Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 563
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116264, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564869

RESUMO

Triocresyl phosphate (TOCP) was commonly used as flame retardant, plasticizer, lubricant, and jet fuel additive. Studies have shown adverse effects of TOCP on the reproductive system. However, the potential harm brought by TOCP, especially to mammalian female reproductive cells, remains a mystery. In this study, we employed an in vitro model for the first time to investigate the effects of TOCP on the maturation process of mouse oocytes. TOCP exposure hampered the meiotic division process, as evidenced by a reduction in the extrusion of the first polar body from oocytes. Subsequent research revealed the disruption of the oocyte cell cytoskeleton induced by TOCP, resulting in abnormalities in spindle organization, chromosome alignment, and actin filament distribution. This disturbance further extended to the rearrangement of organelles within oocytes, particularly affecting the mitochondria. Importantly, after TOCP treatment, mitochondrial function in oocytes was impaired, leading to oxidative stress, DNA damage, cell apoptosis, and subsequent changes of epigenetic modifications. Supplementation with nicotinamide mononucleotide (NMN) alleviated the harmful effects of TOCP. NMN exerted its mitigating effects through two fundamental mechanisms. On one hand, NMN conferred stability to the cell cytoskeleton, thereby supporting nuclear maturation. On the other hand, NMN enhanced mitochondrial function within oocytes, reducing the excess reactive oxygen species (ROS), restoring meiotic division abnormalities caused by TOCP, preventing oocyte DNA damage, and suppressing epigenetic changes. These findings not only enhance our understanding of the molecular basis of TOCP induced oocyte damage but also offer a promising avenue for the potential application of NMN in optimizing reproductive treatment strategies.


Assuntos
Mononucleotídeo de Nicotinamida , Fosfatos , Tritolil Fosfatos , Feminino , Camundongos , Animais , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Fosfatos/metabolismo , Oócitos , Citoesqueleto , Mitocôndrias , Espécies Reativas de Oxigênio/metabolismo , Mamíferos
2.
Food Funct ; 15(6): 3199-3213, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38445897

RESUMO

Ageing is defined as the degeneration of physiological functions in numerous tissues and organs of an organism, which occurs with age. As we age, the gut undergoes a series of changes and weaknesses that may contribute to overall ageing. Emerging evidence suggests that ß-nicotinamide mononucleotide (NMN) plays a role in regulating intestinal function, but there is still a lack of literature on its role in maintaining the colon health of ageing mice. In our research, Zmpste24-/- mice proved that NMN prolonged their life span and delayed senescence. This study was designed to investigate the effects of long-term intervention on regulating colon function in ageing mice. Our results indicated that NMN improved the pathology of intestinal epithelial cells and intestinal permeability by upregulating the expression of intestinal tight junction proteins and the number of goblet cells, increasing the release of anti-inflammatory factors, and increasing beneficial intestinal bacteria. NMN increased the expression of the proteins SIRT1, NMNAT2, and NMNAT3 and decreased the expression of the protein P53. It also regulated the activity of ISCs by increasing Wnt/ß-catenin and Lgr5. Our findings also revealed that NMN caused a significant increase in the relative abundance of Akkermansia muciniphila and Bifidobacterium pseudolongum and notable differences in metabolic pathways related to choline metabolism in cancer. In summary, NMN supplementation can delay frailty in old age, aid healthy ageing, and delay gut ageing.


Assuntos
Longevidade , Mononucleotídeo de Nicotinamida , Camundongos , Animais , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Envelhecimento , Suplementos Nutricionais , Colo/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473844

