Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.994
Filtrar
1.
Sci Rep ; 14(1): 5715, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459094

RESUMO

Kidney transplantation is a common yet highly demanding medical procedure worldwide, enhancing the quality of life for patients with chronic kidney disease. Despite its prevalence, the procedure faces a shortage of available organs, partly due to contamination by microorganisms, leading to significant organ disposal. This study proposes utilizing photonic techniques associated with organ support machines to prevent patient contamination during kidney transplantation. We implemented a decontamination system using ultraviolet-C (UV-C) irradiation on the preservation solution circulating through pigs' kidneys between harvest and implant. UV-C irradiation, alone or combined with ultrasound (US) and Ps80 detergent during ex-vivo swine organ perfusion in a Lifeport® Kidney Transporter machine, aimed to reduce microbiological load in both fluid and organ. Results show rapid fluid decontamination compared to microorganism release from the organ, with notable retention. By including Ps80 detergent at 0.5% during UV-C irradiation 3 log10 (CFU mL-1) of Staphylococcus aureus bacteria previously retained in the organ were successfully removed, indicating the technique's feasibility and effectiveness.


Assuntos
Descontaminação , Detergentes , Humanos , Animais , Suínos , Descontaminação/métodos , Qualidade de Vida , Diálise Renal , Rim , Preservação de Órgãos/métodos , Perfusão
2.
PLoS One ; 19(2): e0296871, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319932

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic has induced a critical supply of personal protective equipment (PPE) especially N95 respirators. Utilizing respirator decontamination procedures to reduce the pathogen load of a contaminated N95 respirator can be a viable solution for reuse purposes. In this study, the efficiency of a novel hybrid respirator decontamination method of ultraviolet germicidal irradiation (UVGI) which utilizes ultraviolet-C (UV-C) rays coupled with microwave-generated steam (MGS) against feline coronavirus (FCoV) was evaluated. The contaminated 3M 1860 respirator pieces were treated with three treatments (UVGI-only, MGS-only, and Hybrid-UVGI + MGS) with variable time. The virucidal activity was evaluated using the TCID50 method. The comparison of decontamination efficiency of the treatments indicated that the hybrid method achieved at least a pathogen log reduction of 4 logs, faster than MGS and UVGI. These data recommend that the proposed hybrid decontamination system is more effective comparatively in achieving pathogen log reduction of 4 logs.


Assuntos
Respiradores N95 , Vapor , Micro-Ondas , Descontaminação/métodos , Reutilização de Equipamento , Raios Ultravioleta , Pandemias
3.
Health Technol Assess ; 28(8): 1-84, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421007

