Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.781
Filtrar
1.
Sci Transl Med ; 16(741): eadj9052, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569016

RESUMO

Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-ß (Aß) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aß and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aß plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aß load, mitigated some Aß-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Camundongos , Animais , Microglia/metabolismo , Anticorpos/metabolismo , Receptores de Superfície Celular/metabolismo , Amiloide/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E , Leucócitos/metabolismo , Camundongos Transgênicos , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
2.
JSLS ; 28(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562948

RESUMO

Sodium-glucose cotransporters (SGLT) and glucose transporters (GLUT) have been shown to influence diabetes management by modulating glucose uptake by the intestine. Therefore, alterations in gastrointestinal anatomy during bariatric surgery can change SGLT and GLUT receptor activity. These changes offer an additional mechanism for weight loss and may explain the differential impact of the various bariatric surgical procedures. This review examines the current literature on SGLT and GLUT receptors and their effects on weight loss through genetic studies, pharmacologic inhibition, and how SGLT/GLUT receptors impact surgical physiologic modulation. A better understanding of Type I sodium-glucose cotransport receptors (SGLT-1), GLUT-2, and GLUT-5 could provide insight for improved procedures and allow us to determine the best method to tailor operations to a patient's individual needs.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus , Receptores de Superfície Celular , Humanos , Glucose , Sódio , Transportador 1 de Glucose-Sódio/genética , Redução de Peso
3.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473831

RESUMO

A critical determinant of infectivity and virulence of the most infectious and or lethal variants of concern (VOCs): Wild Type, Delta and Omicron is related to the binding interactions between the receptor-binding domain of the spike and its host receptor, the initial step in cell infection. It is of the utmost importance to understand how mutations of a viral strain, especially those that are in the viral spike, affect the resulting infectivity of the emerging VOC, knowledge that could help us understand the variant virulence and inform the therapies applied or the vaccines developed. For this sake, we have applied a battery of computational protocols of increasing complexity to the calculation of the spike binding affinity for three variants of concern to the ACE2 cell receptor. The results clearly illustrate that the attachment of the spikes of the Delta and Omicron variants to the receptor originates through different molecular interaction mechanisms. All our protocols unanimously predict that the Delta variant has the highest receptor-binding affinity, while the Omicron variant displays a substantial variability in the binding affinity of the spike that relates to the structural plasticity of the Omicron spike-receptor complex. We suggest that the latter result could explain (at least in part) the variability of the in vitro binding results for this VOC and has led us to suggest a reason for the lower virulence of the Omicron variant as compared to earlier strains. Several hypotheses have been developed around this subject.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Receptores de Superfície Celular , Membrana Celular , Mutação
4.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474029

RESUMO

Acute kidney injury is a common and complex complication that has high morality and the risk for chronic kidney disease among survivors. The accuracy of current AKI biomarkers can be affected by water retention and diuretics. Therefore, we aimed to identify a urinary non-recovery marker of acute kidney injury in patients with acute decompensated heart failure. We used the isobaric tag for relative and absolute quantification technology to find a relevant marker protein that could divide patients into control, acute kidney injury with recovery, and acute kidney injury without recovery groups. An enzyme-linked immunosorbent assay of the endothelial cell protein C receptor (EPCR) was used to verify the results. We found that the EPCR was a usable marker for non-recovery renal failure in our setting with the area under the receiver operating characteristics 0.776 ± 0.065; 95%CI: 0.648-0.905, (p < 0.001). Further validation is needed to explore this possibility in different situations.


