Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.247
Filtrar
1.
Fish Shellfish Immunol ; 147: 109443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354964

RESUMO

The tumor necrosis factor (TNF) receptor-associated factor (TRAF) family has been reported to be involved in many immune pathways. In a previous study, we identified 5 TRAF genes, including TRAF2, 3, 4, 6, and 7, in the bay scallop (Argopecten irradians, Air) and the Peruvian scallop (Argopecten purpuratus, Apu). Since TRAF6 is a key molecular link in the TNF superfamily, we conducted a series of studies targeting the TRAF6 gene in the Air and Apu scallops as well as their hybrid progeny, Aip (Air ♀ × Apu ♂) and Api (Apu ♀ × Air ♂). Subcellular localization assay showed that the Air-, Aip-, and Api-TRAF6 were widely distributed in the cytoplasm of the human embryonic kidney cell line (HEK293T). Additionally, dual-luciferase reporter assay revealed that among TRAF3, TRAF4, and TRAF6, only the overexpression of TRAF6 significantly activated NF-κB activity in the HEK293T cells in a dose-dependent manner. These results suggest a crucial role of TRAF6 in the immune response in Argopecten scallops. To investigate the specific immune mechanism of TRAF6 in Argopecten scallops, we conducted TRAF6 knockdown using RNA interference. Transcriptomic analyses of the TRAF6 RNAi and control groups identified 1194, 2403, and 1099 differentially expressed genes (DEGs) in the Air, Aip, and Api scallops, respectively. KEGG enrichment analyses revealed that these DEGs were primarily enriched in transport and catabolism, amino acid metabolism, peroxisome, lysosome, and phagosome pathways. Expression profiles of 28 key DEGs were confirmed by qRT-PCR assays. The results of this study may provide insights into the immune mechanisms of TRAF in Argopecten scallops and ultimately benefit scallop breeding.


Assuntos
Pectinidae , Fator 6 Associado a Receptor de TNF , Humanos , Animais , Fator 6 Associado a Receptor de TNF/metabolismo , Células HEK293 , Fator 2 Associado a Receptor de TNF/metabolismo , Receptores do Fator de Necrose Tumoral , Pectinidae/genética , Fator 4 Associado a Receptor de TNF/metabolismo
2.
J Immunol Res ; 2024: 2875635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314087

RESUMO

Renal cell carcinoma (RCC) accounts for the majority of cancer-related deaths worldwide. Overexpression of CD70 has been linked to advanced stages of RCC. Therefore, this study aims to develop a multiepitope vaccine targeting the overexpressed CD70 using immunoinformatics techniques. In this investigation, in silico multiepitope vaccines were constructed by linking specific CD70 protein epitopes for helper T lymphocytes and CD8+ T lymphocytes. To enhance immunogenicity, sequences of cell-penetrating peptide (CPP), penetratin (pAntp), along with the entire sequence of tumor necrosis factor-α (TNF-α), were attached to the N-terminal and C-terminal of the CD70 epitopes. Computational assessments were performed on these chimeric vaccines for antigenicity, allergenicity, peptide toxicity, population coverage, and physicochemical properties. Furthermore, refined 3D constructs were subjected to a range of analyses, encompassing structural B-cell epitope prediction and molecular docking. The chosen vaccine construct underwent diverse assessments such as molecular dynamics simulation, immune response simulation, and in silico cloning. All vaccines comprised antigenic, nontoxic, and nonallergenic epitopes, ensuring extensive global population coverage. The vaccine constructs demonstrated favorable physicochemical characteristics. The binding affinity of chimeric vaccines to the TNF receptor remained relatively stable, influenced by the alignment of vaccine components. Molecular docking and dynamics analyses predicted stable interactions between CD70-CPP-TNF and the TNF receptor, indicating potential efficacy. In silico codon optimization and cloning of the vaccine nucleic acid sequence were accomplished using the pET28a plasmid. Furthermore, this vaccine displayed the capacity to modulate humoral and cellular immune responses. Overall, the results suggest therapeutic potential for the chimeric CD70-CPP-TNF vaccine against RCC. However, validation through in vitro and in vivo experiments is necessary. This trial is registered with NCT04696731 and NCT04046445.


