Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.974
Filtrar
1.
Int J Nanomedicine ; 19: 3423-3440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617800

RESUMO

Introduction: Osteoporotic-related fractures remains a significant public health concern, thus imposing substantial burdens on our society. Excessive activation of osteoclastic activity is one of the main contributing factors for osteoporosis-related fractures. While polylactic acid (PLA) is frequently employed as a biodegradable scaffold in tissue engineering, it lacks sufficient biological activity. Microdroplets (MDs) have been explored as an ultrasound-responsive drug delivery method, and mesenchymal stem cell (MSC)-derived exosomes have shown therapeutic effects in diverse preclinical investigations. Thus, this study aimed to develop a novel bioactive hybrid PLA scaffold by integrating MDs-NFATc1-silencing siRNA to target osteoclast formation and MSCs-exosomes (MSC-Exo) to influence osteogenic differentiation (MDs-NFATc1/PLA-Exo). Methods: Human bone marrow-derived mesenchymal stromal cells (hBMSCs) were used for exosome isolation. Transmission electron microscopy (TEM) and confocal laser scanning microscopy were used for exosome and MDs morphological characterization, respectively. The MDs-NFATc1/PLA-Exo scaffold was fabricated through poly(dopamine) and fibrin gel coating. Biocompatibility was assessed using RAW 264.7 macrophages and hBMSCs. Osteoclast formations were examined via TRAP staining. Osteogenic differentiation of hBMSCs and cytokine expression modulation were also investigated. Results: MSC-Exo exhibited a cup-shaped structure and effective internalization into cells, while MDs displayed a spherical morphology with a well-defined core-shell structure. Following ultrasound stimulation, the internalization study demonstrated efficient delivery of bioactive MDs into recipient cells. Biocompatibility studies indicated no cytotoxicity of MDs-NFATc1/PLA-Exo scaffolds in RAW 264.7 macrophages and hBMSCs. Both MDs-NFATc1/PLA and MDs-NFATc1/PLA-Exo treatments significantly reduced osteoclast differentiation and formation. In addition, our results further indicated MDs-NFATc1/PLA-Exo scaffold significantly enhanced osteogenic differentiation of hBMSCs and modulated cytokine expression. Discussion: These findings suggest that the bioactive MDs-NFATc1/PLA-Exo scaffold holds promise as an innovative structure for bone tissue regeneration. By specifically targeting osteoclast formation and promoting osteogenic differentiation, this hybrid scaffold may address key challenges in osteoporosis-related fractures.


Assuntos
Exossomos , Osteoporose , Humanos , RNA Interferente Pequeno/genética , Osteogênese , Porosidade , Poliésteres , Citocinas , Osteoporose/terapia
2.
PeerJ ; 12: e17060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618574

RESUMO

Very large unidentified elongate and rounded fossil bone segments of uncertain origin recovered from different Rhaetian (Late Triassic) fossil localities across Europe have been puzzling the paleontological community since the second half of the 19th century. Different hypotheses have been proposed regarding the nature of these fossils: (1) giant amphibian bones, (2) dinosaurian or other archosaurian long bone shafts, and (3) giant ichthyosaurian jaw bone segments. We call the latter proposal the 'Giant Ichthyosaur Hypothesis' and test it using bone histology. In presumable ichthyosaur specimens from SW England (Lilstock), France (Autun), and indeterminate cortical fragments from Germany (Bonenburg), we found a combination of shared histological features in the periosteal cortex: an unusual woven-parallel complex of strictly longitudinal primary osteons set in a novel woven-fibered matrix type with intrinsic coarse collagen fibers (IFM), and a distinctive pattern of Haversian substitution in which secondary osteons often form within primary ones. The splenial and surangular of the holotype of the giant ichthyosaur Shastasaurus sikanniensis from Canada were sampled for comparison. The results of the sampling indicate a common osteohistology with the European specimens. A broad histological comparison is provided to reject alternative taxonomic affinities aside from ichthyosaurs of the very large bone segment. Most importantly, we highlight the occurrence of shared peculiar osteogenic processes in Late Triassic giant ichthyosaurs, reflecting special ossification strategies enabling fast growth and achievement of giant size and/or related to biomechanical properties akin to ossified tendons.