RESUMO

Background: Healthcare-associated infections are a major cause of morbidity and mortality in critically ill children. In adults, data suggest the use of selective decontamination of the digestive tract may reduce the incidence of healthcare-associated infections. Selective decontamination of the digestive tract has not been evaluated in the paediatric intensive care unit population. Objectives: To determine the feasibility of conducting a multicentre, cluster-randomised controlled trial in critically ill children comparing selective decontamination of the digestive tract with standard infection control. Design: Parallel-group pilot cluster-randomised controlled trial with an integrated mixed-methods study. Setting: Six paediatric intensive care units in England. Participants: Children (> 37 weeks corrected gestational age, up to 16 years) requiring mechanical ventilation expected to last for at least 48 hours were eligible for the PICnIC pilot cluster-randomised controlled trial. During the ecology periods, all children admitted to the paediatric intensive care units were eligible. Parents/legal guardians of recruited patients and healthcare professionals working in paediatric intensive care units were eligible for inclusion in the mixed-methods study. Interventions: The interventions in the PICnIC pilot cluster-randomised controlled trial included administration of selective decontamination of the digestive tract as oro-pharyngeal paste and as a suspension given by enteric tube during the period of mechanical ventilation. Main outcome measures: The decision as to whether a definitive cluster-randomised controlled trial is feasible is based on multiple outcomes, including (but not limited to): (1) willingness and ability to recruit eligible patients; (2) adherence to the selective decontamination of the digestive tract intervention; (3) acceptability of the definitive cluster-randomised controlled trial; (4) estimation of recruitment rate; and (5) understanding of potential clinical and ecological outcome measures. Results: A total of 368 children (85% of all those who were eligible) were enrolled in the PICnIC pilot cluster-randomised controlled trial across six paediatric intensive care units: 207 in the baseline phase (Period One) and 161 in the intervention period (Period Two). In sites delivering selective decontamination of the digestive tract, the majority (98%) of children received at least one dose of selective decontamination of the digestive tract, and of these, 68% commenced within the first 6 hours. Consent for the collection of additional swabs was low (44%), though data completeness for potential outcomes, including microbiology data from routine clinical swab testing, was excellent. Recruited children were representative of the wider paediatric intensive care unit population. Overall, 3.6 children/site/week were recruited compared with the potential recruitment rate for a definitive cluster-randomised controlled trial of 3 children/site/week, based on data from all UK paediatric intensive care units. The proposed trial, including consent and selective decontamination of the digestive tract, was acceptable to parents and staff with adaptations, including training to improve consent and communication, and adaptations to the administration protocol for the paste and ecology monitoring. Clinical outcomes that were considered important included duration of organ failure and hospital stay, healthcare-acquired infections and survival. Limitations: The delivery of the pilot cluster-randomised controlled trial was disrupted by the COVID-19 pandemic, which led to slow set-up of sites, and a lack of face-to face training. Conclusions: PICnIC's findings indicate that a definitive cluster-randomised controlled trial in selective decontamination of the digestive tract in paediatric intensive care units is feasible with the inclusion modifications, which would need to be included in a definitive cluster-randomised controlled trial to ensure that the efficiency of trial processes is maximised. Future work: A definitive trial that incorporates the protocol adaptations and outcomes arising from this study is feasible and should be conducted. Trial registration: This trial is registered as ISRCTN40310490. Funding: This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: 16/152/01) and is published in full in Health Technology Assessment; Vol. 28, No. 8. See the NIHR Funding and Awards website for further award information.


Each year, around 20,000 critically ill children are admitted to paediatric intensive care units in the UK. These children are at a higher risk of healthcare-associated infections, one of the main sources of which is the large number of bacteria in the digestive tract. Spread of bacteria from the digestive tract into other organs, such as the lung (causing ventilator-associated pneumonia) or bloodstream (causing sepsis), can be life-threatening. The risk is highest in those children whose illness is so severe that they require prolonged mechanical ventilation. Stopping the growth of bacteria in the digestive tract (called selective decontamination of the digestive tract) has been shown in adults to reduce the number of hospital-acquired infections. However, there have been no trials in children. We wanted to assess how practical and acceptable such a trial would be comparing standard infection control to selective decontamination of the digestive tract-enhanced infection control and monitoring how each intervention affected antimicrobial resistance. We undertook a pilot study to examine whether clinicians could identify eligible children, enrol them in the study and follow study procedures during the course of paediatric intensive care unit admission. Alongside this, we interviewed parents and clinicians to get their views on the proposed trial. Six hospitals recruited 559 patients over a period of roughly 7 months. Hospitals were randomly allocated to continue with the standard infection control procedure or to give selective decontamination of the digestive tract. Overall, recruitment was higher than expected. Alongside this, we examined the views of patients, caregivers and healthcare professionals to assess their views on whether a trial should be carried out to see if selective decontamination of the digestive tract should become part of the infection control regime for children most at risk of hospital-acquired infection in the paediatric intensive care unit. Overall results suggest that a larger PICnIC trial incorporating patient stakeholder and clinical staff feedback on design and outcomes is feasible and that it is appropriate to conduct a trial into the effectiveness of selective decontamination of the digestive tract administration to minimise hospital-acquired infections.