Assuntos
Vacinas Anticâncer , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/terapia , Ligante CD27/genética , Biologia Computacional/métodos , Epitopos de Linfócito B , Epitopos de Linfócito T , 60444 , Neoplasias Renais/terapia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , 60470 , Receptores do Fator de Necrose Tumoral
3.
Cell Death Dis ; 15(2): 114, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321001

RESUMO

As an alternative pathway for liver regeneration, liver progenitor cells and their derived ductular reaction cells increase during the progression of many chronic liver diseases. However, the mechanism underlying their hepatocyte repopulation after liver injury remains unknown. Here, we conducted progenitor cell lineage tracing in mice and found that fewer than 2% of hepatocytes were derived from liver progenitor cells after 9 weeks of injury with a choline-deficient diet supplemented with ethionine (CDE), and this percentage increased approximately three-fold after 3 weeks of recovery. We also found that the proportion of liver progenitor cells double positive for the ligand of glucocorticoid-induced tumour necrosis factor receptor (GITRL, also called Tnfsf18) and SRY-related HMG box transcription 9 (Sox9) among nonparenchymal cells increased time-dependently upon CDE injury and reduced after recovery. When GITRL was conditionally knocked out from hepatic progenitor cells, its expression in nonparenchymal cells was downregulated by approximately fifty percent, and hepatocyte repopulation increased by approximately three folds. Simultaneously, conditional knockout of GITRL reduced the proportion of liver-infiltrating CD8+ T lymphocytes and glucocorticoid-induced tumour necrosis factor receptor (GITR)-positive CD8+ T lymphocytes. Mechanistically, GITRL stimulated cell proliferation but suppressed the differentiation of liver progenitor organoids into hepatocytes, and CD8+ T cells further reduced their hepatocyte differentiation by downregulating the Wnt/ß-catenin pathway. Therefore, GITRL expressed by liver progenitor cells impairs hepatocyte differentiation, thus hindering progenitor cell-mediated liver regeneration.


Assuntos
Linfócitos T CD8-Positivos , Glucocorticoides , Animais , Camundongos , Linfócitos T CD8-Positivos/patologia , Fibrose , Glucocorticoides/metabolismo , Hepatócitos/metabolismo , Inflamação/patologia , Fígado/patologia , Receptores do Fator de Necrose Tumoral/metabolismo , Células-Tronco/metabolismo , Fatores de Necrose Tumoral/metabolismo
4.
Zhongguo Gu Shang ; 37(1): 61-8, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38286453

RESUMO

OBJECTIVE: To explore the effect of shikonin on the recovery of nerve function after acute spinal cord injury(SCI) in rats. METHODS: 96 male Sprague-Dawley(SD)rats were divided into 4 groups randomly:sham operation group (Group A), sham operation+shikonin group (Group B), SCI+ DMSO(Group C), SCI+shikonin group (Group D).The acute SCI model of rats was made by clamp method in groups C and D . After subdural catheterization, no drug was given in group A. rats in groups B and D were injected with 100 mg·kg-1 of shikonin through catheter 30 min after modeling, and rats in group C were given with the same amount of DMSO, once a day until the time point of collection tissue. Basso-Beattie-Bresnahan(BBB) scores were performed on 8 rats in each group at 6, 12, and 3 d after moneling, and oblique plate tests were performed on 1, 3, 7 and 14 d after modeling, and then spinal cord tissues were collected. Eight rats were intraperitoneally injected with propidine iodide(PI) 1 h before sacrificed to detection PI positive cells at 24 h in each group. Eight rats were sacrificed in each group at 24 h after modeling, the spinal cord injury was observed by HE staining.The Nissl staining was used to observe survivor number of nerve cells. Western-blot technique was used to detect the expression levels of Bcl-2 protein and apoptosis related protein RIPK1. RESULTS: After modeling, BBB scores were normal in group A and B, but in group C and D were significantly higher than those in group A and B. And the scores in group D were higher than those in group C in each time point (P<0.05). At 12 h after modeling, the PI red stained cells in group D were significantly reduced compared with that in group C, and the disintegration of neurons was alleviated(P<0.05). HE and Nissl staining showed nerve cells with normal morphology in group A and B at 24h after operation. The degree of SCI and the number of neuronal survival in group D were better than those in group C, the difference was statistically significant at 24h (P<0.05). The expression of Bcl-2 and RIPK1 proteins was very low in group A and B;The expression of RIPK1 was significantly increased in Group C and decreased in Group D, with a statistically significant difference (P<0.05);The expression of Bcl-2 protein in group D was significantly higher than that in group C (P<0.05). CONCLUSION: Shikonin can alleviate the pathological changes after acute SCI in rats, improve the behavioral score, and promote the recovery of spinal nerve function. The specific mechanism may be related to the inhibition of TNFR/RIPK1 signaling pathway mediated necrotic apoptosis.


