Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.111
Filtrar
1.
Acc Chem Res ; 57(6): 933-944, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501206

RESUMO

ConspectusNuclear medicine harnesses radioisotopes for the diagnosis and treatment of disease. While the isotopes 99mTc and 111In have enabled the clinical diagnosis of millions of patients over the past 3 decades, more recent clinical translation of numerous 68Ga/177Lu-based radiopharmaceuticals for diagnostic imaging and therapy underscores the clinical utility of metal-based radiopharmaceuticals in mainstream cancer treatment. In addition to such established radionuclides, advancements in radioisotope production have enabled the production of radionuclides with a broad range of half-lives and emission properties of interest for nuclear medicine. Chemical means to form kinetically inert, in vivo-compatible species that can be modified with disease-targeting vectors is imperative. This presents a challenge for radiosiotopes of elements where the aqueous chemistry is still underdeveloped and poorly understood. Here, we discuss our efforts to date in exploring the aqueous, radioactive coordination chemistry of highly Lewis acidic metal ions and how our discoveries apply to the diagnosis and treatment of cancer in preclinical models of disease. The scope of this Account includes approaches to aqueous coordination of to-date understudied highly Lewis acidic metal ions with radioisotopes of emerging interest and the modulation of well-understood coordination environments of radio-coordination complexes to induce metal-catalyzed reactivity for separation and pro-drug applications.First, we discuss the development of seven-coordinate, small-cavity macrocyclic chelator platform mpatcn/picaga as an exemplary case study, which forms robust complexes with 44Sc/47Sc isotopes. Due to the high chemical hardness and pronounced Lewis acidity of the Sc3+ ion, the displacement of ternary ligand H2O by 18/natF- can be achieved to form an inert Sc-18/natF bond. Corresponding coordination complex natSc-18F is in vivo compatible and forms a theranostic tetrad with corresponding 44Sc/47Sc, 177Lu complexes all exhibiting homologous biodistribution profiles. Another exceptionally hard, highly Lewis acidic ion with underdeveloped aqueous chemistry and emerging interest in nuclear medicine is 45Ti4+. To develop de novo approaches to the mononuclear chelation of this ion under aqueous conditions, we employed a fragment-based bidentate ligand screening approach which identified two leads. The screen successfully predicted the formation of [45Ti][Ti(TREN-CAM)], a Ti-triscatechol complex that exhibits remarkable in vivo stability. Furthermore, the fragment-based screen also identified approaches that enabled solid-phase separation of Ti4+ and Sc3+ of interest in streamlining the isotope production of 45Ti and accessing new ways to separate 44Ti/44Sc for the development of a long-lived generator system. In addition to establishing the inert chelation of Ti4+ and Sc3+, we introduce controlled, metal-induced reactivity of corresponding coordination complexes on macroscopic and radiotracer scales. Metal-mediated autolytic amide bond cleavage (MMAAC) enables the temperature-dependent release of high-molar-activity, ready-to-inject radiopharmaceuticals; cleavage is selectively triggered by coordinated trivalent Lewis acid nat/68Ga3+ or Sc3+. Following the scope of reactivity and mechanistic studies, we validated MMAAC for the synthesis of high-molar-activity radiopharmaceuticals to image molecular targets with low expression and metal-mediated prodrug hydrolysis in vivo.This Account summarizes how developing the aqueous coordination chemistry and tuning the chemical reactivity of metal ions with high Lewis acidity at the macroscopic and tracer scales directly apply to the radiopharmaceutical synthesis with clinical potential.


Assuntos
Complexos de Coordenação , Medicina Nuclear , Humanos , Compostos Radiofarmacêuticos/química , Ácidos de Lewis , Complexos de Coordenação/química , Ligantes , Distribuição Tecidual , Radioisótopos/química , Quelantes/química , Metais , Íons
2.
Yakugaku Zasshi ; 144(3): 291-297, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432939

RESUMO

Recently, radiotheranostics, which systematically combines diagnosis by nuclear medicine imaging and treatment by internal radiotherapy, constitutes a new modality in cancer treatment, with some clinical reports showing marked effects on cancer. We have been developing multifunctional chelates containing a target recognition unit, a radiation release unit, and a radioactivity pharmacokinetics control unit in the same molecule to develop efficient agents for cancer radiotheranostics based on chemical control of radioactivity pharmacokinetics. Using these compounds, we have achieved improved cancer accumulation and reduced renal accumulation in tumor-bearing mice, and have developed novel hybrid radiotheranostic agents that can be applied to simultaneously perform target-specific molecular imaging using γ-ray emitting radionuclides and internal radiotherapy using α-particle-emitting radionuclides. For example, 111In/225Ac-labeled PSMA-DA1, which targets prostate-specific membrane antigen (PSMA) for radiotheranostics, achieved clear in vivo imaging of PSMA in tumor-bearing mice and showed marked tumor growth inhibition. In addition to PSMA, this platform for radiotheranostics has also shown efficacy against various cancer target molecules, including carbonic anhydrase IX (CA-IX), which is highly expressed in hypoxic regions of cancer, and glucagon-like peptide-1 receptor (GLP-1R), which is highly expressed in insulinomas. This review presents these recent results of our studies on radiotheranostics for cancer.


