Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.599
Filtrar
1.
Int J Biol Sci ; 20(5): 1634-1651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481819

RESUMO

Background: Hypoxia induces hepatocellular carcinoma (HCC) malignancies; yet it also offers treatment opportunities, exemplified by developing hypoxia-activated prodrugs (HAPs). Although HAP TH-302 combined with therapeutic antibody (Ab) has synergistic effects, the clinical benefits are limited by the on-target off-tumor toxicity of Ab. Here, we sought to develop a hypoxia-activated anti-M2 splice isoform of pyruvate kinase (PKM2) Ab combined with TH-302 for potentiated targeting therapy. Methods: Codon-optimized and hypoxia-activation strategies were used to develop H103 Ab-azo-PEG5k (HAP103) Ab. Hypoxia-activated HAP103 Ab was characterized, and hypoxia-dependent antitumor and immune activities were evaluated. Selective imaging and targeting therapy with HAP103 Ab were assessed in HCC-xenografted mouse models. Targeting selectivity, systemic toxicity, and synergistic therapeutic efficacy of HAP103 Ab with TH-302 were evaluated. Results: Human full-length H103 Ab was produced in a large-scale bioreactor. Azobenzene (azo)-linked PEG5k conjugation endowed HAP103 Ab with hypoxia-activated targeting features. Conditional HAP103 Ab effectively inhibited HCC cell growth, enhanced apoptosis, and induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) functions. Analysis of HCC-xenografted mouse models showed that HAP103 Ab selectively targeted hypoxic HCC tissues and induced potent tumor-inhibitory activity either alone or in combination with TH-302. Besides the synergistic effects, HAP103 Ab had negligible side effects when compared to parent H103 Ab. Conclusion: The hypoxia-activated anti-PKM2 Ab safely confers a strong inhibitory effect on HCC with improved selectivity. This provides a promising strategy to overcome the on-target off-tumor toxicity of Ab therapeutics; and highlights an advanced approach to precisely kill HCC in combination with HAP TH-302.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nitroimidazóis , Mostardas de Fosforamida , Pró-Fármacos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/farmacologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Hipóxia
2.
Sci Rep ; 14(1): 6275, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491188

RESUMO

Hypoxic responses have been implicated in critical pathologies, including inflammation, immunity, and tumorigenesis. Recently, efforts to identify effective natural remedies and health supplements are increasing. Previous studies have reported that the cell lysates and the cell wall-bound lipoteichoic acids of Lactiplantibacillus plantarum K8 (K8) exert anti-inflammatory and immunomodulative effects. However, the effect of K8 on cellular hypoxic responses remains unknown. In this study, we found that K8 lysates had a potent suppressive effect on gene expression under hypoxia. K8 lysates markedly downregulated hypoxia-induced HIF1α accumulation in the human bone marrow and lung cancer cell lines, SH-SY5Y and H460. Consequently, the transcription of known HIF1α target genes, such as p21, GLUT1, and ALDOC, was notably suppressed in the K8 lysate supplement and purified lipoteichoic acids of K8, upon hypoxic induction. Intriguingly, K8 lysates decreased the expression of PHD2 and VHL proteins, which are responsible for HIF1α destabilization under normoxic conditions, suggesting that K8 may regulate HIF1α stability in a non-canonical pathway. Overall, our results suggest that K8 lysates desensitize the cells to hypoxic stresses and suppress HIF1α-mediated hypoxic gene activation.