Assuntos
Injúria Renal Aguda , Fatores de Coagulação Sanguínea , Insuficiência Cardíaca , Receptores de Superfície Celular , Humanos , Receptor de Proteína C Endotelial , Proteômica , Prognóstico , Rim , Injúria Renal Aguda/etiologia , Insuficiência Cardíaca/complicações , Biomarcadores
5.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474126

RESUMO

CD177 is a glycosyl phosphatidyl inositol (GPI)-linked, neutrophil-specific glycoprotein that in 3-5% of normal individuals is absent from all neutrophils. The molecular mechanism behind the absence of CD177 has not been unravelled completely. Here, we analyse the impact of the recently described CD177 c.1291G>A variant on CD177 expression. Recombinant CD177 c.1291G>A was expressed in HEK293F cells and its expression on the cell surface, inside the cell, and in the culture supernatant was investigated. The CD177 c.1291G>A protein was characterised serologically and its interaction with proteinase 3 (PR3) was demonstrated by confocal laser scanning microscopy. Our experiments show that CD177 c.1291G>A does not interfere with CD177 protein biosynthesis but affects the membrane expression of CD177, leading to very low copy numbers of the protein on the cellular surface. The mutation does not interfere with the ability of the protein to bind PR3 or human polyclonal antibodies against wild-type CD177. Carriers of the c.1291G>A allele are supposed to be phenotyped as CD177-negative, but the protein is present in soluble form. The presence of CD177 c.1291A leads to the production of an unstable CD177 protein and an apparent "CD177-null" phenotype.


Assuntos
Isoantígenos , Receptores de Superfície Celular , Humanos , Receptores de Superfície Celular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Alelos , Membrana Celular/metabolismo , Mieloblastina/genética , Fenótipo , Isoantígenos/genética , Neutrófilos/metabolismo
6.
Mol Genet Genomic Med ; 12(3): e2353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488435

RESUMO

BACKGROUND: Although proteinuria is long recognized as an independent risk factor for progressive chronic kidney diseases, not all forms of proteinuria are detrimental to kidney function, one of which is isolated proteinuria caused by cubilin (CUBN)-specific mutations. CUBN encodes an endocytic receptor, initially found to be responsible for the Imerslund-Gräsbeck syndrome (IGS; OMIM #261100) characterized by a combined phenotype of megaloblastic anemia and proteinuria. METHODS: After analyzing their clinical and pathological characterizations, next-generation sequencing for renal disease genes or whole-exome sequencing (WES) was performed on four patients with non-progressive isolated proteinuria. CUBN biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing, immunohistochemistry, minigene assay, and multiple in silico prediction tools, including 3D protein modeling. RESULTS: Here, we present four patients with isolated proteinuria caused by CUBN C-terminal biallelic pathogenic variants, all of which showed no typical IGS symptoms, such as anemia and vitamin B12 deficiency. Their urine protein levels fluctuated between +~++ and estimated glomerular filtration rate (eGFR) were normal or slightly higher. Mild mesangial hypercellularity was found in three children's renal biopsies. A homozygous splice-site variant of CUBN (c.6821+3 (IVS44) A>G) was proven to result in the exon 44 skipping and premature translation termination by cDNA sequencing and immunohistochemistry. Compound heterozygous mutations were identified among the other three children, including another novel splice-site variant (c.10764+1 (IVS66) G>A) causing the retention of first 4 nucleotides in intron 66 by minigene assay, two unreported missense mutations (c.4907G>A (p.R1636Q); c. 9095 A>G (p.Y3032C)), and two reported missense mutations in China (c.8938G>A (p.D2980N); c. 9287T>C (p.L3096P)), locating behind the vitamin B12-binding domain, affecting CUB11, CUB16, CUB22, CUB23, and CUB27 domains, respectively. CONCLUSION: These results demonstrate that above CUBN mutations may cause non-progressive and isolated proteinuria, expanding the variant spectrum of CUBN and benefiting our understanding of proteinuria and renal function.


Assuntos
Proteinúria , Receptores de Superfície Celular , Criança , Humanos , DNA Complementar , Proteinúria/genética , Proteinúria/patologia , Receptores de Superfície Celular/genética
7.
Methods Enzymol ; 694: 321-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492957

RESUMO

The chapter provides an overview of the applications of magnetic tweezers in living cells. It discusses the advantages and disadvantages of magnetic tweezers technology with a focus on individual magnetic tweezers configurations, such as electromagnetic tweezers. Solutions to the disadvantages identified are also outlined. The specific role of magnetic tweezers in the field of mechanobiology, such as mechanosensitivity, mechano-allostery and mechanotransduction are also emphasized. The specific usage of magnetic tweezers in mechanically probing cells via specific cell surface receptors, such as mechanosensitive channels is discussed and why mechanical probing has revealed the opening and closing of the channels. Finally, the future direction of magnetic tweezers is presented.