Assuntos
Neoplasias , Radioatividade , Masculino , Animais , Camundongos , Quelantes , Hipóxia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radioisótopos
3.
Huan Jing Ke Xue ; 45(3): 1803-1811, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471891

RESUMO

To investigate the effect of chelating agents on plant uptake of heavy metals, castor (Ricinus communis L.) was used as the test plant. Soil culture and pot experiments were conducted to study the effects of different concentrations of ethylenediamine disuccinic acid (EDDS) on the forms of Cu and Cd in soil and their absorption and transport by castor. The results showed that the application of EDDS significantly increased the content of available Cu and Cd. After 15 days of cultivation, the available Cu and Cd concentrations in the soil increased by 43.01%-103.55% and 51.78%-69.43%, respectively. EDDS promoted the conversion of reducible Cu to weak acid extractable and increased the mobility of Cu. Meanwhile, the application of EDDS promoted the absorption, transport, and enrichment of Cu in castor. Under the application of 2.5 mmol·kg-1 EDDS and 5.0 mmol·kg-1 EDDS, the Cu concentrations in the shoots were 4.88 times and 16.65 times higher than that of the control (P< 0.05), and the Cu concentrations in the roots were 2.89 times and 3.60 times higher than that of the control (P< 0.05), respectively. The Cu transport coefficient significantly increased by 72.73% and 381.82% when treated with EDDS 2.5 and EDDS 5.0. Simultaneously, the phytoextraction of Cu in shoots, roots, and their sum were 14.08, 2.16, and 4.70 times higher than that of the control (P<0.05), respectively, when treated with EDDS 5.0. Furthermore, EDDS significantly increased the Cd concentrations in castor. When treated with EDDS 2.5 the shoots and roots increased by 15.15% and 57.42%, respectively, and the phytoextraction of total Cd significantly increased by 13.44%. Generally, the EDDS treatment could increase the available Cu and Cd in soil, promote the uptake of Cu and Cd, and improve the phytoremediation efficiency of castor. Among them, the addition of 5.0 mmol·kg-1 EDDS had the best effect for Cu, whereas the addition of 2.5 mmol kg-1 EDDS had a higher increase in the phytoextraction of Cd.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Solo , Poluentes do Solo/análise , Metais Pesados/análise , Etilenodiaminas , Quelantes/farmacologia , Biodegradação Ambiental , Succinatos/farmacologia
4.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474456

RESUMO

A series of new chelating bidentate (SS) alkylimidazole-2-thione-Ru(II)/Os(II) complexes (3ai, 3aii, 3aiii, 3bii/4aiii, 4bi, 4bii), and the tridentate (SNS) pyridine-2,6-diylimidazole-2-thione-Ru(II)/Os(II) complexes (5bi, 5civ/6bi, 6ci, 6civ) in the forms [MII(cym)(L)Cl]PF6 and [MII(cym)(L)]PF6 (M = Ru or Os, cym = η6-p-cymene, and L = heterocyclic derivatives of thiourea) respectively, were successfully synthesized. Spectroscopic and analytical methods were used to characterize the complexes and their ligands. Solid-state single-crystal X-ray diffraction analyses revealed a "piano-stool" geometry around the Ru(II) or Os(II) centers in the respective complexes. The complexes were investigated for in vitro chemotherapeutic activities against human cervical carcinoma (HeLa) and the non-cancerous cell line (Hek293) using the MTT assay. The compounds 3aii, 5civ, 5bi, 4aiii, 6ci, 6civ, and the reference drug, 5-fluorouracil were found to be selective toward the tumor cells; the compounds 3ai, 3aiii, 3bii, 4bi, 4bii, and 6bi, which were found not to be selective between normal and tumor cell lines. The IC50 value of the tridentate half-sandwich complex 5bi (86 ± 9 µM) showed comparable anti-proliferative activity with the referenced commercial anti-cancer drug, 5-fluorouracil (87 ± 15 µM). The pincer (SNS) osmium complexes 6ci (36 ± 10 µM) and 6civ (40 ± 4 µM) were twice as effective as the reference drug 5-fluorouracil at the respective dose concentrations. However, the analogous pincer (SNS) ruthenium complex 5civ was ineffective and did not show anti-proliferative activity, even at a higher concentration of 147 ± 1 µM. These findings imply that the higher stability of the chelating (SS) and the pincer (SNS) ligand architectures in the complexes improves the biological (anti-proliferative) activity of the complexes by reducing the chance of ligand dissociation under physiological conditions. In general, the pincer (SNS) osmium complexes were found to be more cytotoxic than their ruthenium analogues, suggesting that the anti-proliferative activity of the imidazole-2-thione-Ru/Os complexes depends on the ligand's spatial coordination, the nature of the metal center, and the charge of the metal complex ions.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cimenos , Rutênio , Humanos , Rutênio/química , Osmio , Ligantes , Células HEK293 , Tionas , Quelantes/química , Antineoplásicos/química , Complexos de Coordenação/química , Linhagem Celular Tumoral , Fluoruracila
5.
Bioconjug Chem ; 35(3): 324-332, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38366964