RESUMO

Nicotinamide mononucleotide (NMN) has emerged as a promising therapeutic intervention for age-related disorders, including type 2 diabetes. In this study, we confirmed the previously observed effects of NMN treatment on glucose uptake and investigated its underlying mechanisms in various tissues and cell lines. Through the most comprehensive proteomic analysis to date, we discovered a series of novel organ-specific effects responsible for glucose uptake as measured by the IPGTT: adipose tissue growing (suggested by increased protein synthesis and degradation and mTOR proliferation signaling upregulation). Notably, we observed the upregulation of thermogenic UCP1, promoting enhanced glucose conversion to heat in intermuscular adipose tissue while showing a surprising repressive effect on mitochondrial biogenesis in muscle and the brain. Additionally, liver and muscle cells displayed a unique response, characterized by spliceosome downregulation and concurrent upregulation of chaperones, proteasomes, and ribosomes, leading to mildly impaired and energy-inefficient protein synthesis machinery. Furthermore, our findings revealed remarkable metabolic rewiring in the brain. This involved increased production of ketone bodies, downregulation of mitochondrial OXPHOS and TCA cycle components, as well as the induction of well-known fasting-associated effects. Collectively, our data elucidate the multifaceted nature of NMN action, highlighting its organ-specific effects and their role in improving glucose uptake. These findings deepen our understanding of NMN's therapeutic potential and pave the way for novel strategies in managing metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Mononucleotídeo de Nicotinamida , Humanos , Mononucleotídeo de Nicotinamida/metabolismo , Biogênese de Organelas , Proteômica , Tecido Adiposo/metabolismo , Glucose , NAD/metabolismo
4.
Commun Biol ; 7(1): 255, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429435

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) via the nicotinamide (NAM) salvage pathway. While the structural biochemistry of eukaryote NAMPT has been well studied, the catalysis mechanism of prokaryote NAMPT at the molecular level remains largely unclear. Here, we demonstrated the NAMPT-mediated salvage pathway is functional in the Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) for the synthesis of NAD+, and the enzyme activity of NAMPT in this bacterium is significantly higher than that of human NAMPT in vitro. Our structural analyses of Xcc NAMPT, both in isolation and in complex with either the substrate NAM or the product nicotinamide mononucleotide (NMN), uncovered significant details of substrate recognition. Specifically, we revealed the presence of a NAM binding tunnel that connects the active site, and this tunnel is essential for both catalysis and inhibitor binding. We further demonstrated that NAM binding in the tunnel has a positive cooperative effect with NAM binding in the catalytic site. Additionally, we discovered that phosphorylation of the His residue at position 229 enhances the substrate binding affinity of Xcc NAMPT and is important for its catalytic activity. This work reveals the importance of NAMPT in bacterial NAD+ synthesis and provides insights into the substrate recognition and the catalytic mechanism of bacterial type II phosphoribosyltransferases.


Assuntos
Niacinamida , Xanthomonas campestris , Humanos , Niacinamida/metabolismo , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Xanthomonas campestris/metabolismo , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , Fosforilação
5.
Mech Ageing Dev ; 218: 111917, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430946

RESUMO

Nicotinamide mononucleotide (NMN) is a precursor of nicotinamide adenine dinucleotide (NAD), which declines with age. Supplementation of NMN has been shown to improve blood NAD concentration. However, the optimal NMN dose remains unclear. This is a post-hoc analysis of a double-blinded clinical trial involving 80 generally healthy adults aged 40-65 years. The participants received a placebo or daily 300 mg, 600 mg, or 900 mg NMN for 60 days. Blood NAD concentration, blood biological age, homeostatic model assessment for insulin resistance, 6-minute walk test, and 36-item short-form survey (SF-36) were measured at baseline and after supplement. A significant dose-dependent increase in NAD concentration change (NADΔ) was observed following NMN supplementation, with a large coefficient of variation (29.2-113.3%) within group. The increase in NADΔ was associated with an improvement in the walking distance of 6-minute walk test and the SF-36 score. The median effect dose of NADΔ for the 6-minute walk test and SF-36 score was 15.7 nmol/L (95% CI: 10.9-20.5 nmol/L) and 13.5 nmol/L (95% CI; 10.5-16.5 nmol/L), respectively. Because of the high interindividual variability of the NADΔ after NMN supplementation, monitoring NAD concentration can provide valuable insights for tailoring personalized dosage regimens and optimizing NMN utilization.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , Suplementos Nutricionais , Adulto , Pessoa de Meia-Idade , Idoso , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Adipocyte ; 13(1): 2313297, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38316756

