Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.467
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612550

RESUMO

The bee gut microbiota plays an important role in the services the bees pay to the environment, humans and animals. Alongside, gut-associated microorganisms are vehiculated between apparently remote habitats, promoting microbial heterogeneity of the visited microcosms and the transfer of the microbial genetic elements. To date, no metaproteomics studies dealing with the functional bee microbiota are available. Here, we employ a metaproteomics approach to explore a fraction of the bacterial, fungal, and unicellular parasites inhabiting the bee gut. The bacterial community portrays a dynamic composition, accounting for specimens of human and animal concern. Their functional features highlight the vehiculation of virulence and antimicrobial resistance traits. The fungal and unicellular parasite fractions include environment- and animal-related specimens, whose metabolic activities support the spatial spreading of functional features. Host proteome depicts the major bee physiological activities, supporting the metaproteomics strategy for the simultaneous study of multiple microbial specimens and their host-crosstalks. Altogether, the present study provides a better definition of the structure and function of the bee gut microbiota, highlighting its impact in a variety of strategies aimed at improving/overcoming several current hot topic issues such as antimicrobial resistance, environmental pollution and the promotion of environmental health.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Microbiota , Saúde Única , Humanos , Abelhas , Animais , Reações Cruzadas
2.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612547

RESUMO

Protein self-assembling nanoparticles (NPs) can be used as carriers for antigen delivery to increase vaccine immunogenicity. NPs mimic the majority of invading pathogens, inducing a robust adaptive immune response and long-lasting protective immunity. In this context, we investigated the potential of NPs of different sizes and shapes-ring-, rod-like, and spherical particles-as carriers for bacterial oligosaccharides by evaluating in murine models the role of these parameters on the immune response. Oligosaccharides from Neisseria meningitidis type W capsular polysaccharide were conjugated to ring-shape or nanotubes of engineered Pseudomonas aeruginosa Hemolysin-corregulated protein 1 (Hcp1cc) and to spherical Helicobacter pylori ferritin. Glycoconjugated NPs were characterized using advanced technologies such as High-Performance Liquid Chromatography (HPLC), Asymmetric Flow-Field Flow fractionation (AF4), and Transmission electron microscopy (TEM) to verify their correct assembly, dimensions, and glycosylation degrees. Our results showed that spherical ferritin was able to induce the highest immune response in mice against the saccharide antigen compared to the other glycoconjugate NPs, with increased bactericidal activity compared to benchmark MenW-CRM197. We conclude that shape is a key attribute over size to be considered for glycoconjugate vaccine development.


Assuntos
Anti-Infecciosos , Nanopartículas , Animais , Camundongos , Glicoconjugados , Ferritinas , Oligossacarídeos
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612793

RESUMO

The evolution of regulatory perspectives regarding the health and nutritional properties of industrial hemp-based products (Cannabis sativa L.) has pushed research to focus on the development of new methods for both the extraction and formulation of the bioactive compounds present in hemp extracts. While the psychoactive and medicinal properties of hemp-derived cannabinoid extracts are well known, much less has been investigated on the functional and antimicrobial properties of hemp extracts. Within the hemp value chain, various agricultural wastes and by-products are generated. These materials can be valorised through eco-innovations, ultimately promoting sustainable economic development. In this study, we explored the use of waste from industrial light cannabis production for the extraction of bioactive compounds without the addition of chemicals. The five extracts obtained were tested for their antimicrobial activity on both planktonic and sessile cells of pathogenic strains of the Candida albicans, Candida parapsilosis, and Candida tropicalis species and for their antioxidant activity on HT-29 colon cancer cells under oxidative stress. Our results demonstrated that these extracts display interesting properties both as antioxidants and in hindering the development of fungal biofilm, paving the way for further investigations into the sustainable valorisation of hemp waste for different biomedical applications.


