identifying and verifying protein-protein interactions, and PHYTOCHROME-INTERACTING FACTOR3 (PIF3), the founding member of the PIF proteins, was initially identified in a Y2H screen for phytochrome B (phyB)-interacting proteins. Recently, we developed a yeast three-hybrid (Y3H) system by introducing an additional vector into this Y2H system, and thus a new regulator could be co-expressed and its role in modulating the interactions between phytochromes and their signaling partners could be examined. By employing this Y3H system, we recently showed that both MYB30 and CBF1, two negative regulators of seedlings photomorphogenesis, act to inhibit the interactions between phyB and PIF4/PIF5. In this chapter, we will use the CBF1-phyB-PIF4 module as an example and describe the detailed procedure for performing this Y3H assay. It will be intriguing and exciting to explore the potential usage of this Y3H system in future research.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fitocromo , Proteínas de Saccharomyces cerevisiae , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transativadores/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Cell Commun Signal ; 22(1): 211, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566191

RESUMO

The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transativadores , Animais , Humanos , Camundongos , Doxorrubicina , Proteína p300 Associada a E1A , Interleucina-3 , Subunidade alfa de Receptor de Interleucina-3 , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transativadores/metabolismo
7.
Genome Biol ; 25(1): 87, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581061

RESUMO

BACKGROUND: DNA methylation is an essential epigenetic modification. However, its contribution to trait changes and diversity in the domestication of perennial fruit trees remains unknown. RESULTS: Here, we investigate the variation in DNA methylation during pear domestication and improvement using whole-genome bisulfite sequencing in 41 pear accessions. Contrary to the significant decrease during rice domestication, we detect a global increase in DNA methylation during pear domestication and improvement. We find this specific increase in pear is significantly correlated with the downregulation of Demeter-like1 (DML1, encoding DNA demethylase) due to human selection. We identify a total of 5591 differentially methylated regions (DMRs). Methylation in the CG and CHG contexts undergoes co-evolution during pear domestication and improvement. DMRs have higher genetic diversity than selection sweep regions, especially in the introns. Approximately 97% of DMRs are not associated with any SNPs, and these DMRs are associated with starch and sucrose metabolism and phenylpropanoid biosynthesis. We also perform correlation analysis between DNA methylation and gene expression. We find genes close to the hypermethylated DMRs that are significantly associated with fruit ripening. We further verify the function of a hyper-DMR-associated gene, CAMTA2, and demonstrate that overexpression of CAMTA2 in tomato and pear callus inhibits fruit ripening. CONCLUSIONS: Our study describes a specific pattern of DNA methylation in the domestication and improvement of a perennial pear tree and suggests that increased DNA methylation plays an essential role in the early ripening of pear fruits.


Assuntos
Metilação de DNA , Pyrus , Humanos , Frutas/genética , Frutas/metabolismo , Pyrus/genética , Domesticação , Epigênese Genética , Proteínas de Ligação ao Cálcio/genética , Transativadores/genética
8.
Biol Direct ; 19(1): 19, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429756

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal cancer. Current therapeutic effect is far from satisfaction. Hence, identifying susceptible genes and potential targets is necessary for therapy of ESCC patients. METHODS: Plant homeodomain (PHD)-finger domain protein 5 A (PHF5A) expression in ESCC tissues was examined by immunohistochemistry. RNA interference was used for in vitro loss-of-function experiments. In vivo assay was performed using xenograft mice model by subcutaneous injection. Besides, microarray assay and co-immunoprecipitation experiments were used to study the potential downstream molecules of PHF5A in ESCC. The molecular mechanism between PHF5A and vascular endothelial growth factor A (VEGFA) was explored by a series of ubiquitination related assays. RESULTS: We found that PHF5A was highly expressed in ESCC tissues compared to normal tissues and that was correlated with poor prognosis of ESCC. Loss-of-function experiments revealed that PHF5A silence remarkably inhibited cell proliferation, migration, and induced apoptosis as well as cell cycle arrest. Consistently, in vivo assay demonstrated that PHF5A deficiency was able to attenuate tumor growth. Furthermore, molecular studies showed that PHF5A silencing promoted VEGFA ubiquitination by interacting with MDM2, thereby regulating VEGFA protein expression. Subsequently, in rescue experiments, our data suggested that ESCC cell viability and migration promoted by PHF5A were dependent on intact VEGFA. Finally, PI3K/AKT signaling rescue was able to alleviate shPHF5A-mediated cell apoptosis and cell cycle arrest. CONCLUSION: PHF5A is a tumor promoter in ESCC, which is dependent on VEGFA and PI3K/AKT signaling. PHF5A might serve as a potential therapeutic target for ESCC treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Ligação a RNA/genética , Transativadores/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Comput Biol Med ; 173: 108372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552277