Assuntos
Infecção Hospitalar , Descontaminação , Adulto , Criança , Humanos , Estado Terminal/terapia , Pandemias , Inglaterra
4.
Disaster Med Public Health Prep ; 18: e40, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415396

RESUMO

OBJECTIVE: The importance of companion animals in the daily lives of people, and the increasing incidence and severity of natural disasters impacting people and their animals, is very well documented. However, despite the advancement of companion animal response capabilities, decontamination remains an inconsistently implemented component of disaster response. The challenge for local authorities is their need for planning factors and protocols specific to companion animal decontamination which are generally lacking. Data is provided on the average time requirements, water use and containment resources necessary, and the personnel required to decontaminate (decon) a large number of companion dogs. METHODS: Sixty-three lightly contaminated, medium weight, short to medium coat, highly tractable dogs (Labradors and Hounds) from a State facility colony were used to determine the water requirements, soap effectiveness, and time required to complete decon (washing/bathing). Data were collected over a 6-mo period using 2 personnel that were randomly assigned to wash the dogs. Difference in weight, bathing time, and water use between groups was evaluated using a 2-tailed 2-sample t-test for independent data. RESULTS: The time and water requirements were significantly different between medium coated dogs and short coated dogs. On average, for a short coated dog, the amount of time to complete decon was 7 min, and the amount of water was 8-10 gal. For medium coated dogs, the time increased to 10-12 min to complete the process and 12-15 gal water. DISCUSSION: The results of this study provide important insights emergency management planners, animal response team members, and community personnel tasked with implementation of mass decontamination of companion dogs following a natural or man-made disaster.


Assuntos
Planejamento em Desastres , Desastres , Desastres Naturais , Humanos , Animais , Cães , Animais de Estimação , Descontaminação , Planejamento em Desastres/métodos
5.
J Biomed Mater Res B Appl Biomater ; 112(2): e35383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345152

RESUMO

To obtain bone allografts that are safe for transplantation, several processing steps for decellularization and decontamination have to be applied. Currently available processing methods, although well-established, may interfere with the biomechanical properties of the bone. High hydrostatic pressure (HHP) is known to devitalize tissues effectively while leaving the extracellular matrix intact. However, little is known about the inactivation of the contaminating microorganisms by HHP. This study aims to investigate the ability of high-pressure decontamination and to establish a treatment protocol that is able to successfully inactivate microorganisms with the final goal to sterilize bone specimens. Using Escherichia coli (E. coli) as a model organism, HHP treatment parameters like temperature and duration, pressurization medium, and the number of treatment cycles were systematically adjusted to maximize the efficiency of inactivating logarithmic and stationary phase bacteria. Towards that we quantified colony-forming units (cfu) after treatment and investigated morphological changes via Field Emission Scanning Electron Microscopy (FESEM). Additionally, we tested the decontamination efficiency of HHP in bovine cancellous bone blocks that were contaminated with bacteria. Finally, two further model organisms were evaluated, namely Pseudomonas fluorescens as a Gram-negative microorganism and Micrococcus luteus as a Gram-positive representative. A HHP protocol, using 350 MPa, was able to sterilize a suspension of stationary phase E. coli, leading to a logarithmic reduction factor (log RF) of at least -7.99 (±0.43). The decontamination of bone blocks was less successful, indicating a protective effect of the surrounding tissue. Sterilization of 100% of the samples was achieved when a protocol optimized in terms of treatment temperature, duration, pressurization medium, and number and/or interval of cycles, respectively, was applied to bone blocks artificially contaminated with a suspension containing 104 cfu/mL. Hence, we here successfully established protocols for inactivating Gram-negative model microorganisms by HHP of up to 350 MPa, while pressure levels of 600 MPa were needed to inactivate the Gram-positive model organism. Thus, this study provides a basis for further investigations on different pathogenic bacteria that could enable the use of HHP in the decontamination of bone grafts intended for transplantation.