Assuntos
Anti-Infecciosos , Cannabis , Neoplasias do Colo , Candida , Antioxidantes/farmacologia , Aderências Teciduais , Biofilmes , Resíduos Industriais
4.
Zhongguo Zhong Yao Za Zhi ; 49(3): 661-670, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621870

RESUMO

Scorpions, a group of oldest animals with wide distribution in the world, have a long history of medicinal use. Scorpio, the dried body of Buthus martensii, is a rare animal medicine mainly used for the treatment of liver diseases, spasm, and convulsions in children in China. The venom has been considered as the active substance of scorpions. However, little is known about the small molecules in the venom of scorpions. According to the articles published in recent years, scorpions contain amino acids, fatty acids, steroids, and alkaloids, which endow scorpions with antimicrobial, anticoagulant, metabolism-regulating, and antitumor activities. This paper summarizes the small molecule chemical components and pharmacological activities of scorpions, with a view to providing valuable information for the discovery of new active molecules and the clinical use of scorpions.


Assuntos
Animais Venenosos , Anti-Infecciosos , Venenos de Escorpião , Animais , Criança , Humanos , Peptídeos/química , Escorpiões/química , Escorpiões/metabolismo , DNA Complementar , Venenos de Escorpião/farmacologia
5.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1172-1185, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621964

RESUMO

Cyclopeptides isolated from a variety of plants are a class of cyclic nitrogen-containing compounds, and they are primarily formed by peptide bonds between amino acids, generally containing 2 to 37 L-configuration encoded or non-encoded amino acid residues. Cyclopeptides have significant values in scientific research as natural small-molecule metabolites produced by plants. The available studies have revealed that such natural products are ubiquitous in plants, which mainly include cyclic dipeptides, cyclic tetrapeptides, cyclic pentapeptides, cyclic hexapeptides, cyclic heptapeptides, cyclic octapeptides, cyclic nonapeptides, and cyclic decapeptides. Among them, cyclic dipeptides, cyclic hexapeptides, and cyclic octapeptides are the major active compounds. It has been reported that plant cyclopeptides have novel and unique chemical structures. They possess diverse pharmacological activities, such as antineoplastic, antimicrobial, antimalarial, anti-inflammatory, and antiviral activities. This paper summarizes the research achievements of plant cyclopeptides since 2006, aiming to provide theoretical reference for the research and application of plant cyclopeptides in medicine, health, and agriculture fields.


Assuntos
Anti-Infecciosos , Antineoplásicos , Peptídeos Cíclicos/química , Antineoplásicos/farmacologia , Anti-Infecciosos/farmacologia , Dipeptídeos
6.
BMC Med Inform Decis Mak ; 24(1): 96, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622595

RESUMO

BACKGROUND: Inappropriate antimicrobial use, such as antibiotic intake in viral infections, incorrect dosing and incorrect dosing cycles, has been shown to be an important determinant of the emergence of antimicrobial resistance. Artificial intelligence-based decision support systems represent a potential solution for improving antimicrobial prescribing and containing antimicrobial resistance by supporting clinical decision-making thus optimizing antibiotic use and improving patient outcomes. OBJECTIVE: The aim of this research was to examine implementation factors of artificial intelligence-based decision support systems for antibiotic prescription in hospitals from the perspective of the hospital managers, who have decision-making authority for the organization. METHODS: An online survey was conducted between December 2022 and May 2023 with managers of German hospitals on factors for decision support system implementation. Survey responses were analyzed from 118 respondents through descriptive statistics. RESULTS: Survey participants reported openness towards the use of artificial intelligence-based decision support systems for antibiotic prescription in hospitals but little self-perceived knowledge in this field. Artificial intelligence-based decision support systems appear to be a promising opportunity to improve quality of care and increase treatment safety. Along with the Human-Organization-Technology-fit model attitudes were presented. In particular, user-friendliness of the system and compatibility with existing technical structures are considered to be important for implementation. The uptake of decision support systems also depends on the ability of an organization to create a facilitating environment that helps to address the lack of user knowledge as well as trust in and skepticism towards these systems. This includes the training of user groups and support of the management level. Besides, it has been assessed to be important that potential users are open towards change and perceive an added value of the use of artificial intelligence-based decision support systems. CONCLUSION: The survey has revealed the perspective of hospital managers on different factors that may help to address implementation challenges for artificial intelligence-based decision support systems in antibiotic prescribing. By combining factors of user perceptions about the systems´ perceived benefits with external factors of system design requirements and contextual conditions, the findings highlight the need for a holistic implementation framework of artificial intelligence-based decision support systems.