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by abnormal early activation of pulmonary arterial smooth muscle cells (PASMCs), yet the underlying mechanisms remain to be elucidated. METHODS: Normal and PAH gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database and analyzed using gene set enrichment analysis (GSEA) to uncover the underlying mechanisms. Weighted gene co-expression network analysis (WGCNA) and machine learning methods were deployed to further filter hub genes. A number of immune infiltration analysis methods were applied to explore the immune landscape of PAH. Enzyme-linked immunosorbent assay (ELISA) was employed to compare MACC1 levels between PAH and normal subjects. The important role of MACC1 in the progression of PAH was verified through Western blot and real-time qPCR, among others. RESULTS: 39 up-regulated and 7 down-regulated genes were identified by 'limma' and 'RRA' packages. WGCNA and machine learning further narrowed down the list to 4 hub genes, with MACC1 showing strong diagnostic capacity. In vivo and in vitro experiments revealed that MACC1 was highsly associated with malignant features of PASMCs in PAH. CONCLUSIONS: These findings suggest that targeting MACC1 may offer a promising therapeutic strategy for treating PAH, and further clinical studies are warranted to evaluate its efficacy.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Proliferação de Células/genética , Transdução de Sinais , Biomarcadores , Biologia Computacional , Transativadores/genética
10.
Commun Biol ; 7(1): 390, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555395

RESUMO

Intervertebral disc degeneration (IDD) is a well-established cause of disability, and extensive evidence has identified the important role played by regulatory noncoding RNAs, specifically circular RNAs (circRNAs) and microRNAs (miRNAs), in the progression of IDD. To elucidate the molecular mechanism underlying IDD, we established a circRNA/miRNA/mRNA network in IDD through standardized analyses of all expression matrices. Our studies confirmed the differential expression of the transcription factors early B-cell factor 1 (EBF1), circEYA3, and miR-196a-5p in the nucleus pulposus (NP) tissues of controls and IDD patients. Cell proliferation, apoptosis, and extracellular mechanisms of degradation in NP cells (NPC) are mediated by circEYA3. MiR-196a-5p is a direct target of circEYA3 and EBF1. Functional analysis showed that miR-196a-5p reversed the effects of circEYA3 and EBF1 on ECM degradation, apoptosis, and proliferation in NPCs. EBF1 regulates the nuclear factor kappa beta (NF-кB) signalling pathway by activating the IKKß promoter region. This study demonstrates that circEYA3 plays an important role in exacerbating the progression of IDD by modulating the NF-κB signalling pathway through regulation of the miR196a-5p/EBF1 axis. Consequently, a novel molecular mechanism underlying IDD development was elucidated, thereby identifying a potential therapeutic target for future exploration.