Assuntos
Neuroblastoma , Humanos , Hipóxia Celular/genética , Linhagem Celular , Hipóxia/metabolismo , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
3.
Cell Biochem Funct ; 42(2): e3983, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38493450

RESUMO

Many of the cancer cells produce energy with accelerated glycolysis and perform lactic acid production even under normoxic conditions called the "Warburg effect". Metabolism can directly or indirectly regulate the apoptotic mechanism so that cancer cells take advantage of reprogrammed metabolism to avoid apoptosis. The aim of this study is to examine the mechanism of apoptosis by incubating human lung carcinoma cells (A549) under different metabolic conditions in hypoxia or normoxia environments. A549 cells were incubated in the normoxic or hypoxic condition that contained 5 mM glucose (Glc 5), 25 mM glucose (Glc 25), or 10 mM galactose (OXPHOS/aglycemic), and the mechanism of apoptosis was investigated. In the hypoxia condition, the rate of early apoptosis in aglycemic OXPHOS cells was increased (15.5% ±7.1). In addition, the activity of caspase-3 (6.1% ± 0.9), caspase-9 (30.4% ± 0.9), and cytochrome c expression level increased; however, the mitochondrial membrane potential (51.9% ± 0.4) was found to be decreased. Changing the amount of oxygen in glycolytic cells had no effect on apoptosis. However, it has been determined that apoptosis is stimulated under hypoxia conditions in aglycemic cells in which galactose is used instead of glucose. Considering that the majority of cancer cells are hypoxic, these data are important in determining targets in therapeutic intervention.


Assuntos
Galactose , Hipóxia , Humanos , Células A549 , Galactose/farmacologia , Apoptose , Glicólise , Hipóxia Celular , Glucose/farmacologia , Glucose/metabolismo
4.
FASEB J ; 38(5): e23499, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430222

RESUMO

Alteration of HIF-1α expression levels under hypoxic conditions affects the sequence of its downstream target genes thereby producing different effects. In order to investigate whether the effect of hypoxic compound exercise (HE) on HIF-1α expression alters cardiac pumping function, myocardial structure, and exercise capacity, we developed a suitable model of hypoxic exercise using Drosophila, a model organism, and additionally investigated the effect of hypoxic compound exercise on nocturnal sleep and activity behavior. The results showed that hypoxic compound exercise at 6% oxygen concentration for five consecutive days, lasting 1 h per day, significantly improved the cardiac stress resistance of Drosophila. The hypoxic complex exercise promoted the whole-body HIF-1α expression in Drosophila, and improved the jumping ability, climbing ability, moving speed, and moving distance. The expression of HIF-1α in the heart was increased after hypoxic exercise, which made a closer arrangement of myofilaments, an increase in the diameter of cardiac tubules, and an increase in the pumping function of the heart. The hypoxic compound exercise improved the sleep quality of Drosophila by increasing its nocturnal sleep time, the number of deep sleeps, and decreasing its nocturnal awakenings and activities. Therefore, we conclude that hypoxic compound exercise promoted the expression of HIF-1α to enhance the exercise capacity and heart pumping function of Drosophila, and improved the quality of sleep.


Assuntos
Drosophila , Tolerância ao Exercício , Subunidade alfa do Fator 1 Induzível por Hipóxia , Sono , Animais , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
5.
Sci Rep ; 14(1): 5164, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431674

RESUMO

Blood glucose levels fluctuate during daily life, and the oxygen concentration is low compared to the atmosphere. Vascular endothelial cells (ECs) maintain vascular homeostasis by sensing changes in glucose and oxygen concentrations, resulting in collective migration. However, the behaviors of ECs in response to high-glucose and hypoxic environments and the underlying mechanisms remain unclear. In this study, we investigated the collective migration of ECs simultaneously stimulated by changes in glucose and oxygen concentrations. Cell migration in EC monolayer formed inside the media channels of microfluidic devices was observed while varying the glucose and oxygen concentrations. The cell migration increased with increasing glucose concentration under normoxic condition but decreased under hypoxic condition, even in the presence of high glucose levels. In addition, inhibition of mitochondrial function reduced the cell migration regardless of glucose and oxygen concentrations. Thus, oxygen had a greater impact on cell migration than glucose, and aerobic energy production in mitochondria plays an important mechanistic role. These results provide new insights regarding vascular homeostasis relative to glucose and oxygen concentration changes.