Assuntos
Anti-Infecciosos , Sistemas de Apoio a Decisões Clínicas , Humanos , Antibacterianos/uso terapêutico , Inteligência Artificial , Hospitais , Prescrições , Inquéritos e Questionários
7.
Parasite Immunol ; 46(4): e13034, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625016

RESUMO

Scavenger receptors participate in a wide range of biological functions after binding to multiple non-self or altered self-ligands. Among them, CD5 and CD6 are lymphocyte scavenger receptors known to interact with different microbial-associated molecular patterns, and the administration of the recombinant soluble ectodomains of human CD5 (rshCD5) and/or CD6 (rshCD6) has shown therapeutic/prophylactic potential in experimental models of fungal, bacterial and echinococcal infections. The latter is a zoonosis caused by the larval stage of the cestode parasite Echinococcus granulosus sensu lato, which in humans can induce secondary cystic echinococcosis (CE) after the spillage of protoscoleces contained within fertile cysts, either spontaneously or during surgical removal of primary hydatid cysts. Herein, we have analysed the mechanisms behind the significant protection observed in the mouse model of secondary CE following prophylactic administration of rshCD5 or rshCD6. Our results show that both molecules exhibit intrinsic antiparasitic activities in vitro, as well as immunomodulatory functions during early secondary CE, mainly through Th1/Th17 cytokine bias and promotion of peritoneal polyreactive antibodies. These data support the relevance of the parasite components bound by rshCD5 and rshCD6, as well as the potential of their prophylactic administration as a useful strategy to reduce secondary CE in patients.


Assuntos
Anti-Infecciosos , Equinococose , Animais , Camundongos , Humanos , Antiparasitários , Zoonoses , Receptores Depuradores
8.
Int Wound J ; 21(4): e14817, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567778

RESUMO

This Phase 1b study was designed to evaluate the safety and efficacy of pravibismane, a novel broad-spectrum topical anti-infective, in managing moderate or severe chronic diabetic foot ulcer (DFU) infections. This randomized, double-blind, placebo-controlled, multicenter study consisted of 39 individuals undergoing pravibismane treatment and 13 individuals in the placebo group. Assessment of safety parameters included clinical observations of tolerability and pharmacokinetics from whole blood samples. Pravibismane was well-tolerated and exhibited minimal systemic absorption, as confirmed by blood concentrations that were below the lower limit of quantitation (0.5 ng/mL) or in the low nanomolar range, which is orders of magnitude below the threshold of pharmacological relevance for pravibismane. Pravibismane treated subjects showed approximately 3-fold decrease in ulcer size compared to the placebo group (85% vs. 30%, p = 0.27). Furthermore, the incidence of ulcer-related lower limb amputations was approximately 6-fold lower (2.6%) in the pooled pravibismane group versus 15.4% in the placebo group (p = 0.15). There were no treatment emergent or serious adverse events related to study drug. The initial findings indicate that topical pravibismane was safe and potentially effective treatment for improving recovery from infected chronic ulcers by reducing ulcer size and facilitating wound healing in infected DFUs (ClinicalTrials.gov Identifier NCT02723539).