Assuntos
Degeneração do Disco Intervertebral , MicroRNAs , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , RNA Circular/genética , Transativadores/metabolismo
11.
Chin J Dent Res ; 27(1): 47-52, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546519

RESUMO

MN1 C-terminal truncation (MCTT) syndrome was first reported in 2020 and only 28 patients have been recorded to date. Since MCTT syndrome is a newly defined and rare syndrome with many clinical features, the present study reviewed the manifestations and management of oral and dental anomalies. Gene variants of MCTT syndrome and their positive phenotypes were summarised. The phenotypes of variants in two exons differed from each other mainly in the craniomaxillofacial region, including brain MRI abnormalities and palatal morphology. Pathogenic mechanisms, especially in craniofacial and oral anomalies, were discussed. Appropriate treatments in the stomatology and respiratory departments could improve the symptoms of MCTT syndrome. The different sites of MN1 gene variants may influence the clinical symptoms and there may be racial differences in MCTT syndrome. We recommend oral and pulmonary evaluations for the multidisciplinary treatment of MCTT syndrome.


Assuntos
Encefalopatias , Medicina Bucal , Humanos , Éxons , Estudos Interdisciplinares , Neuroimagem , Transativadores , Proteínas Supressoras de Tumor
12.
J Cancer Res Clin Oncol ; 150(3): 148, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512513

RESUMO

INTRODUCTION: Accumulating evidence demonstrates that aberrant methylation of enhancers is crucial in gene expression profiles across several cancers. However, the latent effect of differently expressed enhancers between INSS stage 4S and 4 neuroblastoma (NB) remains elusive. METHODS: We utilized the transcriptome and methylation data of stage 4S and 4 NB patients to perform Enhancer Linking by Methylation/Expression Relationships (ELMER) analysis, discovering a differently expressed motif within 67 enhancers between stage 4S and 4 NB. Harnessing the 67 motif genes, we established the INSS stage related signature (ISRS) by amalgamating 12 and 10 distinct machine learning (ML) algorithms across 113 and 101 ML combinations to precisely diagnose stage 4 NB among all NB patients and to predict the prognosis of NB patients. Based on risk scores calculated by prognostic ISRS, patients were categorized into high and low-risk groups according to median risk score. We conducted comprehensive comparisons between two risk groups, in terms of clinical applications, immune microenvironment, somatic mutations, immunotherapy, chemotherapy and single-cell analysis. Ultimately, we empirically validated the differential expressions of two ISRS model genes, CAMTA2 and FOXD1, through immunochemistry staining. RESULTS: Through leave-one-out cross-validation, in both feature selection and model construction, we selected the random forest algorithm to diagnose stage 4 NB, and Enet algorithm to develop prognostic ISRS, due to their highest average C-index across five NB cohorts. After validations, the ISRS demonstrated a stable predictive capability, outperforming the previously published NB signatures and several clinic variables. We stratified NB patients into high and low-risk group based on median risk score, which showed the low-risk group with a superior survival outcome, an abundant immune infiltration, a decreased mutation landscape, and an enhanced sensitivity to immunotherapy. Single-cell analysis between two risk groups reveals biologically cellular variations underlying ISRS. Finally, we verified the significantly higher protein levels of CAMTA2 and FOXD1 in stage 4S NB, as well as their protective prognosis value in NB. CONCLUSION: Based on multi-omics data and ML algorithms, we successfully developed the ISRS to enable accurate diagnosis and prognostic stratification in NB, which shed light on molecular mechanisms of spontaneous regression and clinical utilization of ISRS.


Assuntos
Aprendizado de Máquina , Neuroblastoma , Humanos , Prognóstico , Fatores de Risco , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Neuroblastoma/metabolismo , DNA , Microambiente Tumoral , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Ligação ao Cálcio , Transativadores/metabolismo
13.
Sci Total Environ ; 924: 171644, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38471587

RESUMO

Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Percepção de Quorum , Animais , Humanos , Cianobactérias/genética , Ecossistema , Lagos/microbiologia , Percepção de Quorum/genética , Transativadores
14.
New Phytol ; 242(3): 1146-1155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462819