RESUMO

Nicotinamide Adenine Dinucleotide (NAD) is an endogenous substance in redox reactions and regulates various functions in metabolism. NAD and its precursors are known for their anti-ageing and anti-obesity properties and are mainly active in the liver and muscle. Boosting NAD+ through supplementation with the precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), enhances insulin sensitivity and circadian rhythm in the liver, and improves mitochondrial function in the muscle. Recent evidence has revealed that the adipose tissue could be another direct target of NAD supplementation by attenuating inflammation and fat accumulation. Moreover, murine studies with genetically modified models demonstrated that nicotinamide phosphoribosyltransferase (NAMPT), a NAD regulatory enzyme that synthesizes NMN, played a critical role in lipogenesis and lipolysis in an adipocyte-specific manner. The tissue-specific effects of NAD+ metabolic pathways indicate a potential of the NAD precursors to control metabolic stress particularly via focusing on adipose tissue. Therefore, this narrative review raises an importance of NAD metabolism in white adipose tissue (WAT) through a variety of studies using different mouse models.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Tecido Adiposo/metabolismo , Fígado/metabolismo , Obesidade
7.
J Agric Food Chem ; 72(7): 3302-3313, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330904

RESUMO

Nicotinamide mononucleotide (NMN) has garnered substantial interest as a functional food product. Industrial NMN production relies on chemical methods, facing challenges in separation, purification, and regulatory complexities, leading to elevated prices. In contrast, NMN biosynthesis through fermentation or enzyme catalysis offers notable benefits like eco-friendliness, recyclability, and efficiency, positioning it as a primary avenue for future NMN synthesis. Enzymatic NMN synthesis encompasses the nicotinamide-initial route and nicotinamide ribose-initial routes. Key among these is nicotinamide riboside kinase (NRK), pivotal in the latter route. The NRK-mediated biosynthesis is emerging as a prominent trend due to its streamlined route, simplicity, and precise specificity. The essential aspect is to obtain an engineered NRK that exhibits elevated activity and robust stability. This review comprehensively assesses diverse NMN synthesis methods, offering valuable insights into efficient, sustainable, and economical production routes. It spotlights the emerging NRK-mediated biosynthesis pathway and its significance. The establishment of an adenosine triphosphate (ATP) regeneration system plays a pivotal role in enhancing NMN synthesis efficiency through NRK-catalyzed routes. The review aims to be a reference for researchers developing green and sustainable NMN synthesis, as well as those optimizing NMN production.


Assuntos
Trifosfato de Adenosina , Mononucleotídeo de Nicotinamida , Mononucleotídeo de Nicotinamida/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise , NAD/metabolismo
8.
Circ Res ; 134(5): 505-525, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422177

RESUMO

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Assuntos
Cardiomiopatias , Resistência à Insulina , Animais , Camundongos , Ratos , Adenosina Trifosfatases , Arginina , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Antígenos CD36/genética , Fibrose , Inflamação , Leucina , Lipídeos , Lisina , Alvo Mecanístico do Complexo 1 de Rapamicina , Miócitos Cardíacos , Mononucleotídeo de Nicotinamida , Receptor 4 Toll-Like/genética
9.
Biotechnol J ; 19(2): e2300748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403401

RESUMO

Enzymatic synthesis of ß-nicotinamide mononucleotide (NMN) from D-ribose has garnered widespread attention due to its cheap material, the use of mild reaction conditions, and the ability to produce highly pure products with the desired optical properties. However, the overall NMN yield of this method is impeded by the low activity of rate-limiting enzymes. The ribose-phosphate diphosphokinase (PRS) and nicotinamide phosphoribosyltransferase (NAMPT), that control the rate of the reaction, were engineered to improve the reaction efficacy. The actives of mutants PRS-H150Q and NAMPT-Y15S were 334% and 57% higher than that of their corresponding wild-type enzymes, respectively. Furthermore, by adding pyrophosphatase, the byproduct pyrophosphate which can inhibit the activity of NAMPT was degraded, leading to a 6.72% increase in NMN yield. Following with reaction-process reinforcement, a high yield of 8.10 g L-1 NMN was obtained after 3 h of reaction, which was 56.86-fold higher than that of the stepwise reaction synthesis (0.14 g L-1 ), indicating that the in vitro enzymatic synthesis of NMN from D-ribose and niacinamide is an economical and feasible route.