Assuntos
Anti-Infecciosos , Diabetes Mellitus , Pé Diabético , Humanos , Antibacterianos/efeitos adversos , Anti-Infecciosos/efeitos adversos , Pé Diabético/tratamento farmacológico , Método Duplo-Cego , Resultado do Tratamento , Úlcera/tratamento farmacológico
9.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573833

RESUMO

In the 1940s and 1950s, researchers seeking safe and novel ways to eliminate airborne pathogens from enclosed spaces, investigated glycol vapours as a method of disinfection. More recently, the COVID-19 pandemic highlighted the need for a non-toxic aerial disinfectant that can be used in the presence of people. This scoping review is intended to analyse the early and more recent literature on glycol disinfection, scrutinizing the methodologies used, and to determine if the use of glycols as modern-day disinfectants is justified PRISMA-ScR guidelines were used to assess the 749 articles retrieved from the Web of Science platform, with 46 articles retained after the search strategy was applied. Early studies generally demonstrated good disinfection capabilities against airborne bacteria and viruses, particularly with propylene glycol (PG) vapour. Vapour pressure, relative humidity, and glycol concentration were found to be important factors affecting the efficacy of glycol vapours. Contact times depended mainly on the glycol application method (i.e. aerosolization or liquid formulation), although information on how glycol efficacy is impacted by contact time is limited. Triethylene glycol (TEG) is deemed to have low toxicity, carcinogenicity, and mutagenicity and is registered for use in air sanitization and deodorization by the US Environmental Protection Agency. Glycols are also used in liquid formulations for their antimicrobial activity against a wide range of microorganisms, although when used as a non-active excipient in products, their contribution to antimicrobial efficacy is rarely assessed. The appropriate use of liquid glycol-containing formulations was found to positively impact the antimicrobial capabilities of disinfectants when used at temperatures <0, food preservatives, and dental medicaments. Providing modern delivery technology can accurately control environmental conditions, the use of aerosolized glycol formulations should lead to successful disinfection, aiding infection prevention, and control regimens.


Assuntos
Anti-Infecciosos , Desinfetantes , Humanos , Pandemias/prevenção & controle , Desinfetantes/farmacologia , Desinfecção/métodos , Anti-Infecciosos/farmacologia , Propilenoglicol/farmacologia , Gases
10.
Sci Transl Med ; 16(742): eadk8222, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598612

RESUMO

Despite modern antiseptic techniques, surgical site infection (SSI) remains a leading complication of surgery. However, the origins of SSI and the high rates of antimicrobial resistance observed in these infections are poorly understood. Using instrumented spine surgery as a model of clean (class I) skin incision, we prospectively sampled preoperative microbiomes and postoperative SSI isolates in a cohort of 204 patients. Combining multiple forms of genomic analysis, we correlated the identity, anatomic distribution, and antimicrobial resistance profiles of SSI pathogens with those of preoperative strains obtained from the patient skin microbiome. We found that 86% of SSIs, comprising a broad range of bacterial species, originated endogenously from preoperative strains, with no evidence of common source infection among a superset of 1610 patients. Most SSI isolates (59%) were resistant to the prophylactic antibiotic administered during surgery, and their resistance phenotypes correlated with the patient's preoperative resistome (P = 0.0002). These findings indicate the need for SSI prevention strategies tailored to the preoperative microbiome and resistome present in individual patients.


Assuntos
Anti-Infecciosos , Infecção da Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/tratamento farmacológico , Infecção da Ferida Cirúrgica/microbiologia , Antibioticoprofilaxia , Pele , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
11.
Antimicrob Resist Infect Control ; 13(1): 37, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600535