RESUMO

Immunoconjugates exploit the high affinity of monoclonal antibodies for a recognized antigen to selectively deliver a cytotoxic payload, such as drugs or radioactive nuclides, at the site of disease. Despite numerous techniques have been recently developed for site-selective bioconjugations of protein structures, reaction of ε-amine group of lysine residues with electrophilic reactants, such as activated esters (NHS), is the main method reported in the literature as it maintains proteins in their native conformation. Since antibodies hold a high number of lysine residues, a heterogeneous mixture of conjugates will be generated, which can result in decreased target affinity. Here, we report an intradomain regioselective bioconjugation between the monoclonal antibody Trastuzumab and the N-hydroxysuccinimide ester of the chelator 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) by a kinetically controlled reaction adding substoichiometric quantities of the activated ester to the mAb working at slightly basic pH. Liquid chromatography-mass spectrometry (LC-MS) analyses were carried out to assess the chelator-antibody ratio (CAR) and the number of chelating moieties linked to the mAb chains. Proteolysis experiments showed four lysine residues mainly involved in bioconjugation (K188 for the light chain and K30, K293, and K417 for the heavy chain), each of which was located in a different domain. Since the displayed intradomain regioselectivity, a domain mapping MS-workflow, based on a selective domain denaturation, was developed to quantify the percentage of chelator linked to each mAb domain. The resulting immunoconjugate mixture showed an average CAR of 0.9. About a third of the heavy chains were found as monoconjugated, whereas conjugation of the chelator in the light chain was negligible. Domain mapping showed the CH3 domain bearing 13% of conjugated DOTA, followed by CH2 and VH respectively bearing 12.5 and 11% of bonded chelator. Bioconjugation was not found in the CH1 domain, whereas for the light chain, only the CL domain was conjugated (6%). Data analysis based on LC-MS quantification of different analytical levels (intact, reduced chains, and domains) provided the immunoconjugate formulation. A mixture of immunoconjugates restricted to 15 species was obtained, and the percentage of each one within the mixture was calculated. In particular, species bearing 1 DOTA with a relative abundance ranging from 4 to 20-fold, in comparison to species bearing 2DOTA, were observed. Pairing of bioconjugation under kinetic control with the developed domain mapping MS-workflow could raise the standard of chemical quality for immunoconjugates obtained with commercially available reactants.


Assuntos
Imunoconjugados , Imunoconjugados/química , Lisina/química , Fluxo de Trabalho , Anticorpos Monoclonais/química , Quelantes , Ésteres
6.
Chemosphere ; 352: 141461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364925

RESUMO

The proper disposal of spent soil washing solution is a great challenge to ethylenediamine tetraacetate (EDTA)-base soil washing technologies, particularly when the solution contains multi-metals. In this paper, we proposed an environmentally friendly disposal of multi-metal spent washing solution, in which the multi-metals were concentrated as hazardous precipitates for further safe disposal, and EDTA was reclaimed and recycled to further wash contaminated soil together with the cleansed process water. The results showed that Cr3+ was poorly removed by sole heavy-metal-capturing agent (HMCA) chelation because of the high solubility of HMCA-Cr, which also yielded a low percentage of EDTA reclamation in the multi-metal spent washing solution. We established a closed-loop process for the disposal of multi-metal spent washing solution by combining coagulation-flocculation-sedimentation and HMCA chelation. The novel recycling process was able to remove 99.67% Cu, 99.62% Pb, 92.48% Cd, 88.19% Sb, 84.38% As, and 82.39% Cr as precipitates from the real spent washing solution, and up to 95.64% of EDTA was reclaimed in the cleansed process water. On the average, the overall efficiency of the reclaimed EDTA solution could reach 65% of the fresh EDTA solution in extracting various HMs from contaminated soil. The recycling method provides an efficient and promising alternative for spent soil washing solution with both EDTA and process water reusage in a closed-loop process.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Ácido Edético , Solo , Poluentes do Solo/análise , Metais Pesados/análise , Quelantes , Água
7.
Occup Environ Med ; 81(3): 159-162, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38302418

RESUMO

INTRODUCTION: Lead exposure from discharged lead dust is a recognised risk at firing ranges. We report a lead poisoning outbreak among staff and their close contacts at a UK civilian indoor 24 m firing range. METHODS: A retrospective review was undertaken of data collected on all patients at risk of lead poisoning identified either by direct referral to the Clinical Toxicology clinicians at the West Midlands Poisons Unit, or via the Trace Elements Supra-Regional Assay Service Laboratory at Sandwell hospital. RESULTS: Eighty-seven patients were identified as having possible lead exposure, either at the firing range or via close contacts. Of these, 63 patients aged between 6 months and 78 years attended for blood lead concentration (BLC) testing. The highest BLC at presentation was 11.7 µmol/L (242 µg/dL). Only nine patients reported any symptoms at presentation. Fifteen patients received lead chelation therapy with oral dimercaptosuccinic acid (or succimer) 30 mg/kg/day or intravenous sodium calcium edetate (EDTA) 75 mg/kg/day, dependent on stock availability. DISCUSSION: This report highlights the need for vigilance of lead poisoning as an occupational hazard in the UK, including at recreational facilities such as indoor firing ranges. It emphasises the importance of regulation of lead exposure in the workplace, particularly given the vague symptoms of lead poisoning, and proposes re-appraisal of UK legislation. This report also highlights potential issues surrounding stock availability of rarely used antidotes for uncommon presentations in the event of an outbreak of poisoning.