Assuntos
Magnetismo , Mecanotransdução Celular , Fenômenos Magnéticos , Mecanotransdução Celular/fisiologia , Receptores de Superfície Celular
8.
Biomolecules ; 14(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540680

RESUMO

Growth-factor-receptor-binding protein 2 (GRB2) is a non-enzymatic adaptor protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression. GRB2 binds to numerous target molecules, thereby modulating a complex cell signaling network with diverse functions. The structural characteristics of GRB2 are essential for its functionality, as its multiple domains and interaction mechanisms underpin its role in cellular biology. The typical signaling pathway involving GRB2 is initiated by the ligand stimulation to its receptor tyrosine kinases (RTKs). The activation of RTKs leads to the recruitment of GRB2 through its SH2 domain to the phosphorylated tyrosine residues on the receptor. GRB2, in turn, binds to the Son of Sevenless (SOS) protein through its SH3 domain. This binding facilitates the activation of Ras, a small GTPase, which triggers a cascade of downstream signaling events, ultimately leading to cell proliferation, survival, and differentiation. Further research and exploration into the structure and function of GRB2 hold great potential for providing novel insights and strategies to enhance medical approaches for related diseases. In this review, we provide an outline of the proteins that engage with domains of GRB2, along with the function of different GRB2 domains in governing cellular signaling pathways. This furnishes essential points of current studies for the forthcoming advancement of therapeutic medications aimed at GRB2.


Assuntos
Receptores Proteína Tirosina Quinases , Transdução de Sinais , Proteína Adaptadora GRB2/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Tirosina/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Son Of Sevenless , Ligação Proteica , Fosforilação
9.
J Plant Physiol ; 295: 154190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460400

RESUMO

PTMs (Post-Translational Modifications) of proteins facilitate rapid modulation of protein function in response to various environmental stimuli. The EIN2 (Ethylene Insensitive 2) protein is a core regulatory of the ethylene signaling pathway. Recent findings have demonstrated that PTMs, including protein phosphorylation, ubiquitination, and glycosylation, govern EIN2 trafficking, subcellular localization, stability, and physiological roles. The cognition of multiple PTMs in EIN2 underscores the stringent regulation of protein. Consequently, a thorough review of the regulatory role of PTMs in EIN2 functions will improve our profound comprehension of the regulation mechanism and various physiological processes of EIN2-mediated signaling pathways. This review discusses the evolution, functions, structure and characteristics of EIN2 protein in plants. Additionally, this review sheds light on the progress of protein ubiquitination, phosphorylation, O-Glycosylation in the regulation of EIN2 functions, and the unresolved questions and future perspectives.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação , Receptores de Superfície Celular/genética
10.
Oncoimmunology ; 13(1): 2327692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516269

RESUMO

Regulatory T (Treg) cells are critical in shaping an immunosuppressive microenvironment to favor tumor progression and resistance to therapies. However, the heterogeneity and function of Treg cells in esophageal squamous cell carcinoma (ESCC) remain underexplored. We identified CD177 as a tumor-infiltrating Treg cell marker in ESCC. Interestingly, expression levels of CD177 and PD-1 were mutually exclusive in tumor Treg cells. CD177+ Treg cells expressed high levels of IL35, in association with CD8+ T cell exhaustion, whereas PD-1+ Treg cells expressed high levels of IL10. Pan-cancer analysis revealed that CD177+ Treg cells display increased clonal expansion compared to PD-1+ and double-negative (DN) Treg cells, and CD177+ and PD-1+ Treg cells develop from the same DN Treg cell origin. Importantly, we found CD177+ Treg cell infiltration to be associated with poor overall survival and poor response to anti-PD-1 immunotherapy plus chemotherapy in ESCC patients. Finally, we found that lymphatic endothelial cells are associated with CD177+ Treg cell accumulation in ESCC tumors, which are also decreased after anti-PD-1 immunotherapy plus chemotherapy. Our work identifies CD177+ Treg cell as a tumor-specific Treg cell subset and highlights their potential value as a prognostic marker of survival and response to immunotherapy and a therapeutic target in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Linfócitos T Reguladores/metabolismo , Neoplasias Esofágicas/terapia , Receptor de Morte Celular Programada 1 , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Prognóstico , Biomarcadores Tumorais , Microambiente Tumoral , Isoantígenos , Receptores de Superfície Celular , Proteínas Ligadas por GPI
11.
J Alzheimers Dis ; 98(2): 601-618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427484