RESUMO

INTRODUCTION: Antimicrobial resistance (AMR) is a pressing global health concern, particularly pronounced in low-resource settings. In Ethiopia, the escalating prevalence of carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) poses a substantial threat to public health. METHODS: A comprehensive search of databases, including PubMed, Scopus, Embase, Hinari, and Google Scholar, identified relevant studies. Inclusion criteria encompassed observational studies reporting the prevalence of meropenem-resistant P. aeruginosa in Ethiopia. Quality assessment utilized JBI checklists. A random-effects meta-analysis pooled data on study characteristics and prevalence estimates, with subsequent subgroup and sensitivity analyses. Publication bias was assessed graphically and statistically. RESULTS: Out of 433 studies, nineteen, comprising a total sample of 11,131, met inclusion criteria. The pooled prevalence of meropenem-resistant P. aeruginosa was 15% (95% CI: 10-21%). Significant heterogeneity (I2 = 83.6%) was observed, with the number of P. aeruginosa isolates identified as the primary source of heterogeneity (p = 0.127). Subgroup analysis by infection source revealed a higher prevalence in hospital-acquired infections (28%, 95% CI: 10, 46) compared to community settings (6%, 95% CI: 2, 11). Geographic based subgroup analysis indicated the highest prevalence in the Amhara region (23%, 95% CI: 8, 38), followed by Addis Ababa (21%, 95% CI: 11, 32), and lower prevalence in the Oromia region (7%, 95% CI: 4, 19). Wound samples exhibited the highest resistance (25%, 95% CI: 25, 78), while sputum samples showed the lowest prevalence. Publication bias, identified through funnel plot examination and Egger's regression test (p < 0.001), execution of trim and fill analysis resulted in an adjusted pooled prevalence of (3.7%, 95% CI: 2.3, 9.6). CONCLUSION: The noteworthy prevalence of meropenem resistance among P. aeruginosa isolates in Ethiopia, particularly in healthcare settings, underscores the urgency of implementing strict infection control practices and antibiotic stewardship. Further research is imperative to address and mitigate the challenges posed by antimicrobial resistance in the country.


Assuntos
Anti-Infecciosos , Infecções por Pseudomonas , Humanos , Meropeném/farmacologia , Pseudomonas aeruginosa , Etiópia/epidemiologia , Prevalência , Infecções por Pseudomonas/epidemiologia
12.
Proc Natl Acad Sci U S A ; 121(16): e2303165121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607932

RESUMO

Antimicrobial resistance was estimated to be associated with 4.95 million deaths worldwide in 2019. It is possible to frame the antimicrobial resistance problem as a feedback-control problem. If we could optimize this feedback-control problem and translate our findings to the clinic, we could slow, prevent, or reverse the development of high-level drug resistance. Prior work on this topic has relied on systems where the exact dynamics and parameters were known a priori. In this study, we extend this work using a reinforcement learning (RL) approach capable of learning effective drug cycling policies in a system defined by empirically measured fitness landscapes. Crucially, we show that it is possible to learn effective drug cycling policies despite the problems of noisy, limited, or delayed measurement. Given access to a panel of 15 [Formula: see text]-lactam antibiotics with which to treat the simulated Escherichia coli population, we demonstrate that RL agents outperform two naive treatment paradigms at minimizing the population fitness over time. We also show that RL agents approach the performance of the optimal drug cycling policy. Even when stochastic noise is introduced to the measurements of population fitness, we show that RL agents are capable of maintaining evolving populations at lower growth rates compared to controls. We further tested our approach in arbitrary fitness landscapes of up to 1,024 genotypes. We show that minimization of population fitness using drug cycles is not limited by increasing genome size. Our work represents a proof-of-concept for using AI to control complex evolutionary processes.


Assuntos
Anti-Infecciosos , Aprendizagem , Reforço Psicológico , Resistência Microbiana a Medicamentos , Ciclismo , Escherichia coli/genética
13.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611727

RESUMO

The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.