Assuntos
Dimetil Sulfóxido , Naftoquinonas , Traumatismos da Medula Espinal , Animais , Masculino , Ratos , Dimetil Sulfóxido/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Receptores do Fator de Necrose Tumoral/efeitos dos fármacos , Receptores do Fator de Necrose Tumoral/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/efeitos dos fármacos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
5.
Nat Commun ; 15(1): 642, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245524

RESUMO

The ability to leverage antibodies to agonize disease relevant biological pathways has tremendous potential for clinical investigation. Yet while antibodies have been successful as antagonists, immune mediators, and targeting agents, they are not readily effective at recapitulating the biology of natural ligands. Among the important determinants of antibody agonist activity is the geometry of target receptor engagement. Here, we describe an engineering approach inspired by a naturally occurring Fab-Fab homotypic interaction that constrains IgG in a unique i-shaped conformation. i-shaped antibody (iAb) engineering enables potent intrinsic agonism of five tumor necrosis factor receptor superfamily (TNFRSF) targets. When applied to bispecific antibodies against the heterodimeric IL-2 receptor pair, constrained bispecific IgG formats recapitulate IL-2 agonist activity. iAb engineering provides a tool to tune agonist antibody function and this work provides a framework for the development of intrinsic antibody agonists with the potential for generalization across broad receptor classes.


Assuntos
Anticorpos Biespecíficos , Receptores do Fator de Necrose Tumoral , Imunoglobulina G/genética , Engenharia de Proteínas
6.
Sci Rep ; 14(1): 1069, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212454

RESUMO

Salivary gland myoepithelial cells regulate saliva secretion and have been implicated in the histological diversity of salivary gland tumors. However, detailed functional analysis of myoepithelial cells has not been determined owing to the few of the specific marker to isolate them. We isolated myoepithelial cells from the submandibular glands of adult mice using the epithelial marker EpCAM and the cell adhesion molecule CD49f as indicators and found predominant expression of the transcription factor FoxO1 in these cells. RNA-sequence analysis revealed that the expression of cell cycle regulators was negatively regulated in FoxO1-overexpressing cells. Chromatin immunoprecipitation analysis showed that FoxO1 bound to the p21/p27 promoter DNA, indicating that FoxO1 suppresses cell proliferation through these factors. In addition, FoxO1 induced the expression of ectodysplasin A (Eda) and its receptor Eda2r, which are known to be associated with X-linked hypohidrotic ectodermal dysplasia and are involved in salivary gland development in myoepithelial cells. FoxO1 inhibitors suppressed Eda/Eda2r expression and salivary gland development in primordial organ cultures after mesenchymal removal. Although mesenchymal cells are considered a source of Eda, myoepithelial cells might be one of the resources of Eda. These results suggest that FoxO1 regulates myoepithelial cell proliferation and Eda secretion during salivary gland development in myoepithelial cells.


Assuntos
Neoplasias das Glândulas Salivares , Fatores de Transcrição , Animais , Camundongos , Ectodisplasinas/genética , Células Epiteliais/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Glândula Submandibular/metabolismo , Fatores de Transcrição/metabolismo , Receptor Xedar/metabolismo
7.
Cell Commun Signal ; 22(1): 30, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212807

RESUMO

Glioblastoma is the most common and aggressive primary brain tumour in adults. The development of anti-brain cancer agents are challenged by the blood-brain barrier and the resistance conferred by the local tumour microenvironment. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence compounds that have recently emerged as promising agents for drug delivery. We conjugated palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, to an HMCD, MHI-148, and conducted drug activity analysis on primary patient-derived glioblastoma cell lines. In addition to the expected cytostatic activity, our in vitro studies revealed that palbociclib-MHI-148 conjugate resulted in an almost 100-fold increase in cytotoxicity compared to palbociclib alone. This shift of palbociclib from cytostatic to cytotoxic when conjugated to MHI-148 was due to increased DNA damage, as indicated by an increase in γH2AX foci, followed by an increased expression of key extrinsic apoptosis genes, including TP53, TNFR1, TRAIL, FADD and caspase 8. In addition, we observed a time-dependent increase in the cell surface expression of TNFR1, consistent with an observed increase in the secretion TNFα, followed by TNFR1 endocytosis at 48 h. The treatment of patient GBM cells with the palbociclib-MHI-148 conjugate prevented TNFα-induced NFκB translocation, suggesting conjugate-induced TNFR1 signalling favoured the TNFR1-mediated apoptotic response rather than the pro-inflammatory response pathway. Notably, pharmacological inhibition of endocytosis of TNFR1, and siRNA-knockdown of TNFR1 reversed the palbociclib-MHI-148-induced cell death. These results show a novel susceptibility of glioblastoma cells to TNFR1-dependent apoptosis, dependent on inhibition of canonical NFκB signalling using our previously reported palbociclib-HMCD conjugate. Video Abstract.