Assuntos
Mononucleotídeo de Nicotinamida , Ribose , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Niacinamida/metabolismo , Engenharia de Proteínas , NAD/metabolismo
10.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398550

RESUMO

ß-Nicotinamide mononucleotide (NMN) has shown promising effects on intestinal health, and it is extensively applied as an anti-aging and Alzheimer's disease therapeutic, due to its medicinal properties. The effects of NMN on the growth of mouse hair were observed after hair removal. The results indicated that NMN can reverse the state of hair follicle atrophy, hair thinning, and hair sparsity induced by dihydrotestosterone (DHT), compared to that of minoxidil. In addition, the action mechanisms of NMN promoting hair growth in cultured human dermal papilla cells (HDPCs) treated with DHT were investigated in detail. The incubation of HDPCs with DHT led to a decrease in cell viability and the release of inflammatory mediators, including interleukin-6 (IL-6), interleukin-1Beta (IL-1ß) and tumor necrosis factor Alpha (TNF-α). It was found that NMN can significantly lower the release of inflammatory factors induced by DHT in HDPCs. HDPCs cells are protected from oxidative stress damage by NMN, which inhibits the NF-κB p65 inflammatory signaling pathway. Moreover, the levels of androgen receptor (AR), dickkopf-1 (DKK-1), and ß-catenin in the HDPCs were assessed using PCR, indicating that NMN can significantly enhance the expression of VEGF, reduced IL-6 levels and suppress the expression of AR and DKK-1, and notably increase ß-catenin expression in DHT-induced HDPCs.


Assuntos
Mononucleotídeo de Nicotinamida , beta Catenina , Animais , Camundongos , Humanos , beta Catenina/metabolismo , Interleucina-6/metabolismo , Cabelo , Folículo Piloso/metabolismo , Di-Hidrotestosterona/metabolismo , Proliferação de Células , Estresse Oxidativo
11.
Free Radic Biol Med ; 214: 69-79, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336100

RESUMO

Cyclooxygenase-2 (COX-2) is an inducible enzyme responsible for prostaglandin synthesis during inflammation and immune responses. Our previous results show that NAD+ level decreased in activated macrophages while nicotinamide mononucleotide (NMN) supplementation suppressed the inflammatory responses via restoring NAD+ level and downregulating COX-2. However, whether NMN downregulates COX-2 in mouse model of inflammation, and its underlying mechanism needs to be further explored. In the present study, we established LPS- and alum-induced inflammation model and demonstrated that NMN suppressed the inflammatory responses in vivo. Quantitative proteomics in mouse peritoneal macrophages identified that NMN activated AhR signaling pathway in activated macrophages. Furthermore, we revealed that NMN supplementation led to IDO1 activation and kynurenine accumulation, which caused AhR nuclear translocation and activation. On the other hand, AhR or IDO1 knockout abolished the effects of NMN on suppressing COX-2 expression and inflammatory responses in macrophages. In summary, our results demonstrated that NMN suppresses inflammatory responses by activating IDO-kynurenine-AhR pathway, and suggested that administration of NMN in early-stage immuno-activation may cause an adverse health effect.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Cinurenina , Animais , Camundongos , Ciclo-Oxigenase 2/genética , Mononucleotídeo de Nicotinamida , NAD , Macrófagos , Inflamação , Transdução de Sinais , Suplementos Nutricionais
12.
Biochem Biophys Res Commun ; 702: 149590, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340651

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is the fundamental molecule that performs numerous biological reactions and is crucial for maintaining cellular homeostasis. Studies have found that NAD+ decreases with age in certain tissues, and age-related NAD+ depletion affects physiological functions and contributes to various aging-related diseases. Supplementation of NAD+ precursor significantly elevates NAD+ levels in murine tissues, effectively mitigates metabolic syndrome, enhances cardiovascular health, protects against neurodegeneration, and boosts muscular strength. Despite the versatile therapeutic functions of NAD+ in animal studies, the efficacy of NAD+ precursors in clinical studies have been limited compared with that in the pre-clinical study. Clinical studies have demonstrated that NAD+ precursor treatment efficiently increases NAD+ levels in various tissues, though their clinical proficiency is insufficient to ameliorate the diseases. However, the latest studies regarding NAD+ precursors and their metabolism highlight the significant role of gut microbiota. The studies found that orally administered NAD+ intermediates interact with the gut microbiome. These findings provide compelling evidence for future trials to further explore the involvement of gut microbiota in NAD+ metabolism. Also, the reduced form of NAD+ precursor shows their potential to raise NAD+, though preclinical studies have yet to discover their efficacy. This review sheds light on NAD+ therapeutic efficiency in preclinical and clinical studies and the effect of the gut microbiota on NAD+ metabolism.