Assuntos
Anti-Infecciosos , Nanopartículas , Prata/farmacologia , Gossypium , Têxteis , Anti-Infecciosos/farmacologia , Escherichia coli , Extratos Vegetais/farmacologia
14.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611802

RESUMO

LL-37 is the only member of the cathelicidin-type host defense peptide family in humans. It exhibits broad-spectrum bactericidal activity, which represents a distinctive advantage for future therapeutic targets. The presence of choline in the growth medium for bacteria changes the composition and physicochemical properties of their membranes, which affects LL-37's activity as an antimicrobial agent. In this study, the effect of the LL-37 peptide on the phospholipid monolayers at the liquid-air interface imitating the membranes of Legionella gormanii bacteria was determined. The Langmuir monolayer technique was employed to prepare model membranes composed of individual classes of phospholipids-phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), cardiolipin (CL)-isolated from L. gormanii bacteria supplemented or non-supplemented with exogenous choline. Compression isotherms were obtained for the monolayers with or without the addition of the peptide to the subphase. Then, penetration tests were carried out for the phospholipid monolayers compressed to a surface pressure of 30 mN/m, followed by the insertion of the peptide into the subphase. Changes in the mean molecular area were observed over time. Our findings demonstrate the diversified effect of LL-37 on the phospholipid monolayers, depending on the bacteria growth conditions. The substantial changes in membrane properties due to its interactions with LL-37 enable us to propose a feasible mechanism of peptide action at a molecular level. This can be associated with the stable incorporation of the peptide inside the monolayer or with the disruption of the membrane leading to the removal (desorption) of molecules into the subphase. Understanding the role of antimicrobial peptides is crucial for the design and development of new strategies and routes for combating resistance to conventional antibiotics.


Assuntos
Anti-Infecciosos , Legionella , Legionellaceae , Humanos , Fosfolipídeos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Colina
15.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612511

RESUMO

Piscirickettsia salmonis is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN1)2]ClO4 where NN1 = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial capacity of [Cu(NN1)2]ClO4 was determined. Subsequently, the effect of the administration of [Cu(NN1)2]ClO4 on the growth of S. salar, modulation of the immune system and the intestinal microbiota was studied. Finally, the ability to protect against a challenge with P. salmonis was evaluated. The results obtained showed that the compound has an MIC between 15 and 33.9 µg/mL in four isolates. On the other hand, the compound did not affect the growth of the fish; however, an increase in the transcript levels of IFN-γ, IL-12, IL-1ß, CD4, lysozyme and perforin was observed in fish treated with 40 µg/g of fish. Furthermore, modulation of the intestinal microbiota was observed, increasing the genera of beneficial bacteria such as Lactobacillus and Bacillus as well as potential pathogens such as Vibrio and Piscirickettsia. Finally, the treatment increased survival in fish challenged with P. salmonis by more than 60%. These results demonstrate that the compound is capable of protecting fish against P. salmonis, probably by modulating the immune system and the composition of the intestinal microbiota.


Assuntos
Anti-Infecciosos , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Cobre , Infecções por Piscirickettsiaceae/tratamento farmacológico , Infecções por Piscirickettsiaceae/veterinária , Antibacterianos/farmacologia
16.
Int J Nanomedicine ; 19: 3217-3232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596410

RESUMO

Background: Skin wounds are a prevalent issue that can have severe health consequences if not treated correctly. Nanozymes offer a promising therapeutic approach for the treatment of skin wounds, owing to their advantages in regulating redox homeostasis to reduce oxidative damage and kill bacteria. These properties make them an effective treatment option for skin wounds. However, most of current nanozymes lack the capability to simultaneously address inflammation, oxidative stress, and bacterial infection during the wound healing process. There is still great potential for nanozymes to increase their therapeutic functional diversity and efficacy. Methods: Herein, copper-doped hollow mesopores cerium oxide (Cu-HMCe) nanozymes with multifunctional of antioxidant, antimicrobial and pro-vascularity is successfully prepared. Cu-HMCe can be efficiently prepared through a simple and rapid solution method and displays sound physiological stability. The biocompatibility, pro-angiogenic, antimicrobial, and antioxidant properties of Cu-HMCe were assessed. Moreover, a full-thickness skin defect infection model was utilized to investigate the wound healing capacity, as well as anti-inflammatory and pro-angiogenic properties of nanozymes in vivo. Results: Both in vitro and in vivo experiments have substantiated Cu-HMCe's remarkable biocompatibility. Moreover, Cu-HMCe possesses potent antioxidant enzyme-like catalytic activity, effectively clearing DPPH radicals (with a scavenging rate of 80%), hydroxyl radicals, and reactive oxygen species. Additionally, Cu-HMCe exhibits excellent antimicrobial and pro-angiogenic properties, with over 70% inhibition of both E. coli and S. aureus. These properties collectively promote wound healing, and the wound treated with Cu-HMCe achieved a closure rate of over 90% on the 14th day. Conclusion: The results indicate that multifunctional Cu-HMCe with antioxidant, antimicrobial, and pro-angiogenic properties was successfully prepared and exhibited remarkable efficacy in promoting wound healing. This nanozymes providing a promising strategy for skin repair.