Assuntos
Antineoplásicos , Carbocianinas , Citostáticos , Glioblastoma , Indóis , Piperazinas , Piridinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Citostáticos/farmacologia , Citostáticos/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
8.
J Surg Res ; 296: 18-28, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38215673

RESUMO

INTRODUCTION: Ventricular septal defect (VSD) is the most common congenital heart malformation in children. This study aimed to investigate potential pathogenic genes associated with Tibetan familial VSD. METHODS: Whole genomic DNA was extracted from eight Tibetan children with VSD and their healthy parents (a total of 16 individuals). Whole-exome sequencing was performed using the Illumina HiSeq platform. After filtration, detection, and annotation, single nucleotide variations and insertion-deletion markers were examined. Comparative evaluations using the Sorting Intolerant from Tolerant, PolyPhen V2, Mutation Taster, and Combined Annotation Dependent Depletion databases were conducted to predict harmful mutant genes associated with the etiology of Tibetan familial VSD. RESULTS: A total of six missense mutations in genetic disease-causing genes associated with the development of Tibetan familial VSD were identified: activin A receptor type II-like 1 (c.652 C > T: p.R218 W), ATPase cation transporting 13A2 (c.1363 C > T: p.R455 W), endoplasmic reticulum aminopeptidase 1 (c.481 G > A: p.G161 R), MRI1 (c.629 G > A: p.R210Q), tumor necrosis factor receptor-associated protein 1 (c.224 G > A: p.R75H), and FBN2 (c.2260 G > A: p.G754S). The Human Gene Mutation Database confirmed activin A receptor type II-like 1, MRI1, and tumor necrosis factor receptor-associated protein 1 as pathogenic mutations, while FBN2 was classified as a probable pathogenic mutation. CONCLUSIONS: This novel study directly screens genetic variations associated with Tibetan familial VSD using whole-exome sequencing, providing new insights into the pathogenesis of VSD.


Assuntos
Cardiopatias Congênitas , Comunicação Interventricular , Criança , Humanos , Sequenciamento do Exoma , Tibet , Comunicação Interventricular/genética , Comunicação Interventricular/metabolismo , Receptores do Fator de Necrose Tumoral/genética
9.
Radiother Oncol ; 190: 109981, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925106

RESUMO

PURPOSE: In this study, we investigated whether local radiotherapy (RT) and an anti-glucocorticoid-induced tumor necrosis factor receptor (GITR) agonist could increase the efficacy of PD-L1 blockade. METHODS AND MATERIALS: We analyzed a breast cancer dataset from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) to determine the role of GITR in breast cancer. We used the 4T1 murine TNBC model (primary and secondary tumors) to investigate the efficacy of PD-L1 blockade, local RT, anti-GITR agonist, and their combinations. We assessed tumor growth by tumor volume measurements, in vivo bioluminescence imaging, and metastatic lung nodule counts to evaluate the effects of these treatments. Flow cytometry and immunohistochemistry determined the proportions and phenotypes of CD8+ T-cells and regulatory T-cells (Tregs) in the tumors and spleen. Plasma cytokine levels were measured by enzyme-linked immunosorbent assay. RESULTS: In the METABRIC cohort, patients with high expression of TNFRSF18, which encodes GITR, had significantly better survival than those with low expression. Adding local RT or anti-GITR agonist to PD-L1 blockade did not significantly augment efficacy compared to PD-L1 blockade alone; however, adding both to PD-L1 blockade significantly reduced tumor growth and lung metastasis. The benefits of the triple combination were accompanied by increased CD8+ T-cells and decreased Tregs in the tumor microenvironment and spleen. CONCLUSIONS: The combination of local RT and an anti-GITR agonist significantly enhanced the anti-tumor immune responses induced by PD-L1 blockade. These results provide the preclinical rationale for the combination of therapy.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Linfócitos T CD8-Positivos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Glucocorticoides/farmacologia , Receptores do Fator de Necrose Tumoral , Microambiente Tumoral , Linhagem Celular Tumoral
10.
Mol Cancer Res ; 22(3): 227-239, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047807