Assuntos
Células Endoteliais , Glucose , Humanos , Células Endoteliais/fisiologia , Glucose/farmacologia , Hipóxia , Oxigênio , Movimento Celular , Hipóxia Celular , Células Cultivadas
6.
Mol Med Rep ; 29(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38426545

RESUMO

Liver sinusoidal endothelial cells (LSECs) have an important role in hepatic ischemia­reperfusion injury (I/R), but the specific molecular mechanism of action is unknown. LSEC proliferation is regulated and fenestration is maintained via the Sentrin/SUMO­specific protease 1 (SENP1)/hypoxia­inducible factor­1α (HIF­1α) signaling axis under hypoxic conditions. In the present study, a hypoxia­reoxygenation (H­R) injury model was established using mouse LSECs to explore the relationship between SENP1 and H­R injury in vitro, and the specific underlying mechanism was identified, revealing new targets for the clinical attenuation of hepatic I/R injury. Following the culture of LSECs under H­R conditions, it was demonstrated that the expression of SENP1 was upregulated by reverse transcription­quantitative polymerase chain reaction and western blotting (WB). In addition, scanning electron microscopy indicated that fenestrae damage was increased, a Cell Counting Kit­8 assay demonstrated that the proliferation of cells was impaired and flow cytometry showed that apoptosis was increased. After silencing SENP1 expression with short interfering RNA, the proliferation activity of LSECs decreased, the fenestrae damage increased, the apoptosis rate increased and the expression levels of SENP1, HIF­1α, heme oxygenase and Bcl­2 were downregulated (as demonstrated by WB), while the expression levels of apoptosis­related proteins, cleaved­caspase­3 and Bax, were upregulated. Enzyme­linked immunosorbent assay detection showed that the level of vascular endothelial growth factor in the supernatant decreased and the level of IL­6 and TNF­α increased. Following the administration of an HIF­1α signaling pathway agonist, the situation was reversed. These results therefore suggested that SENP1 attenuated the reduction in proliferation, apoptosis and fenestration of LSECs observed following H­R injury through the HIF­1α signaling pathway. In conclusion, SENP1 may attenuate H­R injury in LSECs in a HIF­1α signaling pathway­dependent manner.


Assuntos
Células Endoteliais , Peptídeo Hidrolases , Animais , Camundongos , Capilares/metabolismo , Hipóxia Celular , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Fígado/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Curr Mol Pharmacol ; 17: e18761429266116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389420

RESUMO

Hypoxia-inducible factor (HIF) is a nuclear protein that plays a crucial role in oxygen homeostasis through its transcriptional activity and thousands of target gene profiles. Through transcriptional and post-transcriptional regulation, the downstream target genes of HIF can trigger multiple pathological responses in the body, including energy metabolism, cytopenia, and angiogenesis. There are three distinct subtypes of HIF: HIF-1, HIF-2, and HIF-3. HIF-1 is a significant regulator of the cellular response to hypoxia, and the balance between its production and degradation is critical for this response. As hypoxia is linked to several disorders, understanding HIF can open up novel avenues for the treatment of many diseases. This review describes the regulatory mechanisms of HIF-1 synthesis and degradation and the clinical significance of the hypoxia-inducible factor pathway in lung injury, kidney disease, hematologic disorders, and inflammation-related diseases.


Assuntos
Hipóxia Celular , Fator 1 Induzível por Hipóxia , Humanos , Hipóxia Celular/fisiologia , Relevância Clínica , Regulação da Expressão Gênica , Hipóxia , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo
8.
J Exp Clin Cancer Res ; 43(1): 57, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403587