Assuntos
Anti-Infecciosos , Antioxidantes , Antioxidantes/farmacologia , Cobre/farmacologia , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Hidrogéis
17.
Braz Oral Res ; 38: e024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597544

RESUMO

This study aimed to identify and characterize the antimicrobial susceptibility profile of bacteria found in primary endodontic infections in the teeth of patients treated at the Dental Clinic of the University of Ribeirão Preto, São Paulo, Brazil. From September to December 2019, samples were obtained from 21 patients with primary endodontic infections. The collections were carried out in triplicate using paper cones placed close to the total length of the root canal. Bacterial isolation was performed in Brain Heart Infusion agar, Blood agar, and other selective culture media cultured at 37°C for up to 48 h under aerobiosis and microaerophilic conditions. The bacterial species were identified using the Vitek 2 automated system. The disk diffusion method on agar Müeller-Hinton was used to assess antimicrobial susceptibility with the recommended antimicrobials for each identified bacterial species. A total of 49 antibiotics were evaluated. Fifteen of the 21 samples collected showed bacterial growth, and 17 bacterial isolates were found. There were 10 different bacterial species identified: Enterococcus faecalis (four isolates), Streptococcus mitis/oralis (three isolates), Streptococcus anginosus (three isolates) being the most common, followed by Staphylococcus epidermidis, Enterococcus faecium, Streptococcus constellatus, Streptococcus alactolyticus, Enterobacter cloacae, Klebsiella variicola, and Providencia rettgeri (one isolate of each species). The analysis demonstrated significant susceptibility to most of the tested antibiotics. However, some Enterococcus isolates resisted the antibiotic's erythromycin, ciprofloxacin, and tetracycline. A Staphylococcus epidermidis isolate was characterized as multidrug-resistant. Five Streptococcus isolates were non-susceptible to all antibiotics tested.


Assuntos
Anti-Infecciosos , Enterococcus faecium , Humanos , Ágar , Testes de Sensibilidade Microbiana , Brasil , Antibacterianos/farmacologia , Meios de Cultura
18.
Curr Microbiol ; 81(5): 137, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597994

RESUMO

Fermented foods have been recognized as a source of probiotic bacteria which can have a positive effect when administered to humans and animals. Discovering new probiotics in fermented food products poses a global economic and health importance. In this study, we investigated the antimicrobial and probiotic potential of lactobacilli isolated from fermented beverages produced traditionally by ethnic groups in Northeast India. Out of thirty Lactobacilli, fifteen exhibited strong antimicrobial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter aerogenes with significant anti-biofilm and anti-quorum sensing activity. These isolates also showed characteristics associated with probiotic properties, such as tolerance to low pH and bile salts, survival in the gastric tract, auto-aggregation, and hydrophobicity without exhibiting hemolysis formation or resistance to certain antibiotics. The isolates were identified using gram staining, biochemical tests, and 16S rDNA sequencing. They exhibited probiotic potential, broad-spectrum of antibacterial activity, promising anti-biofilm, anti-quorum sensing activity, non-hemolytic, and tolerance to acidic pH and bile salts. Overall, four specific Lactobacillus isolates, Lactiplantibacillus plantarum BRD3A and Lacticaseibacillus paracasei RB10OW from fermented rice-based beverage, and Lactiplantibacillus plantarum RB30Y and Lacticaseibacillus paracasei MP11A from traditional local curd demonstrated potent antimicrobial and probiotic properties. These findings suggest that these lactobacilli isolates from fermented beverages have the potential to be used as probiotics with therapeutic benefits, highlighting the importance of traditional fermented foods for promoting gut health and infectious disease management.