RESUMO

Cancer risk loci provide special clues for uncovering pathogenesis of cancers. The TNFRSF19 gene located within the 13q12.12 lung cancer risk locus encodes TNF receptor superfamily member 19 (TNFRSF19) protein and has been proved to be a key target gene of a lung tissue-specific tumor suppressive enhancer, but its functional role in lung cancer pathogenesis remains to be elucidated. Here we showed that the TNFRSF19 gene could protect human bronchial epithelial Beas-2B cells from pulmonary carcinogen nicotine-derived nitrosamine ketone (NNK)-induced malignant transformation. Knockout of the TNFRSF19 significantly increased NNK-induced colony formation rate on soft agar. Moreover, TNFRSF19 expression was significantly reduced in lung cancer tissues and cell lines. Restoration of TNFRSF19 expression in A549 lung cancer cell line dramatically suppressed the tumor formation in xenograft mouse model. Interestingly, the TNFRSF19 protein that is an orphan membrane receptor could compete with LRP6 to bind Wnt3a, thereby inhibiting the Wnt/ß-catenin signaling pathway that is required for NNK-induced malignant transformation as indicated by protein pulldown, site mutation, and fluorescence energy resonance transfer experiments. Knockout of the TNFRSF19 enhanced LRP6-Wnt3a interaction, promoting ß-catenin nucleus translocation and the downstream target gene expression, and thus sensitized the cells to NNK carcinogen. In conclusion, our study demonstrated that the TNFRSF19 inhibited lung cancer carcinogenesis by competing with LRP6 to combine with Wnt3a to inhibit the Wnt/ß-catenin signaling pathway. IMPLICATIONS: These findings revealed a novel anti-lung cancer mechanism, highlighting the special significance of TNFRSF19 gene within the 13q12.12 risk locus in lung cancer pathogenesis.


Assuntos
Neoplasias Pulmonares , Animais , Humanos , Camundongos , beta Catenina/genética , Carcinógenos , Modelos Animais de Doenças , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Camundongos Knockout , Receptores do Fator de Necrose Tumoral , Via de Sinalização Wnt
11.
Cancer Gene Ther ; 31(2): 217-227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990061

RESUMO

TNFRSF19 is a member of the tumor necrosis factor receptor superfamily, and its function exhibits variability among different types of cancers. The influence of TNFRSF19 on triple-negative breast cancer (TNBC) has yet to be definitively established. In this study, bioinformatics analyses revealed that lower TNFRSF19 was associated with the poorer prognosis, higher lymph node metastasis and lower immune infiltration. Subsequently, data obtained from the TCGA database and collection of tissue samples revealed that the mRNA and protein expression levels of TNFRSF19 were observed to be significantly reduced in TNBC tissue compared to normal tissue. Additionally, the results of in vitro experiments have demonstrated that TNFRSF19 possessed the ability to inhibit the proliferation, migration and invasive capabilities of TNBC cells. In vivo trials elucidated that TNFRSF19 could suppress tumor xenografts growth. Mechanistically, TNFRSF19 initiated caspase-independent cell death and induced paraptosis. Moreover, rescue assays demonstrated that TNFRSF19 induced-paraptosis was facilitated by MAPK pathway-mediated endoplasmic reticulum (ER) stress. In conclusion, our findings demonstrated that the upregulation of TNFRSF19 functioned as a tumor suppressor in TNBC by stimulating paraptosis through the activation of the MAPK pathway-mediated ER stress, highlighting its potential to be a new therapeutic target for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Receptores do Fator de Necrose Tumoral/metabolismo , Proliferação de Células/genética
12.
Biol Trace Elem Res ; 202(4): 1722-1740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37422542

RESUMO

Selenium (Se) deficiency can affect the expression of microRNA (miRNA) and induce necroptosis, apoptosis, etc., resulting in damage to various tissues and organs. Bisphenol A (BPA) exposure can cause adverse consequences such as oxidative stress, endothelial dysfunction, and atherosclerosis. The toxic effects of combined treatment with Se-deficiency and BPA exposure may have a synergistic effect. We replicated the BPA exposure and Se-deficiency model in broiler to investigate whether the combined treatment of Se-deficiency and BPA exposure induced necroptosis and inflammation of chicken vascular tissue via the miR-26A-5p/ADAM17 axis. We found that Se deficiency and BPA exposure significantly inhibited the expression of miR-26a-5p and increased the expression of ADAM17, thereby increasing reactive oxygen species (ROS) production. Subsequently, we discovered that the tumor necrosis factor receptor (TNFR1), which was highly expressed, activated the necroptosis pathway through receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like (MLKL), and regulated the heat shock proteins-related genes expressions and inflammation-related genes expressions after exposure to BPA and selenium deficiency. In vitro, we found that miR-26a-5p knockdown and increased ADAM17 can induce necroptosis by activating the TNFR1 pathway. Similarly, both N-Acetyl-L-cysteine (NAC), Necrostatin-1 (Nec-1), and miR-26a-5p mimic prevented necroptosis and inflammation caused by BPA exposure and Se deficiency. These results suggest that BPA exposure activates the miR-26a-5p/ADAM17 axis and exacerbates Se deficient-induced necroptosis and inflammation through the TNFR1 pathway and excess ROS. This study lays a data foundation for future ecological and health risk assessments of nutrient deficiencies and environmental toxic pollution.