Assuntos
Intoxicação por Chumbo , Chumbo , Humanos , Lactente , Quelantes/efeitos adversos , Intoxicação por Chumbo/epidemiologia , Intoxicação por Chumbo/etiologia , Succímero/efeitos adversos , Surtos de Doenças , Reino Unido/epidemiologia
8.
Chemosphere ; 346: 140554, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303381

RESUMO

Cadmium (Cd) contamination of farmland soils is a growing concern because of its highly toxic impact on ecosystems and human health. Chelator-assisted washing and chemical immobilization are effective remediation strategies for Cd-contaminated soils. Ethylenediaminetetraacetic acid (EDTA) has traditionally been used for soil washing, but its persistence in the environment and subsequent toxicity have raised significant ecological concerns. Consequently, biodegradable chelators have gained increasing attention as eco-friendly alternatives to the persistent chelator, EDTA. Therefore, this study evaluated the performance and efficacy of three biodegradable chelators: L-glutamate-N,N'-diacetic acid (GLDA), methylglycine-diacetic acid (MGDA), and 3-hydroxy-2,2'-iminodisuccinic acid (HIDS) in comparison to EDTA for remediating a real Cd-contaminated agricultural soil. The influence of treatment parameters, including chelator variants, washing time, chelator concentration, solution pH, and liquid-to-soil ratio (L/S) on Cd extraction was studied and optimized to attain the maximum removal rate. Following chelator-assisted washing, the efficacy of a stabilization preference combining FeCl3 and CaO in reducing the leaching potential of residual Cd in chelator-washed soil residues was also investigated. GLDA demonstrated comparable Cd extraction efficiency to EDTA, and the Cd extraction efficiency was found to be positively correlated with the soil washing parameters. However, under the optimized conditions (chelator concentration: 10 mmol L-1; washing time: 3 h; solution pH: 3; L/S ratio: 10:1), GLDA exhibited a higher Cd extraction rate than EDTA or the other chelators. Furthermore, a post-treatment process incorporating FeCl3 and CaO substantially diminished the water-leachable Cd content in the resultant soil residues. The proposed remediation strategy, which combines chemically assisted washing and stabilization, could be a practical option for extracting bulk Cd from soil and reducing the leaching potential of residual Cd.


Assuntos
Cloretos , Recuperação e Remediação Ambiental , Compostos Férricos , Metais Pesados , Poluentes do Solo , Humanos , Cádmio , Ácido Edético/química , Metais Pesados/análise , Ecossistema , Poluentes do Solo/análise , Quelantes/química , Solo/química
9.
J Environ Manage ; 353: 120133, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308985

RESUMO

Enhanced phytoextraction of metal-polluted soils using EDTA is phasing out in favor of biodegradable chelants. However, these are too short-lived to be effective in the acclimated biodegrading soil environment established in long-term phytoextraction operations. We hypothesize that full-scale EDTA-enhanced phytoextraction can be both effective and environmentally safe, provided that soil leaching is prevented while EDTA persists in the soil profile. This was tested for 4 years in two sealed, well-monitored constructed lagoons (70-m3 each) packed with Cd-contaminated dredged sediment. Fast-growing, high-biomass, salinity-resistant eucalypts were planted in June 2010. Under controlled deficit irrigation, the 3-year average EC was 14.2 dS m-1. Summer leakage accounted for ∼1.2 % of the overall irrigation water and was prescribed for monitoring the composition of the soil solution. Altogether, 486 leachate and 261 suction-cap solutions were collected at average intervals of 5.5 days. EDTA was intermittently applied with summer irrigation, in multiple low doses at average seasonal concentrations of 1.1-9.2 mM. The soil solution EDTA biodegraded quickly after those applications were stopped. This cessation was timed well before the start of the rainy season. Spontaneous EDTA leaching during the three winters accounted for <0.02 % of the total 423 mol/basin applied. Prescribed summer leaching constituted ∼1 % of this total. Peak heavy metal (HM) concentrations in the leachate and suction-cap solutions (e.g., Cd, up to 18.5 and 14 mg L-1, respectively) were observed soon after EDTA application. Winter HM concentrations were not significantly different from the background. As the amounts of EDTA diminished, HM also disappeared from the soil solution, probably by adsorption. Eucalyptus occidentalis was by far the most efficient Cd sink of the five species tested,. The results of this study strongly support our hypothesis that EDTA-enhanced phytoextraction can be both effective and environmentally safe.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Edético , Cádmio , Poluentes do Solo/análise , Biodegradação Ambiental , Metais Pesados/análise , Solo , Quelantes
10.
J Air Waste Manag Assoc ; 74(3): 192-205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329723