Assuntos
Dinossauros , Animais , Osteogênese , Diáfises , Canadá , Inglaterra
3.
Eur J Histochem ; 68(2)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38619020

RESUMO

Aortic valve calcification (AVC) is a common cardiovascular disease and a risk factor for sudden death. However, the potential mechanisms and effective therapeutic drugs need to be explored. Atorvastatin is a statin that can effectively prevent cardiovascular events by lowering cholesterol levels. However, whether atorvastatin can inhibit AVC by reducing low-density lipoprotein (LDL) and its possible mechanism of action require further exploration. In the current study, we constructed an in vitro AVC model by inducing calcification of the valve interstitial cells. We found that atorvastatin significantly inhibited osteogenic differentiation, reduced the deposition of calcium nodules in valve interstitial cells, and enhanced autophagy in calcified valve interstitial cells, manifested by increased expression levels of the autophagy proteins Atg5 and LC3B-II/I and the formation of smooth autophagic flow. Atorvastatin inhibited the NF-κB signalling pathway and the expression of inflammatory factors mediated by NF-κB in calcified valve interstitial cells. The activation of the NF-κB signalling pathway led to the reversal of atorvastatin's effect on enhancing autophagy and alleviating valve interstitial cell calcification. In conclusion, atorvastatin inhibited the NF-κB signalling pathway by upregulating autophagy, thereby alleviating valve interstitial cell calcification, which was conducive to improving AVC.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , NF-kappa B , Osteogênese , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Autofagia
4.
J Orthop Surg Res ; 19(1): 243, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622659

RESUMO

Inflammatory reactions are involved in the development of steroid-induced osteonecrosis of the femoral head(ONFH). Studies have explored the therapeutic efficacy of inhibiting inflammatory reactions in steroid-induced ONFH and revealed that inhibiting inflammation may be a new strategy for preventing the development of steroid-induced ONFH. Exosomes derived from M2 macrophages(M2-Exos) display anti-inflammatory properties. This study aimed to examine the preventive effect of M2-Exos on early-stage steroid-induced ONFH and explore the underlying mechanisms involved. In vitro, we explored the effect of M2-Exos on the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells(BMMSCs). In vivo, we investigated the role of M2-Exos on inflammation, osteoclastogenesis, osteogenesis and angiogenesis in an early-stage rat model of steroid-induced ONFH. We found that M2-Exos promoted the proliferation and osteogenic differentiation of BMMSCs. Additionally, M2-Exos effectively attenuated the osteonecrotic changes, inhibited the expression of proinflammatory mediators, promoted osteogenesis and angiogenesis, reduced osteoclastogenesis, and regulated the polarization of M1/M2 macrophages in steroid-induced ONFH. Taken together, our data suggest that M2-Exos are effective at preventing steroid-induced ONFH. These findings may be helpful for providing a potential strategy to prevent the development of steroid-induced ONFH.


Assuntos
Reabsorção Óssea , Exossomos , Necrose da Cabeça do Fêmur , Osteonecrose , Ratos , Animais , Osteogênese , Exossomos/metabolismo , Cabeça do Fêmur/metabolismo , Osteonecrose/prevenção & controle , Inflamação/metabolismo , Macrófagos/metabolismo , Esteroides/efeitos adversos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/prevenção & controle , Necrose da Cabeça do Fêmur/metabolismo
5.
J Orthop Surg Res ; 19(1): 244, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622696

RESUMO

BACKGROUND: Ossification of ligamentum flavum (OLF) is a prevalent degenerative spinal disease, typically causing severe neurological dysfunction. Kruppel-like factor 5 (KLF5) plays an essential role in the regulation of skeletal development. However, the mechanism KLF5 plays in OLF remains unclear, necessitating further investigative studies. METHODS: qRT-PCR, immunofluorescent staining and western blot were used to measure the expression of KLF5. Alkaline Phosphatase (ALP) staining, Alizarin red staining (ARS), and the expression of Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) were used to evaluate the osteogenic differentiation. Luciferase activity assay and ChIP-PCR were performed to investigate the molecular mechanisms. RESULTS: KLF5 was significantly upregulated in OLF fibroblasts in contrast to normal ligamentum flavum (LF) fibroblasts. Silencing KLF5 diminished osteogenic markers and mineralized nodules, while its overexpression had the opposite effect, confirming KLF5's role in promoting ossification. Moreover, KLF5 promotes the ossification of LF by activating the transcription of Connexin 43 (CX43), and overexpressing CX43 could reverse the suppressive impact of KLF5 knockdown on OLF fibroblasts' osteogenesis. CONCLUSION: KLF5 promotes the OLF by transcriptionally activating CX43. This finding contributes significantly to our understanding of OLF and may provide new therapeutic targets.