Assuntos
Compostos Benzidrílicos , MicroRNAs , Fenóis , Selênio , Animais , Apoptose , Galinhas/metabolismo , Inflamação/induzido quimicamente , MicroRNAs/genética , MicroRNAs/metabolismo , Necroptose , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Selênio/metabolismo
13.
Hum Immunol ; 85(1): 110738, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040544

RESUMO

OBJECTIVE: The aim of this study was to investigate the potential causal relationship between ankylosing spondylitis (AS) and ovarian cancer. METHODS: We conducted analyses utilizing publicly available pooled statistical data sets from genomewide association studies (GWAS) involving individuals of European ancestry. Our objective was to identify single nucleotide polymorphisms (SNPs) significantly associated with AS and use them as instrumental variables to assess the causal relationship between AS and ovarian cancer. We employed three statistical methods for two-sample Mendelian randomization: inverse variance weighting (IVW), weighted median, and MR-Egger regression. Network MR Analysis revealed the mediating role of tumor necrosis factor receptor superfamily member 21 between ankylosing spondylitis and ovarian cancer. RESULTS: From the GWAS on AS, we selected 23 instrumental SNPs that exhibited genome-wide significance. Our findings consistently demonstrated an association between AS and ovarian cancer using multiple statistical methods (IVW: odds ratio (OR) 1.147, 95% confidence interval (CI) 1.022-1.287; weighted median estimator: OR 1.177, 95% CI 1.009-1.373; MR-Egger regression: OR 1.166, 95% CI 0.958-1.418). These results indicate a positive correlation, suggesting that AS is associated with an increased risk of ovarian cancer. Furthermore, there was no evidence to suggest that the observed causal effect between AS and the risk of osteoarthritis was influenced by genetic pleiotropy (MR-Egger intercept = -0.0010644, P = 0.8433359). In addition, tumor necrosis factor receptor superfamily member 21 mediated 10.2% of the total effect size in the development of ankylosing spondylitis on ovarian cancer risk. CONCLUSION: Our Mendelian randomization analysis provides strong evidence supporting a potential causal relationship between AS and ovarian cancer risk, with ankylosing spondylitis clearly associated with an increased risk of ovarian cancer. Tumor necrosis factor receptor superfamily member 21 as a mediator involved in the occurrence and development of these two diseases.


Assuntos
Neoplasias Ovarianas , Espondilite Anquilosante , Humanos , Feminino , Espondilite Anquilosante/epidemiologia , Espondilite Anquilosante/genética , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Estudo de Associação Genômica Ampla , Nonoxinol , Receptores do Fator de Necrose Tumoral
14.
J Leukoc Biol ; 115(4): 771-779, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38159043

RESUMO

Eosinophils are typical effector cells associated with type 2 immune responses and play key roles in the pathogenesis of allergic diseases. These cells are activated by various stimuli, such as cytokines, chemokines, and growth factors, but the regulatory mechanisms of eosinophil effector functions remain unclear. Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR), a transmembrane protein belonging to the tumor necrosis factor (TNF) receptor superfamily, is a well-known regulatory molecule for T cell activation. Here, we show that GITR is also constitutively expressed on eosinophils and functions as a costimulatory molecule for these cells. Although degranulation was unaffected by GITR engagement of murine bone marrow-derived eosinophils, secretion of inflammatory cytokines such as interleukin (IL)-4, IL-6, and IL-13 from IL-33-activated bone marrow-derived eosinophils was augmented by anti-mouse GITR agonistic antibody (DTA-1). In conclusion, our results provide a new regulatory pathway of cytokine secretion from eosinophils in which GITR functions as a costimulatory molecule.


Assuntos
Eosinófilos , Glucocorticoides , Animais , Camundongos , Eosinófilos/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Receptores do Fator de Necrose Tumoral , Citocinas/metabolismo , Fatores de Necrose Tumoral , Fatores de Transcrição
15.
Vet Dermatol ; 35(2): 219-225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38111073