RESUMO

In Arabidopsis thaliana, heterodimers comprising two bHLH family proteins, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5) or its homolog TMO5-LIKE 1 (T5L1) control vascular development in the root apical meristem (RAM). The LHW-TMO5/T5L1 complex regulates vascular cell proliferation, vascular pattern organization, and xylem vessel differentiation; however, the mechanism of preparation for xylem vessel differentiation in the RAM remains elusive. We examined the relationship between LHW-T5L1 and VASCULAR-RELATED NAC-DOMAIN (VND) genes, which are key regulators of vessel differentiation, using reverse genetics approaches. LHW-T5L1 upregulated the expression of VND1, VND2, VND3, VND6, and VND7 but not that of other VNDs. The expression of VND1-VND3 in the RAM was decreased in lhw. In vnd1 vnd2 vnd3 triple loss-of-function mutant roots, metaxylem differentiation was delayed, and VND6 and VND7 expression was reduced. Furthermore, transcriptome analysis of VND1-overexpressing cells revealed that VND1 upregulates genes involved in the synthesis of secondary cell wall components. These results suggest that LHW-T5L1 upregulates VND1-VND3 at the early stages of vascular development in the RAM, and VNDs promote a predifferentiation state for xylem vessels by triggering low levels of VND6 and VND7 as well as genes for the synthesis of secondary cell wall materials.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Xilema/metabolismo , Regulação da Expressão Gênica de Plantas , Transativadores/metabolismo
15.
BMC Res Notes ; 17(1): 77, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486279

RESUMO

BACKGROUND: Spermatogenesis is the process of producing mature sperm from Spermatogonial stem cells (SSCs) and this process requires a complex cooperation of different types of somatic and germ cells. Undifferentiated spermatogonia initiate the spermatogenesis and Sertoli cells as the only somatic cells inside of the seminiferous tubule play a key role in providing chemical and physical requirements for normal spermatogenesis, here, we investigated the dysfunction of these cells in non-obstructive azoospermia. MATERIAL AND METHOD: In this study, we analyzed the expression of sox9 and UTF1 in the non-obstructive human testis by immunohistochemistry. Moreover, we used the KEGG pathway and bioinformatics analysis to reveal the connection between our object genes and protein. RESULTS: The immunohistochemistry analysis of the non-obstructive human seminiferous tubule showed low expression of Sox9 and UTF1 that was detected out of the main location of the responsible cells for these expressions. Our bioinformatics analysis clearly and strongly indicated the relation between UTF1 in undifferentiated spermatogonia and Sox9 in Sertoli cells mediated by POU5F1. CONCLUSION: Generally, this study showed the negative effect of POU5F1 as a mediator between Sertoli cells as the somatic cells within seminiferous tubules and undifferentiated spermatogonia as the spermatogenesis initiator germ cells in non-obstructive conditions.


Assuntos
Azoospermia , Testículo , Humanos , Masculino , Azoospermia/genética , Regulação para Baixo , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero , Sêmen , Espermatogônias/metabolismo , Testículo/metabolismo , Transativadores
16.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473786

RESUMO

The MYBL1 gene is a strong transcriptional activator involved in events associated with cancer progression. Previous data show MYBL1 overexpressed in triple-negative breast cancer (TNBC). There are two parts to this study related to further characterizing the MYBL1 gene. We start by characterizing MYBL1 reference sequence variants and isoforms. The results of this study will help in future experiments in the event there is a need to characterize functional variants and isoforms of the gene. In part two, we identify and validate expression and gene-related alterations of MYBL1, VCIP1, MYC and BOP1 genes in TNBC cell lines and patient samples selected from the Breast Invasive Carcinoma TCGA 2015 dataset available at cBioPortal.org. The four genes are located at chromosomal regions 8q13.1 to 8q.24.3 loci, regions previously identified as demonstrating a high percentage of alterations in breast cancer. We identify alterations, including changes in expression, deletions, amplifications and fusions in MYBL1, VCPIP1, BOP1 and MYC genes in many of the same patients, suggesting the panel of genes is involved in coordinated activity in patients. We propose that MYBL1, VCPIP1, MYC and BOP1 collectively be considered as genes associated with the chromosome 8q loci that potentially play a role in TNBC pathogenesis.