RESUMO

Background: Microglial dysfunction plays a causative role in Alzheimer's disease (AD) pathogenesis. Here we focus on a germline insertion/deletion variant mapping SIRPß1, a surface receptor that triggers amyloid-ß(Aß) phagocytosis via TYROBP. Objective: To analyze the impact of this copy-number variant in SIRPß1 expression and how it affects AD molecular etiology. Methods: Copy-number variant proxy rs2209313 was evaluated in GERALD and GR@ACE longitudinal series. Hippocampal specimens of genotyped AD patients were also examined. SIRPß1 isoform-specific phagocytosis assays were performed in HEK393T cells. Results: The insertion alters the SIRPß1 protein isoform landscape compromising its ability to bind oligomeric Aß and its affinity for TYROBP. SIRPß1 Dup/Dup patients with mild cognitive impairment show an increased cerebrospinal fluid t-Tau/Aß ratio (p = 0.018) and a higher risk to develop AD (OR = 1.678, p = 0.018). MRIs showed that Dup/Dup patients exhibited a worse initial response to AD. At the moment of diagnosis, all patients showed equivalent Mini-Mental State Examination scores. However, AD patients with the duplication had less hippocampal degeneration (p < 0.001) and fewer white matter hyperintensities. In contrast, longitudinal studies indicate that patients bearing the duplication allele show a slower cognitive decline (p = 0.013). Transcriptional analysis also shows that the SIRPß1 duplication allele correlates with higher TREM2 expression and an increased microglial activation. Conclusions: The SIRPß1 internal duplication has opposite effects over MCI-to-Dementia conversion risk and AD progression, affecting microglial response to Aß. Given the pharmacological approaches focused on the TREM2-TYROBP axis, we believe that SIRPß1 structural variant might be considered as a potential modulator of this causative pathway.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Receptores de Superfície Celular , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Microglia/metabolismo , Fagocitose , Receptores de Superfície Celular/metabolismo
12.
Theriogenology ; 220: 70-76, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484673

RESUMO

Because of the time-consuming nature of surgical neutering and the rapid rate of reproduction among domestic cats, it is crucial to investigate alternative, nonsurgical methods of contraception for this species. Sperm protein IZUMO1 and its oocyte receptor JUNO have been proposed as potential targets for nonsurgical contraceptives. This study aimed to demonstrate (1) the protein coding sequence of feline IZUMO1 and JUNO, (2) gene expression in specific organs by measuring mRNA levels in different visceral tissues, and (3) the expression of IZUMO1 and JUNO during sperm maturation and folliculogenesis, respectively. Amplification for sequencing of feline IZUMO1 and JUNO was performed using the RT-PCR method. Levels of gene expression in different tissues were evaluated using real-time PCR. In situ hybridization was performed to localize JUNO mRNA in ovarian tissues. The complete coding sequences of IZUMO1 and JUNO were obtained and analyzed. A comparison between protein orthologs demonstrated the conservation of IZUMO1 and JUNO in Felidae. The real-time PCR results from various visceral organs indicated that IZUMO1 was significantly higher in the testis than in other organs, whereas JUNO was significantly higher in the ovary than in other organs. Expression of IZUMO1 was found to be higher in the testes than in the caput, corpus, and cauda of epididymides. In situ hybridization revealed that JUNO mRNA was in the ooplasm and nucleus of the primordial, primary, secondary, and antral follicles. Importantly, this was the first study to demonstrate the IZUMO1 and JUNO genes in the testis and ovary of cats. The results are useful for future research related to these genes and for developing contraceptives against these targets.