Assuntos
Ligamento Amarelo , Ossificação Heterotópica , Humanos , Osteogênese/genética , Conexina 43/genética , Células Cultivadas , Fatores de Transcrição/metabolismo , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
6.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612467

RESUMO

Both bone morphogenetic protein 2 (BMP-2) and abaloparatide are used to promote bone formation. However, there is no consensus about their optimal administration. We investigated the optimal administration theory for the pairing of BMP-2 and abaloparatide in a rat spinal fusion model. Group I was only implanted in carriers and saline. Carriers with 3 µg of recombinant human BMP-2 (rhBMP-2) were implanted in other groups. Abaloparatide injections were administered three times a week for group III (for a total amount of 120 µg/kg in a week) and six times a week for group IV (for a total amount of 120 µg/kg in a week) after surgery. They were euthanized 8 weeks after the surgery, and we explanted their spines at that time. We assessed them using manual palpation tests, radiography, high-resolution micro-computed tomography (micro-CT), and histological analysis. We also analyzed serum bone metabolism markers. The fusion rate in Groups III and IV was higher than in Group I, referring to the manual palpation tests. Groups III and IV recorded greater radiographic scores than those in Groups I and II, too. Micro-CT analysis showed that Tbs. Sp in Groups III and IV was significantly lower than in Group I. Tb. N in Group IV was significantly higher than in Group I. Serum marker analysis showed that bone formation markers were higher in Groups III and IV than in Group I. On the other hand, bone resorption markers were lower in Group IV than in Group I. A histological analysis showed enhanced trabecular bone osteogenesis in Group IV. Frequent administration of abaloparatide may be suitable for the thickening of trabecular bone structure and the enhancement of osteogenesis in a rat spinal fusion model using BMP-2 in insufficient doses.


Assuntos
Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo , Fusão Vertebral , Humanos , Animais , Ratos , Microtomografia por Raio-X , Proteínas Morfogenéticas Ósseas
7.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612562

RESUMO

Fracture healing is a complex series of events that requires a local inflammatory reaction to initiate the reparative process. This inflammatory reaction is important for stimulating the migration and proliferation of mesenchymal progenitor cells from the periosteum and surrounding tissues to form the cartilaginous and bony calluses. The proinflammatory cytokine interleukin (IL)-17 family has gained attention for its potential regenerative effects; however, the requirement of IL-17 signaling within mesenchymal progenitor cells for normal secondary fracture healing remains unknown. The conditional knockout of IL-17 receptor a (Il17ra) in mesenchymal progenitor cells was achieved by crossing Il17raF/F mice with Prx1-cre mice to generate Prx1-cre; Il17raF/F mice. At 3 months of age, mice underwent experimental unilateral mid-diaphyseal femoral fractures and healing was assessed by micro-computed tomography (µCT) and histomorphometric analyses. The effects of IL-17RA signaling on the osteogenic differentiation of fracture-activated periosteal cells was investigated in vitro. Examination of the intact skeleton revealed that the conditional knockout of Il17ra decreased the femoral cortical porosity but did not affect any femoral trabecular microarchitectural indices. After unilateral femoral fractures, Il17ra conditional knockout impacted the cartilage and bone composition of the fracture callus that was most evident early in the healing process (day 7 and 14 post-fracture). Furthermore, the in vitro treatment of fracture-activated periosteal cells with IL-17A inhibited osteogenesis. This study suggests that IL-17RA signaling within Prx1+ mesenchymal progenitor cells can influence the early stages of endochondral ossification during fracture healing.