RESUMO

BACKGROUND: C-C motif chemokine ligand (CCL)5 induces skin inflammation in healthy dogs. In addition, CCL5 is overexpressed in the skin of experimental models of canine atopic dermatitis (cAD). Tumour necrosis factor (TNF)-α has been shown to be upregulated in cAD. However, it remains unclear whether TNF-α induces CCL5 production in canine keratinocytes. HYPOTHESIS/OBJECTIVES: To determine the effect of TNF-α on CCL5 production in canine keratinocyte culture and investigate possible synergy with interferon (IFN)-γ and interleukin (IL)-4. MATERIALS AND METHODS: CCL5 protein concentrations were measured by enzyme-linked immunosorbent assay (ELISA) in the culture supernatant of a cell line of canine progenitor epidermal keratinocyte (CPEK) cells stimulated with TNF-α with or without inhibitors of the TNF receptor signalling pathway. CCL5 protein concentrations also were measured in CPEK cells stimulated with TNF-α in the absence or presence of IFN-γ, a T-helper (Th)1-type cytokine, and/or IL-4, a Th2-type cytokine. RESULTS: TNF-α increased CCL5 production in CPEK cells in time- and dose-dependent manners. Inhibitors of the TNF receptor signalling pathway diminished CCL5 production. Although neither IFN-γ nor IL-4 alone induced CCL5 production in CPEK cells, the combination of TNF-α and IFN-γ, and not IL-4, synergistically enhanced CCL5 production in these cells. CONCLUSIONS AND CLINICAL RELEVANCE: TNF-α may be involved in skin inflammation in dogs by promoting CCL5 production in keratinocytes. Furthermore, the synergistic effect of TNF-α and IFN-γ suggests that the local Th1-type milieu may aggravate skin inflammation. Further studies are required to elucidate the role of TNF-α-induced CCL5 production of keratinocytes in the pathogenesis of cAD.


Assuntos
Dermatite Atópica , Doenças do Cão , Cães , Animais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-4 , Ligantes , Interferon gama/metabolismo , Queratinócitos , Citocinas/metabolismo , Dermatite Atópica/patologia , Dermatite Atópica/veterinária , Quimiocinas , Inflamação/veterinária , Receptores do Fator de Necrose Tumoral/metabolismo , Doenças do Cão/patologia
16.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139346

RESUMO

T cell depletion and functional impairment are characteristics of sepsis. CD137 is a costimulatory receptor on activated T cells, while soluble CD137 (sCD137) inhibits CD137 signaling. This study found elevated sCD137 levels in the plasma of patients with systemic inflammatory response syndrome (SIRS), sepsis, or septic shock compared to healthy controls. The sCD137 levels negatively correlated with the C-reactive protein and positively with procalcitonin and interleukin-6. There was no difference in sCD137 levels based on ventilation, dialysis, or vasopressor treatment. Patients with SARS-CoV-2, Gram-positive, or Gram-negative bacterial infections had similar sCD137 levels as noninfected individuals. Notably, higher plasma sCD137 levels were observed in non-survivors compared to survivors in both the SIRS/sepsis group and the SARS-CoV-2 subgroup. In conclusion, plasma sCD137 levels are associated with severe illness and survival in critically ill patients.


Assuntos
Estado Terminal , Sepse , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Humanos , Biomarcadores , Prognóstico , Receptores do Fator de Necrose Tumoral , Diálise Renal , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/sangue , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/química
17.
Nihon Yakurigaku Zasshi ; 158(6): 490-499, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37914330

RESUMO

Ozoralizumab, a novel TNF inhibitor, is the first NANOBODY® compound in Japan for rheumatoid arthritis. This compound consists of a humanized fusion protein with a trimeric structure having two anti-human TNFα NANOBODY® molecules and one anti-human serum albumin NANOBODY® molecule, and has the unique structure without an Fc portion. Ozoralizumab showed an inhibitory effect on TNFα-induced cell death, and its inhibitory concentration was lower than that of etanercept, adalimumab, and infliximab. Ozoralizumab also showed inhibitory effects on human TNFα-induced cellular infiltration in the murine air pouch model and reduced the arthritis scores in a murine rheumatoid arthritis model. In addition, ozoralizumab showed distinctive pharmacological characteristics different from the traditional IgG antibodies, which may be attributed to its unique structure, such as its ability to rapidly distribute to inflamed joint tissues in a murine rheumatoid arthritis model, and its immune complexes with TNFα do not induce inflammation in a murine subcutaneous inflammation model. In clinical trials, ozoralizumab demonstrated clinical efficacy in rheumatoid arthritis patients with inadequate response to methotrexate, which was observed from day 3 of treatment. Ozolalizumab also showed improvements in clinical symptoms in rheumatoid arthritis patients without methotrexate. The safety profile of the compound was not significantly different from that of current TNF inhibitors. Based on these results, ozoralizumab was approved in September 2022. Ozoralizumab shows early improvement of clinical symptoms in patients with rheumatoid arthritis, and its characteristic structure is expected to be new treatment options for patients who have an inadequate response to current bDMARDs.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Animais , Camundongos , Fator de Necrose Tumoral alfa/uso terapêutico , Metotrexato/uso terapêutico , Antirreumáticos/efeitos adversos , Japão , Seringas , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Receptores do Fator de Necrose Tumoral/uso terapêutico , Anticorpos Monoclonais/farmacologia , Infliximab/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/induzido quimicamente , Resultado do Tratamento , Inflamação
19.
ACS Nano ; 17(20): 19667-19684, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812740