Assuntos
Proteínas de Membrana , Receptores de Superfície Celular , Feminino , Gatos/genética , Masculino , Animais , Receptores de Superfície Celular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Sêmen/metabolismo , Gônadas/metabolismo , Anticoncepcionais
13.
J Integr Neurosci ; 23(3): 47, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538215

RESUMO

BACKGROUND: Bone cancer pain (BCP) is a common primary or metastatic bone cancer complication. Netrin-1 plays an essential role in neurite elongation and pain sensitization. This study aimed to determine the role of netrin-1 from the metastatic bone microenvironment in BCP development and identify the associated signaling pathway for the strategy of BCP management. METHODS: The rat BCP model was established by intratibial implantation of Walker 256 cells. Von Frey filaments measured the mechanical pain threshold. Movement-induced pain was assessed using limb use scores. Expressions of associated molecules in the affected tibias or dorsal root ganglia (DRG) were measured by immunofluorescence, immunohistochemistry, real-time quantitative polymerase chain reaction, or western blotting. Transduction of deleted in colorectal cancer (DCC) signaling was inhibited by intrathecal injection of DCC-siRNA. RESULTS: In BCP rats, the presence of calcitonin gene-related peptide (CGRP)-positive nerve fibers increased in the metastatic bone lesions. The metastatic site showed enrichment of well-differentiated osteoclasts and expressions of netrin-1 and its attractive receptor DCC. Upregulation of DCC and increased phosphorylation levels of focal adhesion kinase (FAK) and Rac family small GTPase 1/Cell division cycle 42 (Rac1/Cdc42) were found in the DRG. Intrathecal administration of DCC-siRNA led to a significant reduction in FAK and Rac1/Cdc42 phosphorylation levels in the DRG, decreased nociceptive nerve innervation, and improved pain behaviors. CONCLUSIONS: Netrin-1 may contribute to the activation of the BCP by inducing nociceptive nerve innervation and improving pain behaviors.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Netrina-1 , Animais , Ratos , Neoplasias Ósseas/complicações , Dor do Câncer/etiologia , Receptor DCC/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Netrina-1/genética , Nociceptores/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Microambiente Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Circ Res ; 134(7): 931-949, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547250

RESUMO

The ECM (extracellular matrix) is a major component of the vascular microenvironment that modulates vascular homeostasis. ECM proteins include collagens, elastin, noncollagen glycoproteins, and proteoglycans/glycosaminoglycans. ECM proteins form complex matrix structures, such as the basal lamina and collagen and elastin fibers, through direct interactions or lysyl oxidase-mediated cross-linking. Moreover, ECM proteins directly interact with cell surface receptors or extracellular secreted molecules, exerting matricellular and matricrine modulation, respectively. In addition, extracellular proteases degrade or cleave matrix proteins, thereby contributing to ECM turnover. These interactions constitute the ECM interactome network, which is essential for maintaining vascular homeostasis and preventing pathological vascular remodeling. The current review mainly focuses on endogenous matrix proteins in blood vessels and discusses the interaction of these matrix proteins with other ECM proteins, cell surface receptors, cytokines, complement and coagulation factors, and their potential roles in maintaining vascular homeostasis and preventing pathological remodeling.


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Homeostase , Receptores de Superfície Celular/metabolismo
15.
Cell Rep ; 43(3): 113881, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442019

RESUMO

An intriguing effect of short-term caloric restriction (CR) is the expansion of certain stem cell populations, including muscle stem cells (satellite cells), which facilitate an accelerated regenerative program after injury. Here, we utilized the MetRSL274G (MetRS) transgenic mouse to identify liver-secreted plasminogen as a candidate for regulating satellite cell expansion during short-term CR. Knockdown of circulating plasminogen prevents satellite cell expansion during short-term CR. Furthermore, loss of the plasminogen receptor KT (Plg-RKT) is also sufficient to prevent CR-related satellite cell expansion, consistent with direct signaling of plasminogen through the plasminogen receptor Plg-RKT/ERK kinase to promote proliferation of satellite cells. Importantly, we are able to replicate many of these findings in human participants from the CALERIE trial. Our results demonstrate that CR enhances liver protein secretion of plasminogen, which signals directly to the muscle satellite cell through Plg-RKT to promote proliferation and subsequent muscle resilience during CR.