RESUMO

Undersized fraction from aged municipal solid waste (UFAMSW), as a kind of soil-like material, has been proved effective in providing a large amount of organic matter and nutrients for soil and plants. The characteristics and effectiveness of heavy metal pollution removal in UFAMSW attracted tremendous research interest from scientists recently. In this study, the heavy metal removal efficiencies and bioavailability of washing on contaminated UFAMSW were evaluated with three washing reagents including ethylene diamine tetra acetic acid (EDTA), citric acid (CA), and humic acid (HA). The effects of chelating agent concentration, pH, and washing time on metal removal were investigated and response surface methodology (RSM) was employed to optimize the washing conditions. The results indicated that the removal efficiencies of Cu, Zn, and Mn could be 53.68%, 52.12%, and 30.63% by EDTA/HA washing and 42.36%, 39.67% and 28.49% by CA/HA washing, respectively. The European Community Bureau of Reference (BCR) sequential extraction was applied to analyze the fraction change of heavy metals in UFAMSW before and after washing, and it was found that chelating agent combined with HA could contribute to the removal of the exchangeable fraction. Physical and chemical properties of UFAMSW were improved to some extent after washing with mixed HA and chelating agent and could achieve the quality standard of landscape gardening soil. Accordingly, the mixture of HA and other chelating agents could be a promising washing process for preparation of landscape gardening soil using UFAMSW.Implications: Our manuscript studies the removal of heavy metals from the contaminated undersized fraction from aged municipal solid waste (UFAMSW). UFAMSW, as a kind of soil-like material, has been proved effective in providing a large amount of organic matter and nutrients for soil and plants however often limited by heavy metal pollution. The UFAMSW used in this experiment was collected after the excavation and screening-sorting of aged refuse from Changshankou Domestic Waste Sanitary Landfill in Wuhan City, Hubei Province, Southern China. This study investigated the effects of EDTA, CA, HA, mixed EDTA/HA, and mixed CA/HA washing on heavy metal removal (Cu, Zn, and Mn), bioavailability of residual heavy metal and properties. The effects of chelating agent concentration, pH, and washing time on metal removal were investigated and then response surface methodology was employed to optimize the washing conditions. The results showed that washing by CA/HA and EDTA/HA, had a higher removal efficiency of heavy metals (Cu, Zn, and Mn) in UFAMSW compared to single HA. Meanwhile, HA has a higher removal for exchangeable fraction of heavy metals, the exchangeable concentration of Cu, Zn, and Mn in CA/HA and EDTA/HA washed UFAMSW were lower compared with UFAMSW washed by single CA and EDTA. Thus, mixing HA with EDTA or CA makes a less risk to environmental and the removal efficiency is acceptable. Additionally, CA/HA and EDTA/HA washing tend to improve soil physicochemical properties and soil fertility. Thus, mixing HA with different washing agent are potential methods for preparation of landscape gardening soil using UFAMSW.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Edético/química , Substâncias Húmicas , Solo/química , Ácido Acético , Ácido Cítrico/química , Jardinagem , Resíduos Sólidos , Poluentes do Solo/análise , Quelantes/química , Metais Pesados/análise
11.
J Inorg Biochem ; 253: 112500, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301386

RESUMO

Metallopeptidases are a group of metal-dependent enzymes that hydrolyze peptide bonds. These enzymes found in Streptococcus pneumoniae assist the pathogen in infecting the host by breaking down host tissues and extracellular matrix proteins. Considering metallopeptidases' significant role in bacterial virulence, inhibiting this enzyme represents a promising avenue for research. These enzymes are characterized by the presence of Zn(II) in the active site, proper coordination of which is essential for their catalytic function. This work aims to determine the significance of the specific amino acids in the metal binding domain of metallopeptidase from S. pneumoniae. For this purpose, we investigated the coordination chemistry of Zn(II), Ni(II), and Cu(II) ions with point-mutated peptide models of the metal-binding domain. Mutations were introduced at His-2 (L1) and Glu-1. Studies have shown that at pH 7.14 (pH of infected lungs by S. pneumoniae), point mutation on glutamic acid caused only minor effects on the binding of Zn(II) and Ni(II), while significantly improving Cu(II) binding. The stability of copper complexes is greater with the mutant Glu-1 â†’ Gln-1 than with the original domain due to a hydrogen bonding network created by the Gln backbone with its side chain. Substituting histidine resulted in a significant reduction in metal binding for all metal ions, highlighting the crucial role of His-2 in metal coordination. Introduced mutations at neutral pH did not significantly affect the secondary structure of metal complexes. However, at alkaline pH, the peptides showed a higher percentage of antiparallel ß-sheet structures upon the addition of Cu(II), Ni(II) and Zn(II).


Assuntos
Cobre , Zinco , Cobre/química , Domínio Catalítico , Zinco/química , Aminoácidos , Metais , Peptídeos/metabolismo , Metaloproteases , Quelantes , Íons
12.
J Inorg Biochem ; 253: 112480, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309203

RESUMO

Amyloid beta (Aß) peptides and copper (Cu) ions are each involved in critical biological processes including antimicrobial activity, regulation of synaptic function, angiogenesis, and others. Aß binds to Cu and may play a role in Cu trafficking. Aß peptides exist in isoforms that vary at their C-and N-termini; variation at the N-terminal sequence affects Cu binding affinity, structure, and redox activity by providing different sets of coordinating groups to the metal ion. Several N-terminal isoforms have been detected in human brain tissues including Aß1-40/42, Aß3-42, pEAß3-42, Aß4-42, Aß11-40 and pEAß11-40 (where pE denotes an N-terminal pyroglutamic acid). Several previous works have individually investigated the affinity and structure of Cu(I) bound to some of these isoforms' metal binding domains. However, the disparately reported values are apparent constants collected under different sets of conditions, and thus an integrated comparison cannot be made. The work presented here provides the Cu(I) coordination structure and binding affinities of these six biologically relevant Aß isoforms determined in parallel using model peptides of the Aß metal binding domains (Aß1-16, Aß3-16, pEAß3-16, Aß4-16, Aß11-16 and pEAß11-16). The binding affinities of Cu(I)-Aß complexes were measured using solution competition with ferrozine (Fz) and bicinchoninic acid (BCA), two colorimetric Cu(I) indicators in common use. The Cu(I) coordination structures were characterized by X-ray absorption spectroscopy. The data presented here facilitate comparison of the isoforms' Cu-binding interactions and contribute to our understanding of the role of Aß peptides as copper chelators in healthy and diseased brains.