RESUMO

BACKGROUND: Hypoxia in solid tumors is an important source of chemoresistance that can determine poor patient prognosis. Such chemoresistance relies on the presence of cancer stem cells (CSCs), and hypoxia promotes their generation through transcriptional activation by HIF transcription factors. METHODS: We used ovarian cancer (OC) cell lines, xenograft models, OC patient samples, transcriptional databases, induced pluripotent stem cells (iPSCs) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). RESULTS: Here, we show that hypoxia induces CSC formation and chemoresistance in ovarian cancer through transcriptional activation of the PLD2 gene. Mechanistically, HIF-1α activates PLD2 transcription through hypoxia response elements, and both hypoxia and PLD2 overexpression lead to increased accessibility around stemness genes, detected by ATAC-seq, at sites bound by AP-1 transcription factors. This in turn provokes a rewiring of stemness genes, including the overexpression of SOX2, SOX9 or NOTCH1. PLD2 overexpression also leads to decreased patient survival, enhanced tumor growth and CSC formation, and increased iPSCs reprograming, confirming its role in dedifferentiation to a stem-like phenotype. Importantly, hypoxia-induced stemness is dependent on PLD2 expression, demonstrating that PLD2 is a major determinant of de-differentiation of ovarian cancer cells to stem-like cells in hypoxic conditions. Finally, we demonstrate that high PLD2 expression increases chemoresistance to cisplatin and carboplatin treatments, both in vitro and in vivo, while its pharmacological inhibition restores sensitivity. CONCLUSIONS: Altogether, our work highlights the importance of the HIF-1α-PLD2 axis for CSC generation and chemoresistance in OC and proposes an alternative treatment for patients with high PLD2 expression.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Hipóxia Celular , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Hipóxia/metabolismo , Fatores de Transcrição/metabolismo , Células-Tronco Neoplásicas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica
9.
Redox Biol ; 70: 103073, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335622

RESUMO

Defects of human trophoblast cells may induce miscarriage (abnormal early embryo loss), which is generally regulated by lncRNAs. Ferroptosis is a newly identified iron-dependent programmed cell death. Hypoxia is an important and unavoidable feature in mammalian cells. However, whether hypoxia might induce trophoblast cell ferroptosis and then induce miscarriage, as well as regulated by a lncRNA, was completely unknown. In this work, we discovered at the first time that hypoxia could result in ferroptosis of human trophoblast cells and then induce miscarriage. We also identified a novel lncRNA (lnc-HZ06) that simultaneously regulated hypoxia (indicated by HIF1α protein), ferroptosis, and miscarriage. In mechanism, HIF1α-SUMO, instead of HIF1α itself, primarily acted as a transcription factor to promote the transcription of NCOA4 (ferroptosis indicator) in hypoxic trophoblast cells. Lnc-HZ06 promoted the SUMOylation of HIF1α by suppressing SENP1-mediated deSUMOylation. HIF1α-SUMO also acted as a transcription factor to promote lnc-HZ06 transcription. Thus, both lnc-HZ06 and HIF1α-SUMO formed a positive auto-regulatory feedback loop. This loop was up-regulated in hypoxic trophoblast cells, in RM villous tissues, and in placental tissues of hypoxia-treated mice, which further induced ferroptosis and miscarriage by up-regulating HIF1α-SUMO-mediated NCOA4 transcription. Furthermore, knockdown of either murine lnc-hz06 or Ncoa4 could efficiently suppress ferroptosis and alleviate miscarriage in hypoxic mouse model. Taken together, this study provided new insights in understanding the regulatory roles of lnc-HZ06/HIF1α-SUMO/NCOA4 axis among hypoxia, ferroptosis, and miscarriage, and also offered an effective approach for treatment against miscarriage.


Assuntos
Aborto Espontâneo , Ferroptose , RNA Longo não Codificante , Camundongos , Feminino , Humanos , Gravidez , Animais , Ferroptose/genética , RNA Longo não Codificante/genética , Placenta , Hipóxia Celular , Hipóxia/genética , Fatores de Transcrição , Trofoblastos , Mamíferos , Coativadores de Receptor Nuclear
10.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396757