Assuntos
Descontaminação , Escherichia coli , Animais , Bovinos , Pressão Hidrostática , Osso e Ossos , Bactérias , Contagem de Colônia Microbiana
6.
Am J Sports Med ; 52(4): 956-960, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305039

RESUMO

BACKGROUND: Approximately 100,000 anterior cruciate ligament (ACL) reconstructions (ACLRs) occur annually in the United States, and postoperative surgical-site infection is a relatively rare but devastating complication, often leading to graft failure or septic arthritis of the knee, necessitating repeat surgery. Wrapping allografts in vancomycin-soaked gauze has been adopted as a common sterilization technique in the operating room to reduce surgical-site infection; however, identifying effective alternatives to vancomycin has not been extensively pursued. HYPOTHESIS: Tobramycin would be as effective as vancomycin in reducing the concentrations of Staphylococcus epidermidis bacteria on tendon allografts. STUDY DESIGN: Controlled laboratory study. METHODS: S. epidermidis strain ATCC 12228 was inoculated onto the human cadaveric gracilis tendon. The tendons were wrapped in sterile gauze saturated with tobramycin or vancomycin at various experimental concentrations. Bacteria remaining on the tendon were dislodged, serially diluted, and plated for colony counting. Statistical analysis was performed utilizing 2-way analysis of variance testing. Results were considered statistically significant when P < .05. RESULTS: Vancomycin (P = .0001) and tobramycin (P < .0001) reduced bacterial concentration. Tobramycin was found to produce a statistically significant reduction in bacterial concentration at concentrations as low as 0.1 mg/mL (P < .0001 and P = .01 at 10 and 20 minutes), while vancomycin produced a statistically significant reduction at a concentration as low as 2.5 mg/mL (P < .0001 at both 10 and 20 minutes). CONCLUSION: This study demonstrates that tobramycin is as effective as vancomycin in bacterial concentration reduction but can achieve this reduction level at lower doses. Further studies clarifying the biomechanical and cytotoxic effects of tobramycin on tendon tissue are indicated to solidify its use as a clinical alternative to vancomycin in ACLR. CLINICAL RELEVANCE: These results will begin establishing tobramycin as an alternative to vancomycin in ACL graft decontamination. Because of relatively frequent shortages of vancomycin, establishing tobramycin as an alternative agent is a useful option for the orthopaedic surgeon.


Assuntos
Lesões do Ligamento Cruzado Anterior , Vancomicina , Humanos , Vancomicina/farmacologia , Ligamento Cruzado Anterior/cirurgia , Tobramicina/farmacologia , Descontaminação , Lesões do Ligamento Cruzado Anterior/cirurgia , Infecção da Ferida Cirúrgica/prevenção & controle , Aloenxertos
7.
Transplant Proc ; 56(2): 427-433, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341298

RESUMO

BACKGROUND: Bacterial infections are common after liver transplantation (LT) and cause serious morbidity and mortality. In our center, prolonged selective digestive decontamination (SDD) is the standard of care, which may lead to a reduced number and severity of bacterial infections. The aim of the current study was to investigate bacterial infection rates, the causative pathogens, localization, and the possible influence of SDD within the first year after LT. METHODS: A retrospective single-center cohort study was performed. Patients within their first year after LT between 2012 and 2017 were included. Patients received SDD for 3 weeks immediately after LT. The type of infection, bacterial subtype, CSI classification, severity, and potential interventions were recorded. RESULTS: One hundred eighty-six patients were included in the study. Seventy-eight patients (41.9%) had a bacterial infection within the first year after LT. The most common types of infection were cholangitis (25.8%) and secondary infected abdominal fluid collections (25.3%). The most common bacteria were Gram-positive enterococcal- (36.5%) and Gram-negative enterobacterial species (34.2%). 35.5% of the infections occurred within the first month after LT, mainly caused by Gram-positive bacteria (76.7%). CONCLUSIONS: Cholangitis and infected abdominal fluid are the most common types of infection within one year after LT, mainly caused by enterococcal- and enterobacterial species. Within the first month after LT, infections were mostly caused by Gram-positive bacteria, which could be a consequence of protocol use of SDD. The results can be used for the choice of empirical antibiotic therapy based on the most common types of bacteria and the time frame after LT.