Assuntos
Fraturas do Fêmur , Células-Tronco Mesenquimais , Animais , Camundongos , Consolidação da Fratura , Osteogênese , Microtomografia por Raio-X , Inflamação
8.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612687

RESUMO

Dimethyloxalylglycine (DMOG) has been found to stimulate osteogenesis and angiogenesis of stem cells, promoting neo-angiogenesis in bone tissue regeneration. In this review, we conducted a comprehensive search of the literature to investigate the effects of DMOG on osteogenesis and bone regeneration. We screened the studies based on specific inclusion criteria and extracted relevant information from both in vitro and in vivo experiments. The risk of bias in animal studies was evaluated using the SYRCLE tool. Out of the 174 studies retrieved, 34 studies met the inclusion criteria (34 studies were analyzed in vitro and 20 studies were analyzed in vivo). The findings of the included studies revealed that DMOG stimulated stem cells' differentiation toward osteogenic, angiogenic, and chondrogenic lineages, leading to vascularized bone and cartilage regeneration. Addtionally, DMOG demonstrated therapeutic effects on bone loss caused by bone-related diseases. However, the culture environment in vitro is notably distinct from that in vivo, and the animal models used in vivo experiments differ significantly from humans. In summary, DMOG has the ability to enhance the osteogenic and angiogenic differentiation potential of stem cells, thereby improving bone regeneration in cases of bone defects. This highlights DMOG as a potential focus for research in the field of bone tissue regeneration engineering.


Assuntos
Aminoácidos Dicarboxílicos , Doenças Ósseas Metabólicas , Osteogênese , Animais , Humanos , Regeneração Óssea , Células-Tronco
9.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612693

RESUMO

Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound that utilizes low-intensity pulsed waves. Its effect on bones that heal by intramembranous ossification has not been sufficiently investigated. In this study, we examined LIPUS and the autologous bone, to determine their effect on the healing of the critical-size bone defect (CSBD) of the rat calvaria. The bone samples underwent histological, histomorphometric and immunohistochemical analyses. Both LIPUS and autologous bone promoted osteogenesis, leading to almost complete closure of the bone defect. On day 30, the bone volume was the highest in the autologous bone group (20.35%), followed by the LIPUS group (19.12%), and the lowest value was in the control group (5.11%). The autologous bone group exhibited the highest intensities of COX-2 (167.7 ± 1.1) and Osx (177.1 ± 0.9) expression on day 30. In the LIPUS group, the highest intensity of COX-2 expression was found on day 7 (169.7 ±1.6) and day 15 (92.7 ± 2.2), while the highest Osx expression was on day 7 (131.9 ± 0.9). In conclusion, this study suggests that LIPUS could represent a viable alternative to autologous bone grafts in repairing bone defects that are ossified by intramembranous ossification.


Assuntos
Procedimentos de Cirurgia Plástica , Animais , Ratos , Ciclo-Oxigenase 2/genética , Regeneração Óssea , Osteogênese , Ondas Ultrassônicas
10.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612855

RESUMO

Odontoblastic differentiation of human stem cells from the apical papilla (hSCAPs) is crucial for continued root development and dentin formation in immature teeth with apical periodontitis (AP). Fat mass and obesity-associated protein (FTO) has been reported to regulate bone regeneration and osteogenic differentiation profoundly. However, the effect of FTO on hSCAPs remains unknown. This study aimed to identify the potential function of FTO in hSCAPs' odontoblastic differentiation under normal and inflammatory conditions and to investigate its underlying mechanism preliminarily. Histological staining and micro-computed tomography were used to evaluate root development and FTO expression in SD rats with induced AP. The odontoblastic differentiation ability of hSCAPs was assessed via alkaline phosphatase and alizarin red S staining, qRT-PCR, and Western blotting. Gain- and loss-of-function assays and online bioinformatics tools were conducted to explore the function of FTO and its potential mechanism in modulating hSCAPs differentiation. Significantly downregulated FTO expression and root developmental defects were observed in rats with AP. FTO expression notably increased during in vitro odontoblastic differentiation of hSCAPs, while lipopolysaccharide (LPS) inhibited FTO expression and odontoblastic differentiation. Knockdown of FTO impaired odontoblastic differentiation, whereas FTO overexpression alleviated the inhibitory effects of LPS on differentiation. Furthermore, FTO promoted the expression of secreted modular calcium-binding protein 2 (SMOC2), and the knockdown of SMOC2 in hSCAPs partially attenuated the promotion of odontoblastic differentiation mediated by FTO overexpression under LPS-induced inflammation. This study revealed that FTO positively regulates the odontoblastic differentiation ability of hSCAPs by promoting SMOC2 expression. Furthermore, LPS-induced inflammation compromises the odontoblastic differentiation of hSCAPs by downregulating FTO, highlighting the promising role of FTO in regulating hSCAPs differentiation under the inflammatory microenvironment.