RESUMO

The hypoxic pattern of glioblastoma (GBM) is known to be a primary cause of radioresistance. Our study explored the possibility of using gene knockdown of key factors involved in the molecular response to hypoxia, to overcome GBM radioresistance. We used the U87 cell line subjected to chemical hypoxia generated by CoCl2 and exposed to 2 Gy of X-rays, as single or combined treatments, and evaluated gene expression changes of biomarkers involved in the Warburg effect, cell cycle control, and survival to identify the best molecular targets to be knocked-down, among those directly activated by the HIF-1α transcription factor. By this approach, glut-3 and pdk-1 genes were chosen, and the effects of their morpholino-induced gene silencing were evaluated by exploring the proliferative rates and the molecular modifications of the above-mentioned biomarkers. We found that, after combined treatments, glut-3 gene knockdown induced a greater decrease in cell proliferation, compared to pdk-1 gene knockdown and strong upregulation of glut-1 and ldha, as a sign of cell response to restore the anaerobic glycolysis pathway. Overall, glut-3 gene knockdown offered a better chance of controlling the anaerobic use of pyruvate and a better proliferation rate reduction, suggesting it is a suitable silencing target to overcome radioresistance.


Assuntos
Glioblastoma , Transportador de Glucose Tipo 3 , Humanos , Biomarcadores/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Hipóxia , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo
11.
Bioorg Chem ; 144: 107161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306826

RESUMO

Hypoxia, as a prevalent feature of solid tumors, is correlated with tumorigenesis, proliferation, and invasion, playing an important role in mediating the drug resistance and affecting the cancer treatment outcomes. Due to the distinct oxygen levels between tumor and normal tissues, hypoxia-targeted therapy has attracted significant attention. The hypoxia-activated compounds mainly depend on reducible organic groups including azo, nitro, N-oxides, quinones and azide as well as some redox-active metal complex that are selectively converted into active species by the increased reduction potential under tumor hypoxia. In this review, we briefly summarized our current understanding on hypoxia-activated compounds with a particular highlight on the recently developed prodrugs and fluorescent probes for tumor treatment and diagnosis. We have also discussed the challenges and perspectives of small molecule-based hypoxia-activatable prodrug for future development.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Hipóxia/diagnóstico , Hipóxia/tratamento farmacológico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Hipóxia Celular , Hipóxia Tumoral , Linhagem Celular Tumoral
12.
Cell Biochem Funct ; 42(2): e3940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379257

RESUMO

Eukaryotic cells utilize oxygen for different functions of cell organelles owing to cellular survival. A balanced oxygen homeostasis is an essential requirement to maintain the regulation of normal cellular systems. Any changes in the oxygen level are stressful and can alter the expression of different homeostasis regulatory genes and proteins. Lack of oxygen or hypoxia results in oxidative stress and formation of hypoxia inducible factors (HIF) and reactive oxygen species (ROS). Substantial cellular damages due to hypoxia have been reported to play a major role in various pathological conditions. There are different studies which demonstrated that the functions of cellular system are disrupted by hypoxia. Currently, study on cellular effects following hypoxia is an important field of research as it not only helps to decipher different signaling pathway modulation, but also helps to explore novel therapeutic strategies. On the basis of the beneficial effect of hypoxia preconditioning of cellular organelles, many therapeutic investigations are ongoing as a promising disease management strategy in near future. Hence, the present review discusses about the effects of hypoxia on different cellular organelles, mechanisms and their involvement in the progression of different diseases.


Assuntos
Hipóxia , Oxigênio , Humanos , Hipóxia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxigênio/metabolismo , Estresse Oxidativo , Transdução de Sinais , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
13.
Methods Mol Biol ; 2755: 77-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319570