Assuntos
Peptídeos beta-Amiloides , Cobre , Humanos , Peptídeos beta-Amiloides/química , Cobre/química , Isoformas de Proteínas , Íons , Quelantes
13.
Biomed Pharmacother ; 172: 116201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306846

RESUMO

The treatment of glioblastoma (GBM) faces significant challenges due to the difficulty of delivering drugs through the blood-brain barrier (BBB). Extracellular vesicles (EVs) have emerged as potential carriers for targeted drug delivery to brain tumors. However, their use and distribution in the presence of an intact BBB and their ability to target GBM tissue are still under investigation. This study explored the use of EVs for GBM targeting across the BBB. Canine plasma EVs from healthy dogs and dogs with glioma were isolated, characterized, and loaded with diagnostic agents. Biodistribution studies were conducted in healthy murine models and a novel intranasal model that preserved BBB integrity while initiating early-stage GBM growth. This model assessed EVs' potential for delivering the contrast agent gadoteric acid to intracranial tumors. Imaging techniques, such as bioluminescence and MRI, confirmed EVs' targeting and delivery capabilities thus revealing a selective accumulation of canine glioma-derived EVs in brain tissue under physiological conditions. In the model of brain tumor, MRI experiments demonstrated the ability of EVs to accumulate gadoteric acid within GBM to enhance contrast of the tumoral mass, even when BBB integrity is maintained. This study underscores the potential of EVs derived from glioma for the targeted delivery of drugs to glioblastoma. EVs from dogs with glioma showed capacity to traverse the BBB and selectively accumulate within the brain tumor. Overall, this research represents a foundation for the application of autologous EVs to precision glioblastoma treatment, addressing the challenge of BBB penetration and targeting specificity in brain cancer therapy.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Glioma , Cães , Animais , Camundongos , Glioblastoma/diagnóstico por imagem , Barreira Hematoencefálica , Distribuição Tecidual , Neoplasias Encefálicas/diagnóstico por imagem , Quelantes , Meios de Contraste
14.
Ecotoxicol Environ Saf ; 272: 116113, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364761

RESUMO

Heavy metals in soil significantly threaten human health, and their remediation is essential. Among the various techniques used, phytoremediation is one of the safest, most innovative, and effective. In recent years, the use of biodegradable chelators to assist plants in improving their remediation efficiency has gained popularity. These biodegradable chelators aid in the transformation of metal ions or metalloids, thereby facilitating their mobilization and uptake by plants. Developed countries are increasingly adopting biodegradable chelators for phytoremediation, with a growing emphasis on green manufacturing and technological innovation in the chelating agent market. Therefore, it is crucial to gain a comprehensive understanding of the mechanisms and market prospects of biodegradable chelators for phytoremediation. This review focuses on elucidating the uptake, translocation, and detoxification mechanisms of chelators in plants. In this study, we focused on the effects of biodegradable chelators on the growth and environmental development of plants treated with phytoremediation agents. Finally, the potential risks associated with biodegradable chelator-assisted phytoremediation are presented in terms of their availability and application prospects in the market. This study provides a valuable reference for future research in this field.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Biodegradação Ambiental , Quelantes/farmacologia , Estudos de Viabilidade , Poluentes do Solo/análise , Plantas/metabolismo , Metais Pesados/análise , Solo
15.
Environ Sci Pollut Res Int ; 31(14): 21869-21880, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400973

RESUMO

An amphiphilic polymeric chelator (APC16-g-SX) grafted with sodium xanthate (SX) groups was successfully prepared for the efficient removal of high concentrations of Cu(II) from wastewater. The ordinary polymeric chelator (PAM-g-SX) based on linear polyacrylamide (PAM) was also prepared for comparative studies. The polymeric chelators were characterized by Fourier transform infrared spectroscopy (FT-IR), solid-state nuclear magnetic resonance (13C-NMR), gel permeation chromatography (GPC), elemental analyzer, and scanning electron microscope (SEM). The chelating performance of these polymeric chelators was investigated, and the mechanism of APC16-g-SX for enhanced removal of Cu(II) from wastewater was proposed based on fluorescence spectroscopy, cryo-scanning electron microscope (Cryo-SEM), energy-dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS) tests. The results show that as the initial Cu(II) concentration in the wastewater increases, APC16-g-SX shows more excellent chelating performance than ordinary PAM-g-SX. For the wastewater with an initial Cu(II) concentration of 200 mg/L, the removal rate of Cu(II) was 99.82% and 89.34% for both 500 mg/L APC16-g-SX and PAM-g-SX, respectively. The pH of the system has a very great influence on the chelating performance of the polymeric chelators, and the increase in pH of the system helps to improve the chelating performance. The results of EDS and XPS tests also show that N, O, and S atoms in APC16-g-SX were involved in the chelation of Cu(II). The mechanism of enhanced removal of Cu(II) by APC16-g-SX can be attributed to the spatial network structure constructed by the self-association of hydrophobic groups that enhances the utilization of chelation sites.