Assuntos
Lipopolissacarídeos , Osteogênese , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X , Inflamação/genética , Proteínas de Ligação ao Cálcio , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
11.
Nat Commun ; 15(1): 3131, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605012

RESUMO

Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4, Il-10, subsequently promoting osteogenesis.


Assuntos
Osteogênese , Tecidos Suporte , Osteogênese/fisiologia , Tecidos Suporte/química , Porosidade , Impressão Tridimensional , Zinco/farmacologia
12.
Br Dent J ; 236(7): 507, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38609594
13.
J Nanobiotechnology ; 22(1): 172, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609899

RESUMO

BACKGROUND: Early-onset bone dysplasia is a common manifestation of hypophosphatasia (HPP), an autosomal inherited disease caused by ALPL mutation. ALPL ablation induces prototypical premature bone ageing characteristics, resulting in impaired osteogenic differentiation capacity of human bone marrow mesenchymal stem cells (hBMMSCs). As angiogenesis is tightly coupled with osteogenesis, it also plays a necessary role in sustaining bone homeostasis. We have previously observed a decrease in expression of angiogenesis marker gene CD31 in the metaphysis of long bone in Alpl+/- mice. However, the role of ALPL in regulation of angiogenesis in bone has remained largely unknown. METHODS: Exosomes derived from Normal and HPP hBMMSCs were isolated and identified by ultracentrifugation, transmission electron microscopy, and nanoparticle size measurement. The effects of ALPL on the angiogenic capacity of hBMMSCs from HPP patients were assessed by immunofluorescence, tube formation, wound healing and migration assay. exo-ELISA and Western Blot were used to evaluate the exosomes secretion of hBMMSCs from HPP, and the protein expression of VEGF, PDGFBB, Angiostatin and Endostatin in exosomes respectively. RESULTS: We verified that ALPL ablation resulted in impaired pro-angiogenic capacity of hBMMSCs, accounting for reduced migration and tube formation of human umbilical vein endothelial cells, as the quantities and proteins composition of exosomes varied with ALPL expression. Mechanistically, loss of function of ALPL enhanced ATP release. Additional ATP, in turn, led to markedly elevated level of ATP receptor P2X7, which consequently promoted exosomes secretion, resulting in a decreased capacity to promote angiogenesis. Conversely, inhibition of P2X7 increased the angiogenic induction capacity by preventing excessive release of anti-angiogenic exosomes in ALPL deficient-hBMMSCs. CONCLUSION: The ALPL-ATP axis regulates the pro-angiogenic ability of hBMMSCs by controlling exosomes secretion through the P2X7 receptor. Thus, P2X7 may be proved as an effective therapeutic target for accelerating neovascularization in ALPL-deficient bone defects.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Células Endoteliais , Osteogênese , Trifosfato de Adenosina , Fosfatase Alcalina
14.
ACS Nano ; 18(15): 10625-10641, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563322

RESUMO

Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment. The G4-TBP NPs-FN loaded with G4-TBP dendrimer having intrinsic anti-inflammatory property and FN having both anti-inflammatory and antioxidative properties display integrated functions of ROS scavenging, hypoxia attenuation, and macrophage M2 polarization, thus protecting macrophages from apoptosis and creating designed bone immune microenvironment for stem cell osteogenic differentiation. These characteristics of the G4-TBP NPs-FN lead to their effective treatment of an OA model in vivo to reduce pathological changes of joints including synovitis inhibition and cartilage matrix degradation and simultaneously promote osteogenic differentiation for bone repair. The developed nanomedicine formulation combining the advantages of both bioactive phosphorus dendrimers and FN to treat OA may be developed for immunomodulatory therapy of different inflammatory diseases.


Assuntos
Dendrímeros , Nanopartículas , Osteoartrite , Humanos , Espécies Reativas de Oxigênio/metabolismo , Osteogênese , Dendrímeros/uso terapêutico , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Fósforo/uso terapêutico
15.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568078

RESUMO

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/genética , Semaforina-3A/genética , Retroalimentação , beta Catenina , Gânglios Espinais , Neuropilina-1/genética
16.
BMC Oral Health ; 24(1): 407, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556862