RESUMO

Hypoxia is a hallmark of ischemic cardiovascular diseases and solid malignant tumors. Cellular hypoxia induces numerous physiological and pathological processes, including hematopoiesis, angiogenesis, metabolic changes, cell growth, and apoptosis. Hypoxia-inducible factor-1 (HIF-1) binds to hypoxia response elements (HREs) to selectively induce the expression of various genes in response to hypoxia. Therefore, HREs have been used to develop hypoxia-targeted gene therapy.More than 70 pairs of HREs and hypoxia-inducible genes have been identified. The hypoxia-induced gene expression levels vary among HRE sequences depending on the number of HRE copies and oxygen levels. Most known HREs have not yet been thoroughly studied. Recent studies have revealed that the HRE-mediated effects of hypoxia are cell line-dependent. Herein we describe an in vitro method to investigate gene activation levels and characteristics based on varying the copy number of HREs in response to cellular hypoxia. We explain how to clone HREs into luciferase reporter constructs in the sense, antisense, and dual directions to measure luciferase expression for functional analyses.


Assuntos
Hipóxia , Oxigênio , Humanos , Hipóxia Celular , Hipóxia/genética , Apoptose/genética , Luciferases/genética
14.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338723

RESUMO

The yak is a unique creature that thrives in low-oxygen environments, showcasing its adaptability to high-altitude settings with limited oxygen availability due to its unique respiratory system. However, the impact of hypoxia on alveolar type II (AT2) epithelial cell proliferation in yaks remains unexplored. In this study, we investigated the effects of different altitudes on 6-month-old yaks and found an increase in alveolar septa thickness and AT2 cell count in a high-altitude environment characterized by hypoxia. This was accompanied by elevated levels of hypoxia-inducible factor-1α (HIF-1α) and epidermal growth factor receptor (EGFR) expression. Additionally, we observed a significant rise in Ki67-positive cells and apoptotic lung epithelial cells among yaks inhabiting higher altitudes. Our in vitro experiments demonstrated that exposure to hypoxia activated HIF-1α, EGF, and EGFR expression leading to increased proliferation rates among yak AT2 cells. Under normal oxygen conditions, activation of HIF-1α enhanced EGF/EGFR expressions which subsequently stimulated AT2 cell proliferation. Furthermore, activation of EGFR expression under normoxic conditions further promoted AT2 cell proliferation while simultaneously suppressing apoptosis. Conversely, inhibition of EGFR expression under hypoxic conditions had contrasting effects. In summary, hypoxia triggers the proliferation of yak AT2 cells via activation facilitated by the HIF-1α/EGF/EGFR signaling cascade.


Assuntos
Fator de Crescimento Epidérmico , Transdução de Sinais , Animais , Bovinos , Hipóxia Celular/fisiologia , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo
15.
Arch Oral Biol ; 159: 105881, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199116

RESUMO

OBJECTIVE: Hypoxia-inducible factor-1α (HIF-1α) and its downstream factor, 19 kDa BCL-2 interacting protein 3 (BNIP3), promote cellular autophagy under hypoxic conditions. However, their roles in pulpitis are unclear. Therefore, the changes in inflammatory response and autophagy levels caused by hypoxia during pulpitis were evaluated. Additionally, the regulatory mechanism of HIF-1α/BNIP3 in cellular autophagy in pulpitis was explored. DESIGN: Pulp from dental pulp tissues of healthy individuals and patients with pulpitis (n = 10) were exposed and combined with a low oxygen simulation chamber to construct pulpitis (n = 6), hypoxia (n = 6), and hypoxia+pulpitis (n = 6) rat models. Hematoxylin and eosin and immunohistochemical staining were used to detect the localization and expression levels of HIF-1α, BNIP3, and autophagy marker protein, LC3B. Transmission electron microscopy was used to confirm autophagosome formation. An in vitro hypoxic model of human dental pulp cells was established, and HIF-1α chemical inhibitor 3-(5'-hydroxymethyl-2'-furyl)- 1-benzylindazole (YC-1) was administered. Immunofluorescence and western blotting were used to detect the localization and protein levels of HIF-1α, BNIP3, and LC3B. RESULTS: Autophagy is significantly increased and HIF-1α and BNIP3 are elevated in inflamed dental pulp tissue. Both pulp exposure and hypoxia intervention cause inflammatory reactions in rat dental pulp tissue, accompanied by the autophagy activation. Hypoxia significantly enhances HIF-1α/BNIP3 and autophagy activation. BNIP3 downregulates and autophagy reduces after treatment with YC-1. CONCLUSIONS: In pulpitis, activation of the HIF-1α/BNIP3 signaling pathway driven by hypoxia leads to increased autophagy. This provides a new molecular explanation for autophagy activation in apical periodontitis and new insights into the pathogenesis of the disease.