Assuntos
Carcinoma , Neoplasias de Mama Triplo Negativas , Humanos , Mama , Cromossomos , Isoformas de Proteínas , Proteínas Proto-Oncogênicas , Transativadores , Proteínas de Ligação a RNA
17.
Theranostics ; 14(5): 2246-2264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505620

RESUMO

Aim: Adipose tissue (AT) dysfunction that occurs in both obesity and lipodystrophy is associated with the development of cardiomyopathy. However, it is unclear how dysfunctional AT induces cardiomyopathy due to limited animal models available. We have identified vacuolar H+-ATPase subunit Vod1, encoded by Atp6v0d1, as a master regulator of adipogenesis, and adipose-specific deletion of Atp6v0d1 (Atp6v0d1AKO) in mice caused generalized lipodystrophy and spontaneous cardiomyopathy. Using this unique animal model, we explore the mechanism(s) underlying lipodystrophy-related cardiomyopathy. Methods and Results: Atp6v0d1AKO mice developed cardiac hypertrophy at 12 weeks, and progressed to heart failure at 28 weeks. The Atp6v0d1AKO mouse hearts exhibited excessive lipid accumulation and altered lipid and glucose metabolism, which are typical for obesity- and diabetes-related cardiomyopathy. The Atp6v0d1AKO mice developed cardiac insulin resistance evidenced by decreased IRS-1/2 expression in hearts. Meanwhile, the expression of forkhead box O1 (FoxO1), a transcription factor which plays critical roles in regulating cardiac lipid and glucose metabolism, was increased. RNA-seq data and molecular biological assays demonstrated reduced expression of myocardin, a transcription coactivator, in Atp6v0d1AKO mouse hearts. RNA interference (RNAi), luciferase reporter and ChIP-qPCR assays revealed the critical role of myocardin in regulating IRS-1 transcription through the CArG-like element in IRS-1 promoter. Reducing IRS-1 expression with RNAi increased FoxO1 expression, while increasing IRS-1 expression reversed myocardin downregulation-induced FoxO1 upregulation in cardiomyocytes. In vivo, restoring myocardin expression specifically in Atp6v0d1AKO cardiomyocytes increased IRS-1, but decreased FoxO1 expression. As a result, the abnormal expressions of metabolic genes in Atp6v0d1AKO hearts were reversed, and cardiac dysfunctions were ameliorated. Myocardin expression was also reduced in high fat diet-induced diabetic cardiomyopathy and palmitic acid-treated cardiomyocytes. Moreover, increasing systemic insulin resistance with rosiglitazone restored cardiac myocardin expression and improved cardiac functions in Atp6v0d1AKO mice. Conclusion: Atp6v0d1AKO mice are a novel animal model for studying lipodystrophy- or metabolic dysfunction-related cardiomyopathy. Moreover, myocardin serves as a key regulator of cardiac insulin sensitivity and metabolic homeostasis, highlighting myocardin as a potential therapeutic target for treating lipodystrophy- and diabetes-related cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Resistência à Insulina , Lipodistrofia , Proteínas Nucleares , Transativadores , ATPases Vacuolares Próton-Translocadoras , Animais , Camundongos , Cardiomiopatias Diabéticas/genética , Modelos Animais de Doenças , Glucose/metabolismo , Resistência à Insulina/genética , Lipídeos , Obesidade/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo
18.
Sci Total Environ ; 922: 171375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38431162