RESUMO

BACKGROUND: Dental pulp stem cells (DPSCs) are a kind of undifferentiated dental mesenchymal stem cells with strong self-renewal ability and multi-differentiation potential. This study aimed to investigate the regulatory functions of succinylation modification in DPSCs. METHODS: DPSCs were isolated from the dental pulp collected from healthy subjects, and then stem cell surface markers were identified using flow cytometry. The osteogenic differentiation ability of DPSCs was verified by alkaline phosphatase (ALP) and alizarin red staining methods, while adipogenic differentiation was detected by oil red O staining. Meanwhile, the mRNA of two desuccinylases (SIRT5 and SIRT7) and three succinylases (KAT2A, KAT3B, and CPT1A) in DPSCs before and after mineralization induction were detected using quantitative real-time PCR. The cell cycle was measured by flow cytometry, and the expression of bone-specific genes, including COL1a1 and Runx2 were evaluated by western blotting and were combined for the proliferation and differentiation of DPSCs. Co-immunoprecipitation (co-IP) and immunofluorescence were combined to verify the binding relationship between proteins. RESULTS: The specific markers of mesenchymal stem cells were highly expressed in DPSCs, while the osteogenic differentiation ability of isolated DPSCs was confirmed via ALP and alizarin red staining. Similarly, the oil red O staining also verified the adipogenic differentiation ability of DPSCs. The levels of KAT2A were found to be significantly upregulated in mineralization induction, which significantly decreased the ratio of G0/G1 phase and increased S phase cells; converse results regarding cell cycle distribution were obtained when KAT2A was inhibited. Moreover, overexpression of KAT2A promoted the differentiation of DPSCs, while its inhibition exerted the opposite effect. The elevated KAT2A was found to activate the Notch1 signaling pathway, which succinylated Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. The co-IP results showed that KAT2A and Notch1 were endogenously bound to each other, while inhibition of Notch1 reversed the effects of KAT2A overexpression on the DPSCs proliferation and differentiation. CONCLUSION: KAT2A interacted directly with Notch1, succinylating the Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. Similarly, KAT2A-mediated succinylation modification of Notch1 promotes the DPSCs proliferation and differentiation, suggesting that targeting KAT2A and Notch1 may contribute to tooth regeneration.


Assuntos
Antraquinonas , Compostos Azo , Osteogênese , Células-Tronco , Humanos , Osteogênese/fisiologia , Células-Tronco/metabolismo , Polpa Dentária , Proliferação de Células , Diferenciação Celular , Células Cultivadas , Histona Acetiltransferases/metabolismo
17.
Sci Rep ; 14(1): 7624, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561345

RESUMO

It is known that titanium (Ti) implant surfaces exhibit poor antibacterial properties and osteogenesis. In this study, chitosan particles loaded with aspirin, amoxicillin or aspirin + amoxicillin were synthesized and coated onto implant surfaces. In addition to analysing the surface characteristics of the modified Ti surfaces, the effects of the modified Ti surfaces on the adhesion and viability of rat bone marrow-derived stem cells (rBMSCs) were evaluated. The metabolic activities of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilms on the modified Ti surfaces were also measured in vitro. Moreover, S. aureus was tested for its antibacterial effect by coating it in vivo. Using water as the droplet medium, the contact angles of the modified Ti surfaces increased from 44.12 ± 1.75° to 58.37 ± 4.15°. In comparison to those of the other groups tested, significant increases in rBMSC adhesion and proliferation were observed in the presence of aspirin + amoxicillin-loaded microspheres, whereas a significant reduction in the metabolic level of biofilms was observed in the presence of aspirin + amoxicillin-loaded microspheres both in vitro and in vivo. Aspirin and amoxicillin could be used in combination to coat implant surfaces to mitigate bacterial activities and promote osteogenesis.


Assuntos
Amoxicilina , Quitosana , Indóis , Polímeros , Ratos , Animais , Amoxicilina/farmacologia , Aspirina/farmacologia , Titânio/farmacologia , Quitosana/farmacologia , Osteogênese , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia
18.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 533-540, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597445