Assuntos
Suplementos Nutricionais , NAD , Camundongos , Animais , NAD/metabolismo , Envelhecimento/metabolismo , Niacinamida/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo
13.
Int J Biol Macromol ; 261(Pt 2): 129905, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311136

RESUMO

Efficient bone reconstruction, especially of the critical size after bone damage, remains a challenge in the clinic. Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation is considered as a promising strategy for bone repair. Nicotinamide adenine dinucleotide (NAD+) regulating BMSC fate and cellular function enhance osteogenesis, but is hardly delivered and lack of targeting. Herein, a novel and biocompatible scaffold was fabricated to locally deliver a precursor of NAD+, nicotinamide mononucleotide (NMN) to the bone defect site, and its bone repair capability and healing mechanism were clarified. NMN-based hyaluronic acid methacryloyl hybrid hydrogel scaffold (denoted as NMN/HAMA) was prepared via photopolymerization. In vitro RT-qPCR analysis, western blotting, Elisa and alizarin red S staining assays demonstrated that the NMN/HAMA hybrid hydrogel regulated BMSCs cellular function in favour of osteogenic differentiation and mineralization by upregulating the mRNA and proteins expression of the osteogenic genes type I pro-collagen (Col-1), bone morphogenic protein 4 (BMP4), and runt-related transcription factor 2 (RUNX2) via the SIRT1 pathway. Implantation of such hybrid hydrogels significantly enhanced bone regeneration in rodent critical calvarial defect models. Furthermore, restoration of the bone defect with NMN administration was inhibited in Prx1 Cre+; SIRT1flox/flox mice, confirming that the NMN/HAMA hybrid hydrogel scaffold promoted bone regeneration via the SIRT1-RUNX2 pathway. These results imply that NMN-based scaffold may be a promising and economic strategy for the treatment of bone defects.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Ácido Hialurônico/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regeneração Óssea , Diferenciação Celular
14.
Food Res Int ; 177: 113779, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225109

RESUMO

Nicotinamide Mononucleotide (NMN) is a derivative of vitamin B3, which plays a significant role in a plethora of metabolic reactions in the human body and is intricately associated with both immunity and metabolism. Nonetheless, in the intestine metabolic pathway of NMN and the relationship between NMN, gut microbiota, and SCFAs remain hitherto obscure. This study examined the digestion of NMN in simulated saliva, gastric, and small intestine environments, as well as exploring the interaction between NMN and human gut microbiota utilizing an in vitro fermentation model. NMN was progressively degraded into nicotinamide ribose (NR), nicotinamide (NAM), and ribose, with niacinate (NA) constituting the ultimate degradation product due to hydrolysis and metabolism by microbiota. NMN was ingested by human intestinal microbiota with a slower fermentation rate. As a result of NMN ingestion by human gut bacteria,the concentrations of propionate and butyrate increased by 88% and 23%, respectively, compared to the blank control group, the proliferation of beneficial gut bacteria (Bifidobacterium, Phascolarctobacterium, Faecalibacteriun, and Alistipes) significantly increased, while the proliferation of some harmful bacteria (Sutterella, Desulfovibrio and Pseudomonas) drastically declined. These findings illustrated the metabolic processes of NMN in the intestine, elaborating the relationship between NMN, SCFAs and gut microbiota. NMN might be a potential prebiotic to improve intestinal health.