Assuntos
Pulpite , Animais , Humanos , Ratos , Autofagia , Hipóxia Celular , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Proteínas Proto-Oncogênicas/metabolismo
16.
Int Immunopharmacol ; 128: 111418, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176341

RESUMO

Periodontitis, an inflammatory disease, can cause significant damage to the oral tissues which support the teeth. During the early development of periodontitis, periodontal ligament fibroblasts (PDLFs) undergo metabolic reprogramming regulated by hypoxia-inducible factor 1α (HIF-1α), which is strongly linked to the progression of inflammation. However, the precise mechanisms by which PDLFs regulate HIF-1α and its associated metabolic reprogramming during early inflammation remain unclear. This study illustrated that brief and low-dose exposure to Escherichia coli (E. coli) lipopolysaccharide (LPS) can serve as a non-hypoxic stimulus, effectively replicating early periodontal inflammatory reactions. This is evidenced by the upregulation of HIF-1α expression and the activation of HIF-1α-mediated crucial glycolytic enzymes, namely lactate dehydrogenase a, pyruvate kinase, and hexokinase 2, concomitant with an augmentation in the inflammatory response within PDLFs. We observed that the effects mentioned and their impact on macrophage polarization were notably attenuated when intracellular and extracellular stores of Ca2+ were depleted using BAPTA-AM and Ca2+-free medium, respectively. Mechanistically, our findings demonstrated that the transcriptional process of HIF-1α is regulated by Ca2+ during E. coli LPS stimulation, mediated through the signal transducer and activator of transcription 3 (STAT3) pathway. Additionally, we observed that the stabilization of intracellular HIF-1α proteins occurs via the endothelin (ET)-1-endothelin A receptor pathway, independent of hypoxia. Taken together, our research outcomes underscore the pivotal involvement of Ca2+ in the onset of early periodontitis by modulating HIF-1α and glycolysis, thereby presenting novel avenues for early therapeutic interventions.


Assuntos
Lipopolissacarídeos , Periodontite , Humanos , Lipopolissacarídeos/farmacologia , Escherichia coli/metabolismo , Ligamento Periodontal , Sinalização do Cálcio , Hipóxia/metabolismo , Periodontite/metabolismo , Hipóxia Celular , Inflamação/metabolismo , Fibroblastos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
17.
Free Radic Biol Med ; 213: 327-342, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38281628

RESUMO

BACKGROUND: Bone marrow-derived endothelial progenitor cells (EPCs) play a dynamic role in maintaining the structure and function of blood vessels. But how these cells maintain their growth and angiogenic capacity under bone marrow hypoxic niche is still unclear. This study aims to explore the mechanisms from a perspective of cellular metabolism. METHODS: XFe96 Extracellular Flux Analyzer was used to analyze the metabolic status of EPCs. Gas Chromatography-Mass Spectrometry (GC-MS) was used to trace the carbon movement of 13C-labeled glucose and glutamine under 1 % O2 (hypoxia) and ∼20 % O2 (normoxia). Moreover, RNA interference, targeting isocitrate dehydrogenase-1 (IDH1) and IDH2, was used to inhibit the reverse tricarboxylic acid (TCA) cycle and analyze metabolic changes via isotope tracing as well as changes in cell growth and angiogenic potential under hypoxia. The therapeutic potential of EPCs under hypoxia was investigated in the ischemic hindlimb model. RESULTS: Compared with normoxic cells, hypoxic cells showed increased glycolysis and decreased mitochondrial respiration. Isotope metabolic tracing revealed that under hypoxia, the forward TCA cycle was decreased and the reverse TCA cycle was enhanced, mediating the conversion of α-ketoglutarate (α-KG) into isocitrate/citrate, and de novo lipid synthesis was promoted. Downregulation of IDH1 or IDH2 under hypoxia suppressed the reverse TCA cycle, attenuated de novo lipid synthesis (DNL), elevated α-KG levels, and decreased the expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA), eventually inhibiting the growth and angiogenic capacity of EPCs. Importantly, the transplantation of hypoxia-cultured EPCs in a mouse model of limb ischemia promoted new blood vessel regeneration and blood supply recovery in the ischemic area better than the transplantation of normoxia-cultured EPCs. CONCLUSIONS: Under hypoxia, the IDH1- and IDH2-mediated reverse TCA cycle promotes glutamine-derived de novo lipogenesis and stabilizes the expression of α-KG and HIF-1α, thereby enhancing the growth and angiogenic capacity of EPCs.