RESUMO

OBJECTIVE: To evaluate the efficacy of a modified sericin hydrogel scaffold loaded with dexamethasone (SMH-CD/DEX) scaffold for promoting bone defect healing by stimulating anti-inflammatory macrophage polarization. METHODS: The light-curable SMH-CD/DEX scaffold was prepared using dexamethasone-loaded NH2-ß-cyclodextrin (NH2-ß-CD) and sericin hydrogel and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), biocompatibility assessment and drug release test. THP-1 macrophages incubated with the scaffold were examined for protein expressions of iNOS and Arg-1, mRNA expressions of IL-6, Il-10, Arg-1 and iNOS, and surface markers CD86 and CD206 using Western blotting, RT-qPCR, and flow cytometry. In a co-culture system of human periodontal ligament stem cells (HPDLSCs) and THP-1 macrophages, the osteogenic ability of the stem cells incubated with the scaffold was evaluated by detecting protein expressions of COL1A1 and Runx2 and expressions of ALP, Runx2, OCN and BMP2 mRNA, ALP staining, and alizarin red staining. In a rat model of mandibular bone defect, the osteogenic effect of the scaffold was assessed by observing bone regeneration using micro-CT and histopathological staining. RESULTS: In THP-1 macrophages, incubation with SMH-CD/DEX scaffold significantly enhanced protein expressions of Arg-1 and mRNA expressions of IL-10 and Arg-1 and lowered iNOS protein expression and IL-6 and iNOS mRNA expressions. In the co-culture system, SMH-CD/DEX effectively increased the protein expressions of COL1A1 and Runx2 and mRNA expressions of ALP and BMP2 in HPDLSCs and promoted their osteogenic differentiation. In the rat models, implantation of SMH-CD/DEX scaffold significantly promoted bone repair and bone regeneration in the bone defect. CONCLUSION: The SMH-CD/DEX scaffold capable of sustained dexamethasone release promotes osteogenic differentiation of stem cells and bone defect repair in rats by regulating M2 polarization.


Assuntos
Osteogênese , Sericinas , Ratos , Humanos , Animais , Interleucina-10 , Subunidade alfa 1 de Fator de Ligação ao Core , Sericinas/farmacologia , Hidrogéis/farmacologia , Interleucina-6/farmacologia , Macrófagos , Dexametasona/farmacologia , RNA Mensageiro , Diferenciação Celular , Células Cultivadas
19.
Int J Nanomedicine ; 19: 3143-3166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585472

RESUMO

Background: The ability of nanomaterials to induce osteogenic differentiation is limited, which seriously imped the repair of craniomaxillofacial bone defect. Magnetic graphene oxide (MGO) nanocomposites with the excellent physicochemical properties have great potential in bone tissue engineering. In this study, we aim to explore the craniomaxillofacial bone defect repairment effect of MGO nanocomposites and its underlying mechanism. Methods: The biocompatibility of MGO nanocomposites was verified by CCK8, live/dead staining and cytoskeleton staining. The function of MGO nanocomposites induced osteogenic differentiation of BMSCs was investigated by ALP activity detection, mineralized nodules staining, detection of osteogenic genes and proteins, and immune-histochemical staining. BMSCs with or without MGO osteogenic differentiation induction were collected and subjected to high-throughput circular ribonucleic acids (circRNAs) sequencing, and then crucial circRNA circAars was screened and identified. Bioinformatics analysis, Dual-luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and osteogenic-related examinations were used to further explore the ability of circAars to participate in MGO nanocomposites regulation of osteogenic differentiation of BMSCs and its potential mechanism. Furthermore, critical-sized calvarial defects were constructed and were performed to verify the osteogenic differentiation induction effects and its potential mechanism induced by MGO nanocomposites. Results: We verify the good biocompatibility and osteogenic differentiation improvement effects of BMSCs mediated by MGO nanocomposites. Furthermore, a new circRNA-circAars, we find and identify, is obviously upregulated in BMSCs mediated by MGO nanocomposites. Silencing circAars could significantly decrease the osteogenic ability of MGO nanocomposites. The underlying mechanism involved circAars sponging miR-128-3p to regulate the expression of SMAD5, which played an important role in the repair craniomaxillofacial bone defects mediated by MGO nanocomposites. Conclusion: We found that MGO nanocomposites regulated osteogenic differentiation of BMSCs via the circAars/miR-128-3p/SMAD5 pathway, which provided a feasible and effective strategy for the treatment of craniomaxillofacial bone defects.


Assuntos
Grafite , MicroRNAs , Nanocompostos , MicroRNAs/genética , Osteogênese/genética , RNA Circular , Hibridização in Situ Fluorescente , Óxido de Magnésio , Células Cultivadas , Regeneração Óssea , Fenômenos Magnéticos , Diferenciação Celular
20.
Elife ; 132024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591777

RESUMO

Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Reabsorção Óssea/metabolismo , Remodelação Óssea , Osteogênese/fisiologia , Diferenciação Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...