Assuntos
Microbioma Gastrointestinal , Humanos , Fermentação , Mononucleotídeo de Nicotinamida/metabolismo , Saliva/metabolismo , Digestão
15.
Endocr J ; 71(2): 153-169, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38191197

RESUMO

Obesity and aging are major risk factors for several life-threatening diseases. Accumulating evidence from both rodents and humans suggests that the levels of nicotinamide adenine dinucleotide (NAD+), a regulator of many biological processes, declines in multiple organs and tissues with aging and obesity. Administration of an NAD+ intermediate, nicotinamide mononucleotide (NMN), replenishes intracellular NAD+ levels and mitigates aging- and obesity-associated derangements in animal models. In this human clinical study, we aimed to investigate the safety and effects of 8-week oral administration of NMN on biochemical, metabolic, ophthalmologic, and sleep quality parameters as well as on chronological alterations in NAD+ content in peripheral tissues. An 8-week, single-center, single-arm, open-label clinical trial was conducted. Eleven healthy, middle-aged Japanese men received two 125-mg NMN capsules once daily before breakfast. The 8-week NMN supplementation regimen was well-tolerated; NAD+ levels in peripheral blood mononuclear cells increased over the course of NMN administration. In participants with insulin oversecretion after oral glucose loading, NMN modestly attenuated postprandial hyperinsulinemia, a risk factor for coronary artery disease (n = 3). In conclusion, NMN overall safely and effectively boosted NAD+ biosynthesis in healthy, middle-aged Japanese men, showing its potential for alleviating postprandial hyperinsulinemia.


Assuntos
Hiperinsulinismo , NAD , Masculino , Pessoa de Meia-Idade , Animais , Humanos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Leucócitos Mononucleares/metabolismo , Japão , Obesidade , Sono , Suplementos Nutricionais
16.
EMBO J ; 43(3): 362-390, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212381

RESUMO

Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.


Assuntos
Insuficiência Cardíaca , Doenças Mitocondriais , Humanos , NAD/metabolismo , NF-kappa B/metabolismo , Proteína Sequestossoma-1/genética , Homeostase , Autofagia , Mononucleotídeo de Nicotinamida
17.
Mol Carcinog ; 63(4): 577-588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38197493

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy worldwide. Herein, we investigated the role of nicotinamide mononucleotide (NMN) in HCC progression. HCC cells were treated with NMN (125, 250, and 500 µM), and then nicotinamide adenine dinucleotide (NAD+ ) and NADH levels in HCC cells were measured to calculate NAD+ /NADH ratio. Cell proliferation, apoptosis, autophagy and ferroptosis were determined. AMPK was knocked down to confirm the involvement of AMPK/mTOR signaling. Furthermore, tumor-inhibitory effect of NMN was investigated in xenograft models. Exposure to NMN dose-dependently increased NAD+ level and NAD+ /NADH ratio in HCC cells. After NMN treatment, cell proliferation was inhibited, whereas apoptosis was enhanced in both cell lines. Additionally, NMN dose-dependently enhanced autophagy/ferroptosis and activated AMPK/mTOR pathway in HCC cells. AMPK knockdown partially rescued the effects of NMN in vitro. Furthermore, NMN treatment restrained tumor growth in nude mice, activated autophagy/ferroptosis, and promoted apoptosis and necrosis in tumor tissues. The results indicate that NMN inhibits HCC progression by inducing autophagy and ferroptosis via AMPK/mTOR signaling. NMN may serve as a promising agent for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , NAD , Proteínas Quinases Ativadas por AMP , Mononucleotídeo de Nicotinamida , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Serina-Treonina Quinases TOR , Nucleotídeos , Autofagia
18.
Graefes Arch Clin Exp Ophthalmol ; 262(3): 689-700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37335334