Assuntos
Células Progenitoras Endoteliais , Animais , Camundongos , Medula Óssea/metabolismo , Hipóxia Celular , Células Progenitoras Endoteliais/metabolismo , Glutamina/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/metabolismo , Isótopos/metabolismo , Lipídeos , Lipogênese , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Acta Biomater ; 176: 1-27, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232912

RESUMO

Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.


Assuntos
Neoplasias , Hipóxia Tumoral , Humanos , Neoplasias/patologia , Hipóxia Celular , Hipóxia , Microambiente Tumoral
19.
FEBS Lett ; 598(5): 503-520, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281767

RESUMO

Cells remodel splicing and translation machineries to mount specialized gene expression responses to stress. Here, we show that hypoxic human cells in 2D and 3D culture models increase the relative abundance of a longer mRNA variant of ribosomal protein S24 (RPS24L) compared to a shorter mRNA variant (RPS24S) by favoring the inclusion of a 22 bp cassette exon. Mechanistically, RPS24L and RPS24S are induced and repressed, respectively, by distinct pathways in hypoxia: RPS24L is induced in an autophagy-dependent manner, while RPS24S is reduced by mTORC1 repression in a hypoxia-inducible factor-dependent manner. RPS24L produces a more stable protein isoform that aids in hypoxic cell survival and growth, which could be exploited by cancer cells in the tumor microenvironment.


Assuntos
Processamento Alternativo , Hipóxia , Humanos , Autofagia/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279236

RESUMO

This study aimed to assess the influence of ischemic preconditioning (IP) on hypoxia/reoxygenation (HR)-induced endothelial cell (EC) death. Human umbilical vein endothelial cells (HUVECs) were subjected to 2 or 6 h hypoxia with subsequent reoxygenation. IP was induced by 20 min of hypoxia followed by 20 min of reoxygenation. Necrosis was assessed by the release of lactate dehydrogenase (LDH) and apoptosis by double staining with propidium iodide/annexin V (PI/AV), using TUNEL test, and Bcl-2 and Bax gene expression measured using RT-PCR. In PI/AV staining, after 24 h of reoxygenation, 30-33% of EC were necrotic and 16-21% were apoptotic. In comparison to HR cells, IP reduced membrane apoptosis after 24 h of reoxygenation by 50% but did not influence EC necrosis. Nuclear EC apoptosis affected about 15-17% of EC after 24 h of reoxygenation and was reduced with IP by 55-60%. IP was associated with a significantly higher Bcl-2/Bax ratio, at 8 h 2-4 times and at 24 h 2-3 times as compared to HR. Longer hypoxia was associated with lower values of Bcl-2/Bax ratio in EC subjected to HR or IP. IP delays, without reducing, the extent of HR-induced EC necrosis but significantly inhibits their multi-level evaluated apoptosis.


Assuntos
Apoptose , Precondicionamento Isquêmico , Humanos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Necrose/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Hipóxia/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...