Assuntos
Anti-Infecciosos , Lactobacillus , Animais , Humanos , Bebidas Fermentadas , Antibacterianos/farmacologia , Ácidos e Sais Biliares
19.
BMJ Glob Health ; 9(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569658

RESUMO

Antimicrobial resistance (AMR) is a global health and one health problem. Efforts to mitigate the problem of AMR are challenging to implement due to unresolved ethical tensions. We present an in-depth ethical analysis of tensions that might hinder efforts to address AMR. First, there is a tension between access and excess in the current population: addressing lack of access requires facilitating use of antimicrobials for some populations, while addressing excessive use for other populations. Second, there is a tension between personal interests and a wider, shared interest in curbing AMR. These personal interests can be viewed from the perspective of individuals seeking care and healthcare providers whose livelihoods depend on using or selling antimicrobials and who profit from the sales and use of antimicrobials. Third, there is a tension between the interests of current populations and the interests of future generations. Last, there is a tension between addressing immediate health threats such as pandemics, and AMR as a 'silent', chronic threat. For each of these tensions, we apply 'descriptive ethics' methods that draw from existing evidence and our experiences living and working in low-income and middle-income countries to highlight how these ethical tensions apply in such settings.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Países em Desenvolvimento , Análise Ética
20.
Wiad Lek ; 77(2): 187-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592977

RESUMO

OBJECTIVE: Aim: To determine the current prevalence of endometritis after hysteroscopic procedures and antimicrobial resistance of responsible pathogens in Ukraine. PATIENTS AND METHODS: Materials and Methods: Multicenter prospective cohort study was conducted from January 2020 to December 2022 in fifteen hospitals from twelve regions of Ukraine. Definitions of endometritis were adapted from the Centers for Disease Control and Prevention's National Healthcare Safety Network. Antibiotic susceptibility was done by the disc diffusion test as recommended by EUCAST. RESULTS: Results: Among 13,872 patients with hysteroscopic procedures, 1027 (7.4%) endometritis were observed. Of these cases, 0.4% were detected after diagnostic hysteroscopy, and 7.0% were detected after operative hysteroscopy. Of all endometritis cases, 64.2% were detected after hospital discharge. The most commonly reported bacterial species were Escherichia coli (24.3%), followed by Enterobacter spp. (12.7%), Enterococcus spp. (8.3%), Pseudomonas aeruginosa (8.1%), Serratia marcescens (6.8%), Staphylococcus aureus (5.9%), Proteus mirabilis (5.8%), Klebsiella oxytoca (5.1%), Stenotrophomonas maltophilia (4.5%), Klebsiella pneumoniae (4.1%). A significant proportion of patients were affected by endometritis caused by bacteria developed resistance to several antimicrobials, varying widely depending on the bacterial species, antimicrobial group, and geographical region of Ukraine. CONCLUSION: Conclusions: Our data suggest a high prevalence of endometritis after hysteroscopic procedures. Risk for endometritis was higher after operative hysteroscopy compared with diagnostic hysteroscopy. Many most of patients were affected by endometritis caused by bacteria developed resistance to several antimicrobials. These data underscore the importance of tracking antimicrobial resistance of responsible pathogens of HAIs in hospitals.


Assuntos
Anti-Infecciosos , Endometrite , Feminino , Humanos , Endometrite/epidemiologia , Endometrite/etiologia , Estudos Prospectivos , Ucrânia/epidemiologia , Farmacorresistência Bacteriana , Bactérias , Escherichia coli , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...