Assuntos
Quelantes , Isópodes , Animais , Águas Residuárias , Espectroscopia de Infravermelho com Transformada de Fourier , Cromatografia em Gel , Polímeros
16.
Theranostics ; 14(4): 1344-1360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389832

RESUMO

Rationale: 225Ac, a long-lived α-emitter with a half-life of 9.92 days, has garnered significant attention as a therapeutic radionuclide when coupled with monoclonal antibodies and other targeting vectors. Nevertheless, its clinical utility has been hampered by potential off-target toxicity, a lack of optimized chelators for 225Ac, and limitations in radiolabeling methods. In a prior study evaluating the effectiveness of CD46-targeted radioimmunotherapy, we found great therapeutic efficacy but also significant toxicity at higher doses. To address these challenges, we have developed a radioimmunoconjugate called 225Ac-Macropa-PEG4-YS5, incorporating a stable PEGylated linker to maximize tumoral uptake and increase tumor-to-background ratios. Our research demonstrates that this conjugate exhibits greater anti-tumor efficacy while minimizing toxicity in prostate cancer 22Rv1 tumors. Methods: We synthesized Macropa.NCS and Macropa-PEG4/8-TFP esters and prepared Macropa-PEG0/4/8-YS5 (with nearly ~1:1 ratio of macropa chelator to antibody YS5) as well as DOTA-YS5 conjugates. These conjugates were then radiolabeled with 225Ac in a 2 M NH4OAc solution at 30 °C, followed by purification using YM30K centrifugal purification. Subsequently, we conducted biodistribution studies and evaluated antitumor activity in nude mice (nu/nu) bearing prostate 22Rv1 xenografts in both single-dose and fractionated dosing studies. Micro-PET imaging studies were performed with 134Ce-Macropa-PEG0/4/8-YS5 in 22Rv1 xenografts for 7 days. Toxicity studies were also performed in healthy athymic nude mice. Results: As expected, we achieved a >95% radiochemical yield when labeling Macropa-PEG0/4/8-YS5 with 225Ac, regardless of the chelator ratios (ranging from 1 to 7.76 per YS5 antibody). The isolated yield exceeded 60% after purification. Such high conversions were not observed with the DOTA-YS5 conjugate, even at a higher ratio of 8.5 chelators per antibody (RCY of 83%, an isolated yield of 40%). Biodistribution analysis at 7 days post-injection revealed higher tumor uptake for the 225Ac-Macropa-PEG4-YS5 (82.82 ± 38.27 %ID/g) compared to other conjugates, namely 225Ac-Macropa-PEG0/8-YS5 (38.2 ± 14.4/36.39 ± 12.4 %ID/g) and 225Ac-DOTA-YS5 (29.35 ± 7.76 %ID/g). The PET Imaging of 134Ce-Macropa-PEG0/4/8-YS5 conjugates resulted in a high tumor uptake, and tumor to background ratios. In terms of antitumor activity, 225Ac-Macropa-PEG4-YS5 exhibited a substantial response, leading to prolonged survival compared to 225Ac-DOTA-YS5, particularly when administered at 4.625 kBq doses, in single or fractionated dose regimens. Chronic toxicity studies observed mild to moderate renal toxicity at 4.625 and 9.25 kBq doses. Conclusions: Our study highlights the promise of 225Ac-Macropa-PEG4-YS5 for targeted alpha particle therapy. The 225Ac-Macropa-PEG4-YS5 conjugate demonstrates improved biodistribution, reduced off-target binding, and enhanced therapeutic efficacy, particularly at lower doses, compared to 225Ac-DOTA-YS5. Incorporating theranostic 134Ce PET imaging further enhances the versatility of macropa-PEG conjugates, offering a more effective and safer approach to cancer treatment. Overall, this methodology has a high potential for broader clinical applications.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Camundongos , Animais , Humanos , Camundongos Nus , Distribuição Tecidual , Compostos Radiofarmacêuticos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Quelantes , Proteína Cofatora de Membrana
17.
Dalton Trans ; 53(10): 4526-4543, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38348686

RESUMO

A library of homoleptic mononuclear Ga(III) complexes of the general formula [Ga(DTC)3], where DTC is an alicyclic or a linear dithiocarbamate chelator, is reported. The complexes were prepared in high yields starting from Ga(NO3)3·6H2O and fully characterized by elemental analysis and IR and NMR spectroscopy. Crystals of five of these complexes were obtained. The antitumor activity of the newly synthesized compounds against a panel of human cancer cell lines was evaluated. The chemical nature of the DTC does not have a marked impact on the structural features of the final compound. X-ray crystal structure analyses revealed that all these complexes have a trigonal prismatic geometry with three identical chelating DTCs coordinating the Ga(III) ion. It is noteworthy that in complex 22, [Ga(NHEt)3] (NHEt = N-ethyldithiocarbamate), the asymmetric unit is formed by two independent and structurally different molecules. Cellular studies showed that all the synthesized Ga-DTC complexes exhibit marked cytotoxic activity, even against human colon cancer cells that are less sensitive to cisplatin. Among the tested compounds, 6 ([Ga(CEPipDTC)3], CEPipDTC = (ethoxycarbonyl)-piperidinedithiocarbamate) and 21 ([Ga(Pr-13)3], PR13 = 4 and N-(2-ethoxy-2-oxoethyl)-N-methyldithiocarbamate) are very promising derivatives, but they have no selectivity towards cancer cells. Nevertheless, the obtained data provide a foundation for developing gallium-dithiocarbamate complexes as anticancer agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Gálio , Neoplasias , Humanos , Gálio/farmacologia , Gálio/química , Antineoplásicos/química , Cisplatino , Quelantes/química , Complexos de Coordenação/química , Linhagem Celular Tumoral
18.
Redox Biol ; 70: 103076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340635