RESUMO

Alkyl glycosides (AGs), commonly used nonionic surfactants, may have toxic effects on the environmental organisms. However, the complex concentration-response patterns of AGs with varying alkyl side chains and their mixtures have not been thoroughly studied. Therefore, the luminescence inhibition toxicities of six AGs with different alkyl side chains, namely, ethyl (AG02), butyl (AG04), hexyl (AG06), octyl (AG08), decyl (AG10), and dodecyl (AG12) glucosides, were determined in Vibrio qinghaiensis sp. -Q67 (Q67) at 0.25, 3, 6, 9, and 12 h. The six AGs exhibited time- and side-chain-dependent nonmonotonic concentration- responses toward Q67. AG02, with a short side chain, presented a concentration-response curve (CRC) with two peaks after 6 h and stimulated the luminescence of Q67 at both 6 and 9 h. AG04, AG06, and AG08 showed S-shaped CRCs at five exposure time points, and their toxicities increased with the side-chain length. AG10 and AG12, with long side chains, exhibited hormesis at 9 and 12 h. Molecular docking was performed to explore the mechanism governing the possible influence of AGs on the luminescence response. The effects of AGs on Q67 could be attributed to multiple luminescence-regulatory proteins, including LuxA, LuxC, LuxD, LuxG, LuxI, and LuxR. Notably, LuxR was identified as the primary binding protein among the six AGs. Given that they may co-exist, binary mixtures of AG10 and AG12 were designed to explore their concentration-response patterns and interactions. The results revealed that all AG10-AG12 binary mixture rays showed time-dependent hormesis on Q67, similar to that shown by their individual components. The interactions of these binary mixtures were mainly characterized by low-concentration additive action and high-concentration synergism at different times.


Assuntos
Glicosídeos , Vibrio , Glicosídeos/toxicidade , Simulação de Acoplamento Molecular , Interações Medicamentosas , Transativadores/farmacologia
19.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474243

RESUMO

GCN1 is recognized as a factor that is essential for the activation of GCN2, which is a sensor of amino acid starvation. This function is evolutionarily conserved from yeast to higher eukaryotes. However, recent studies have revealed non-canonical functions of GCN1 that are independent of GCN2, such as its participation in cell proliferation, apoptosis, and the immune response, beyond the borders of species. Although it is known that GCN1 and GCN2 interact with ribosomes to accomplish amino acid starvation sensing, recent studies have reported that GCN1 binds to disomes (i.e., ribosomes that collide each other), thereby regulating both the co-translational quality control and stress response. We propose that GCN1 regulates ribosome-mediated signaling by dynamically changing its partners among RWD domain-possessing proteins via unknown mechanisms. We recently demonstrated that GCN1 is essential for cell proliferation and whole-body energy regulation in mice. However, the manner in which ribosome-initiated signaling via GCN1 is related to various physiological functions warrants clarification. GCN1-mediated mechanisms and its interaction with other quality control and stress response signals should be important for proteostasis during aging and neurodegenerative diseases, and may be targeted for drug development.


Assuntos
Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Aminoácidos/metabolismo , Homeostase , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo
20.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488001

RESUMO

Breast cancer stem cells (BCSCs) mitigate oxidative stress to maintain their viability and plasticity. However, the regulatory mechanism of oxidative stress in BCSCs remains unclear. We recently found that the histone reader ZMYND8 was upregulated in BCSCs. Here, we showed that ZMYND8 reduced ROS and iron to inhibit ferroptosis in aldehyde dehydrogenase-high (ALDHhi) BCSCs, leading to BCSC expansion and tumor initiation in mice. The underlying mechanism involved a two-fold posttranslational regulation of nuclear factor erythroid 2-related factor 2 (NRF2). ZMYND8 increased stability of NRF2 protein through KEAP1 silencing. On the other hand, ZMYND8 interacted with and recruited NRF2 to the promoters of antioxidant genes to enhance gene transcription in mammospheres. NRF2 phenocopied ZMYND8 to enhance BCSC stemness and tumor initiation by inhibiting ROS and ferroptosis. Loss of NRF2 counteracted ZMYND8's effects on antioxidant genes and ROS in mammospheres. Interestingly, ZMYND8 expression was directly controlled by NRF2 in mammospheres. Collectively, these findings uncover a positive feedback loop that amplifies the antioxidant defense mechanism sustaining BCSC survival and stemness.


Assuntos
Neoplasias da Mama , Ferroptose , Fator 2 Relacionado a NF-E2 , Células-Tronco Neoplásicas , Transativadores , Animais , Camundongos , Antioxidantes , Ferroptose/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transativadores/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...