Assuntos
Plasminogênio , Receptores de Superfície Celular , Camundongos , Animais , Humanos , Plasminogênio/metabolismo , Receptores de Superfície Celular/metabolismo , Restrição Calórica , Fígado/metabolismo , Camundongos Transgênicos , Serina Proteases , Proliferação de Células , Músculos/metabolismo
16.
PLoS One ; 19(3): e0300282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483883

RESUMO

Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.


Assuntos
Dinorfinas , Corno Dorsal da Medula Espinal , Camundongos , Animais , Medula Espinal/metabolismo , Camundongos Transgênicos , Interneurônios/metabolismo , Células do Corno Posterior/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo
17.
Methods Enzymol ; 694: 303-320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492956

RESUMO

Spatiotemporal interrogation of signal transduction at the single-cell level is necessary to understand how extracellular cues are converted into biochemical signals and differentially regulate cellular responses. Using single-cell perturbation tools such as optogenetics, specific biochemical cues can be delivered to selective molecules or cells at any desired location and time. By measuring cellular responses to provided perturbations, investigators have decoded and deconstructed the working mechanisms of a variety of neuroelectric and biochemical signaling processes. However, analogous methods for deciphering the working mechanisms of mechanosensitive signaling by regulating mechanical inputs to cell receptors have remained elusive. To address this unmet need, we have recently developed a nanotechnology-based single-cell and single-molecule perturbation tool, termed mechanogenetics, that enables precise spatial and mechanical control over genetically encoded cell-surface receptors in live cells. This tool combines a magnetofluorescent nanoparticle (MFN) actuator, which provides precise spatial and mechanical signals to receptors via target-specific one-to-one interaction, with a micromagnetic tweezers that remotely controls the force exerted on a single nanoparticle. This chapter provides comprehensive experimental protocols of mechanogenetics consisting of four stages: (i) chemical synthesis of MFNs, (ii) bio-conjugation and purification of monovalent MFNs, (iii) establishment of cells with genetically encoded mechanosensitive proteins, and (iv) modular targeting and control of cell-surface receptors in live cells. The entire procedure takes up to 1 week. This mechanogenetic tool can be generalized to study many outstanding questions related to the dynamics of cell signaling and transcriptional control, including the mechanism of mechanically activated receptor.


Assuntos
Nanopartículas , Optogenética , Optogenética/métodos , Nanopartículas/química , Transdução de Sinais , Receptores de Superfície Celular/metabolismo , Fenômenos Magnéticos
18.
Biol Pharm Bull ; 47(3): 549-555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432910

RESUMO

Severe infection pathogenicity is induced by processes such as pathogen exposure, immune cell activation, inflammatory cytokine production, and vascular hyperpermeability. Highly effective drugs, such as antipathogenic agents, steroids, and antibodies that suppress cytokine function, have been developed to treat the first three processes. However, these drugs cannot completely suppress severe infectious diseases, such as coronavirus disease 2019 (COVID-19). Therefore, developing novel drugs that inhibit vascular hyperpermeability is crucial. This review summarizes the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced vascular hyperpermeability and identifies inhibitors that increase endothelial cell (EC) junction-related proteins and determines their efficacy in COVID-19 and endotoxemia models. Analyzing the effects of SARS-CoV-2 on vascular permeability revealed that SARS-CoV-2 suppresses Claudin-5 (CLDN5) expression, which is responsible for adhesion between ECs, thereby increasing vascular permeability. Inhibiting CLDN5 function in mice induced vascular hyperpermeability and pulmonary edema. In contrast, Enhancing CLDN5 expression suppressed SARS-CoV-2-induced endothelial hyperpermeability, suggesting that SARS-CoV-2-induced vascular hyperpermeability contributes to pathological progression, which can be suppressed by upregulating EC junction proteins. Based on these results, we focused on Roundabout4 (Robo4), another EC-specific protein that stabilizes EC junctions. EC-specific Robo4 overexpression suppressed vascular hyperpermeability and mortality in lipopolysaccharide-treated mice. An ALK1 inhibitor (a molecule that increases Robo4 expression), suppressed vascular hyperpermeability and mortality in lipopolysaccharide- and SARS-CoV-2-treated mice. These results indicate that Robo4 expression-increasing drugs suppress vascular permeability and pathological phenotype in COVID-19 and endotoxemia models.