RESUMO

Wilson's disease (WD) is a genetic disorder that primarily leads to the pathological accumulation of copper (Cu) in the liver, causing an abnormal increase in reactive oxygen species (ROS). The prevailing clinical therapy for WD involves lifelong use of Cu chelation drugs to facilitate Cu excretion in patients. However, most available drugs exert severely side-effects due to their non-specific excretion of Cu, unsuitable for long-term use. In this study, we construct a prochelator that enables precise and controlled delivery of Cu chelator drugs to the liver in WD model, circumventing toxic side effects on other organs and normal tissues. This innovative prochelator rapidly releases the chelator and the fluorescent molecule methylene blue (MB) upon activation by ROS highly expressed in the liver of WD. The released chelator coordinates with Cu, efficiently aiding in Cu removal from the body and effectively inhibiting the pathological progression of WD.


Assuntos
Degeneração Hepatolenticular , Humanos , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/patologia , Quelantes/farmacologia , Quelantes/uso terapêutico , Espécies Reativas de Oxigênio , Cobre
19.
Dalton Trans ; 53(11): 5089-5104, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38375922

RESUMO

Au(III) bis(pyrrolide-imine) chelates are emerging as a class of versatile, efficacious metallodrug candidates. Here, we synthesised two enantiopure chiral ligands H2L1 and H2L2 (tetradentate cyclohexane-1,2-diamine-bridged bis(pyrrole-imine) derivatives). Metallation of the ligands with Au(III) afforded the chiral cationic complexes AuL1 and AuL2. The in vitro cytotoxicities of AuL1 and AuL2 determined in the NCI-60 single-dose drug screen were 56.5% and 89.1%, respectively. AuL1 was subsequently selected for a five-dose NCI-60 screen, attaining GI50, IC50, and LC50 values of 4.7, 9.3 and 39.8 µM, respectively. Hierarchical cluster analysis of the NCI-60 data indicated that the profile for AuL1 was similar to that of vinblastine sulfate, a microtubule-targeting vinca alkaloid. Reactions of AuL1 with glutathione (GSH) in vitro confirmed its susceptibility to reduction, Au(III) → Au(I), by intracellular thiols. Because human serum albumin (HSA) is responsible for transporting clinically deployed and investigational drugs, we studied the uptake of AuL1 and AuL2 by HSA to delineate how chirality impacts their protein-binding affinity. Steady-state fluorescence quenching data acquired on the native protein and data from site-specific probes showed that the compounds bind at sites close enough to Trp-214 (subdomain IIA) of HSA to quench the fluorophore. The bimolecular quenching rate constants, Kq, were ca. 102 times higher than the maximum diffusion-controlled collision constant of a biomolecule in water (1010 M-1 s-1), confirming that static fluorescence quenching was the dominant mechanism. The Stern-Volmer constants, KSV, were ∼104 M-1 at 37 °C, while the affinity constants, Ka (37 °C), measured ∼2.1 × 104 M-1 (AuL1) and ∼1.2 × 104 M-1 (AuL2) for enthalpy-driven ligand uptake targeting Sudlow's site I. Although far- and near-UV CD spectroscopy indicated that both complexes minimally perturb the secondary and tertiary structure of HSA, substantial shifts in the CD spectra were recorded for both protein-bound ligands. This study highlights the role of chirality in determining the cytotoxicity profiles and protein binding behaviour of enantiomeric Au(III) chelates.


Assuntos
Quelantes , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Sítios de Ligação , Ligação Proteica , Análise Espectral , Quelantes/farmacologia , Iminas , Espectrometria de Fluorescência , Termodinâmica , Dicroísmo Circular , Simulação de Acoplamento Molecular
20.
Clin Transl Gastroenterol ; 15(3): e00679, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38251689

RESUMO

INTRODUCTION: Isolated case reports and case series have linked the use of sevelamer to severe gastrointestinal (GI) inflammation and perforation among patients with end-stage renal disease. METHODS: In this study, we identified 12 cases of biopsy-proven sevelamer-induced gastrointestinal disease from a large urban community hospital over the course of 5 years. We described baseline characteristics, sites and types of injury, histological findings, timing and dosing of sevelamer initiation compared with symptom onset, and in a smaller subset, endoscopic resolution post drug cessation. We also reviewed preexisting conditions to identify trends in populations at risk. RESULTS: Several of the patients reviewed had preexisting conditions of decreased motility and/or impaired mucosal integrity. The presentation of disease was broad and included both upper-GI and lower-GI pathologies and in varying severity. DISCUSSION: There is a broad phenotypic range of sevelamer-induced gastrointestinal disease. As this becomes a more frequently recognized pathology, clinicians should be aware of how it may present and which populations may be more susceptible.


Assuntos
Gastroenteropatias , Falência Renal Crônica , Humanos , Sevelamer/efeitos adversos , Quelantes/efeitos adversos , Diálise Renal/efeitos adversos , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...