RESUMO

PURPOSE: The burden of ocular diseases has been gradually increasing worldwide. Various factors are suggested for the development and progression of ocular diseases, such as ocular inflammation, oxidative stress, and complex metabolic dysregulation. Thus, managing ocular diseases requires the modulation of pathologic signaling pathways through many mechanisms. Nicotinamide mononucleotide (NMN) is a bioactive molecule naturally found in life forms. NMN is a direct precursor of the important molecule nicotinamide adenine dinucleotide (NAD+), an essential co-enzyme required for enormous cellular functions in most life forms. While the recent experimental evidence of NMN treatment in various metabolic diseases has been well-reviewed, NMN treatment in ocular diseases has not been comprehensively summarized yet. In this regard, we aimed to focus on the therapeutic roles of NMN treatment in various ocular diseases with recent advances. METHODS: How we came to our current opinion with a recent summary was described based on our own recent reports as well as a search of the related literature. RESULTS: We found that NMN treatment might be available for the prevention of and protection from various experimental ocular diseases, as NMN treatment modulated ocular inflammation, oxidative stress, and complex metabolic dysregulation in murine models for eye diseases such as ischemic retinopathy, corneal defect, glaucoma, and age-related macular degeneration. CONCLUSION: Our current review suggests and discusses new modes of actions of NMN for the prevention of and protection from various ocular diseases and can urge future research to obtain more solid evidence on a potential future NMN treatment in ocular diseases at the preclinical stages.


Assuntos
Glaucoma , Degeneração Macular , Humanos , Animais , Camundongos , Mononucleotídeo de Nicotinamida , Olho , Inflamação
19.
Physiol Genomics ; 56(2): 136-144, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009223

RESUMO

Exercise is beneficial for obesity, partially through increased mitochondrial activity and raised nicotinamide adenine dinucleotide (NAD), a coenzyme critical for mitochondrial function and metabolism. Recent work has shown that increasing the availability of NAD through pharmacological means improves metabolic health in rodent models of diet-induced obesity and that the effect of these supplements when administered orally may be modulated by the gut microbiome. The gut microbiome is altered by both diet and exercise and is thought to contribute to some aspects of high-fat diet-induced metabolic dysfunction. We examined the independent and combined effects of treadmill exercise and nicotinamide mononucleotide (NMN) supplementation on the gut microbiome of female C57Bl6/J mice chronically fed a high-fat diet. We showed that 8 wk of treadmill exercise, oral-administered NMN, or combined therapy exert unique effects on gut microbiome composition without changing bacterial species richness. Exercise and NMN exerted additive effects on microbiota composition, and NMN partially or fully restored predicted microbial functions, specifically carbohydrate and lipid metabolism, to control levels. Further research is warranted to better understand the mechanisms underpinning the interactions between exercise and oral NAD+ precursor supplementation on gut microbiome.NEW & NOTEWORTHY Exercise and NAD+ precursor supplementation exerted additive and independent effects on gut microbiota composition and inferred function in female mice with diet-induced obesity. Notably, combining exercise and oral nicotinamide mononucleotide supplementation restored inferred microbial functions to control levels, indicating that this combination may improve high-fat diet-induced alterations to microbial metabolism.


Assuntos
Dieta Hiperlipídica , Microbiota , Feminino , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , NAD , Mononucleotídeo de Nicotinamida/farmacologia , Obesidade/metabolismo , Camundongos Endogâmicos C57BL
20.
Int Immunopharmacol ; 127: 111328, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38064810

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential element in cellular metabolism that regulates fundamental biological processes. Growing evidence suggests that a decline in NAD+ is a common pathological factor in various diseases and aging. However, its role in airway epithelial barrier function in response to asthma remains underexplored. The current study aims to explore the efficacy of restoring cellular NAD+ concentration through supplementation with the NAD+ precursor, nicotinamide mononucleotide (NMN), in the treatment of allergic asthma and to investigate the role of SIRT3 in mediating the effects of NAD+ precursors. In this research, NMN alleviated airway inflammation and reduced mucus secretion in house dust mite (HDM)-induced asthmatic mice. It also mitigated airway epithelial barrier disruption in HDM-induced asthma in vitro and in vivo. But inhibition of SIRT3 expression abolished the effects of NMN. Mechanistically, HDM induced SIRT3 SUMOylation and proteasomal degradation. Mutation of these two SIRT3 SUMO modification sites enhanced the stability of SIRT3. Additionally, SIRT3 was targeted by SENP1 which acted to de-conjugate SUMO. And down-regulation of SENP1 expression in HDM-induced models was reversed by NMN. Collectively, these findings suggest that NMN attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Blockage of SIRT3 SUMOylation emerges as for the treatment of allergic asthma.


Assuntos
Asma , Sirtuína 3 , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sumoilação , Pyroglyphidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...