Assuntos
COVID-19 , Doenças Transmissíveis , Endotoxemia , Animais , Camundongos , Permeabilidade Capilar , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos , SARS-CoV-2 , Claudina-5 , Citocinas , Receptores de Superfície Celular
19.
Mol Cell Neurosci ; 128: 103920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331011

RESUMO

Synapse formation in the mammalian brain is a complex and dynamic process requiring coordinated function of dozens of molecular families such as cell adhesion molecules (CAMs) and ligand-receptor pairs (Ephs/Ephrins, Neuroligins/Neurexins, Semaphorins/Plexins). Due to the large number of molecular players and possible functional redundancies within gene families, it is challenging to determine the precise synaptogenic roles of individual molecules, which is key to understanding the consequences of mutations in these genes for brain function. Furthermore, few molecules are known to exclusively regulate either GABAergic or glutamatergic synapses, and cell and molecular mechanisms underlying GABAergic synapse formation in particular are not thoroughly understood. We previously demonstrated that Semaphorin-4D (Sema4D) regulates GABAergic synapse development in the mammalian hippocampus while having no effect on glutamatergic synapse development, and this effect occurs through binding to its high affinity receptor, Plexin-B1. In addition, we demonstrated that RNAi-mediated Plexin-B2 knock-down decreases GABAergic synapse density suggesting that both receptors function in this process. Here, we perform a structure-function study of the Plexin-B1 and Plexin-B2 receptors to identify the protein domains in each receptor which are required for its synaptogenic function. Further, we examine whether Plexin-B2 is required in the presynaptic neuron, the postsynaptic neuron, or both to regulate GABAergic synapse formation. Our data reveal that Plexin-B1 and Plexin-B2 function non-redundantly to regulate GABAergic synapse formation and suggest that the transmembrane domain may underlie functional distinctions. We also provide evidence that Plexin-B2 expression in presynaptic GABAergic interneurons, as well as postsynaptic pyramidal cells, regulates GABAergic synapse formation in hippocampus. These findings lay the groundwork for future investigations into the precise signaling pathways required for synapse formation downstream of Plexin-B receptor signaling.


Assuntos
Moléculas de Adesão Celular , Receptores de Superfície Celular , Semaforinas , Animais , Receptores de Superfície Celular/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Mamíferos
20.
Eur J Med Genet ; 68: 104929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423276

RESUMO

GAPO syndrome is a rare genetic condition caused by bi-allelic variants in ANTXR1 gene & is an abbreviation for its core features - growth retardation, alopecia, pseudo-anodontia & optic atrophy. Certain additional features involving various other systems have been reported over the years & contribute to the expanding spectrum of this evolving phenotype. We report GAPO syndrome in a 3.75 year old Indian female child, who presented with some unique features such as sagittal craniosynostosis with scaphocephaly & bilateral choroid plexus cysts, alongside the core phenotype. We also report a novel frameshift variant in our patient & offer first evidence for the prenatal onset of some features.


Assuntos
Anodontia , Atrofias Ópticas Hereditárias , Pré-Escolar , Feminino , Humanos , Gravidez , Alopecia , Transtornos do Crescimento/genética , Proteínas dos Microfilamentos , Fenótipo , Doenças Raras , Receptores de Superfície Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...