RESUMO

The TWEAK receptor, Fn14, is a promising candidate for active targeting of cancer nanotherapeutics to many solid tumor types, including metastatic breast and primary brain cancers. Targeting of therapeutic nanoparticles (NPs) has been accomplished using a range of targeting moieties including monoclonal antibodies and related fragments, peptides, and small molecules. Here, we investigated a full-length Fn14-specific monoclonal antibody, ITEM4, or an ITEM4-Fab fragment as a targeting moiety to guide the development of a clinical formulation. We formulated NPs with varying densities of the targeting moieties while maintaining the decreased nonspecific adhesivity with receptor targeting (DART) characteristics. To model the conditions that NPs experience following intravenous infusion, we investigated the impact of serum exposure in relation to the targeting moiety type and surface density. To further evaluate performance at the cancer cell level, we performed experiments to assess differences in cellular uptake and trafficking in several cancer cell lines using confocal microscopy, imaging flow cytometry, and total internal reflection fluorescence microscopy. We observed that Fn14-targeted NPs exhibit enhanced cellular uptake in Fn14-high compared to Fn14-low cancer cells and that in both cell lines uptake levels were greater than observed with control, nontargeted NPs. We found that serum exposure increased Fn14-targeted NP specificity while simultaneously reducing the total NP uptake. Importantly, serum exposure caused a larger reduction in cancer cell uptake over time when the targeting moiety was an antibody fragment (Fab region of the monoclonal antibody) compared with the full-length monoclonal antibody targeting moiety. Lastly, we uncovered that full monoclonal antibody-targeted NPs enter cancer cells via clathrin-mediated endocytosis and traffic through the endolysosomal pathway. Taken together, these results support a pathway for developing a clinical formulation using a full-length Fn14 monoclonal antibody as the targeting moiety for a DART cancer nanotherapeutic agent.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/metabolismo , Linhagem Celular Tumoral , Anticorpos Monoclonais , Nanopartículas/química
20.
PLoS One ; 18(10): e0293027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37844090

RESUMO

A potential direct correlation between systemic inflammation and physiological aging has been suggested, along with whether there is a higher expression of inflammatory markers in otherwise healthy older adults. Cross-sectional data were extracted from the publicly available 2016 Health and Retirement Survey, a nationally representative survey of older adults in the United States. A subset of participants (n = 9934) consented to a blood draw at the time of recruitment and were measured for high sensitivity C-reactive protein (hs-CRP), Interleukin (IL-6, IL-10, IL-1RA), soluble tumor necrosis factor receptor (sTNFR-1) and transforming growth factor beta 1 (TGF-ß1). We included 9,188 participants, representative of 83,939,225 nationally. After adjusting for sex and the number of comorbidities, there remained a significant positive correlation between age and ln (log adjusted) IL-6, and ln sTNFR-1, and a significant inverse correlation between age and ln IL-1RA, ln TGF-ß1, and ln hs-CRP. Among the subset of participants who reported none of the available comorbidities (n = 971), there remained an independent correlation of age with ln IL-6 and ln sTNFR-1. After adjusting for age, sex, and number of reported comorbidities, there was a statistically significant correlation between increased ln IL-6, ln IL-10, ln sTNFR-1, and ln hs-CRP with death. This study highlights the existence of a correlation between serum biomarkers of inflammation and aging, not only in the whole population, but also in the smaller subset who reported no comorbidities, confirming the existence of a presence of low-grade inflammation in aging, even in healthy elders. We also highlight the existence of a correlation between inflammatory markers and overall mortality. Future studies should address a possible threshold of systemic inflammation where mortality significantly increases, as well as explore the effectiveness of anti-inflammatory treatments on morbidity and mortality in healthy aging subjects.


Assuntos
Proteína C-Reativa , Proteína Antagonista do Receptor de Interleucina 1 , Humanos , Idoso , Proteína C-Reativa/análise , Interleucina-10 , Interleucina-6 , Fator de Crescimento Transformador beta1 , Aposentadoria , Estudos Transversais , Inflamação , Biomarcadores , Receptores do Fator de Necrose Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...