Assuntos
Infecções Bacterianas , Colangite , Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Estudos de Coortes , Descontaminação/métodos , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/etiologia , Enterobacteriaceae , Unidades de Terapia Intensiva
8.
Biomolecules ; 14(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38397418

RESUMO

Cold atmospheric plasma has become a widespread tool in bacterial decontamination, harnessing reactive oxygen and nitrogen species to neutralize bacteria on surfaces and in the air. This technology is often employed in healthcare, food processing, water treatment, etc. One of the most energy-efficient and universal methods for creating cold atmospheric plasma is the initiation of a piezoelectric direct discharge. The article presents a study of the bactericidal effect of piezoelectric direct discharge plasma generated using the multifunctional source "CAPKO". This device allows for the modification of the method of plasma generation "on the fly" by replacing a unit (cap) on the working device. The results of the generation of reactive oxygen and nitrogen species in a buffer solution in the modes of direct discharge in air and a plasma jet with an argon flow are presented. The bactericidal effect of these types of plasma against the bacteria E. coli BL21 (DE3) was studied. The issues of scaling the treatment technique are considered.


Assuntos
Escherichia coli , Gases em Plasma , Descontaminação/métodos , Oxigênio/farmacologia , Antibacterianos/farmacologia , Gases em Plasma/farmacologia , Bactérias , Nitrogênio
9.
Environ Sci Pollut Res Int ; 31(11): 16629-16641, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321283

RESUMO

In response to the escalating global issue of microbial contamination, this study introduces a breakthrough photocatalyst: bismuth ferrite-activated carbon (BFO-AC) for visible light-driven disinfection, specifically targeting the Gram-positive bacterium Staphylococcus aureus (S. aureus). Employing an ultrasonication method, we synthesized various BFO-AC ratios and subjected them to comprehensive characterization. Remarkably, the bismuth ferrite-activated carbon 1:1.5 ratio (BA 1:1.5) nanocomposite exhibited the narrowest band gap of 1.86 eV. Notably, BA (1:1.5) demonstrated an exceptional BET surface area of 862.99 m2/g, a remarkable improvement compared to pristine BFO with only 27.61 m2/g. Further investigation through FE-SEM unveiled the presence of BFO nanoparticles on the activated carbon surface. Crucially, the photocatalytic efficacy of BA (1:1.5) towards S. aureus reached its zenith, achieving complete inactivation in just 60 min. TEM analysis revealed severe damage and rupture of bacterial cells, affirming the potent disinfection capabilities of BA (1:1.5). This exceptional disinfection efficiency underscores the promising potential of BA (1:1.5) for the treatment of contaminated water sources. Importantly, our results underscore the enhanced photocatalytic performance with an increased content of activated carbon, suggesting a promising avenue for more effective microorganism inactivation.


Assuntos
Compostos Férricos , Nanocompostos , Staphylococcus aureus , Bismuto/farmacologia , Carvão Vegetal/farmacologia , Descontaminação , Luz , Catálise
10.
Environ Sci Pollut Res Int ; 31(11): 17494-17510, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342834

RESUMO

In this study, sugarcane bagasse (SB) was strategically subjected to a delignification process followed by the in situ growth of multi-layered molybdenum disulfide (MoS2) nanosheets with hexagonal phase (2H-phase) crystal structure via hydrothermal treatment. The MoS2 nanosheets underwent self-assembly to form nanoflower-like structures in the aligned cellulose inter-channels of delignified sugarcane bagasse (DSB), the mechanism of which was understood through FTIR and XPS spectroscopic studies. DSB, due to its porous morphology and abundant hydroxyl groups, shows remediation capabilities of methylene blue (MB) dye through physio-sorption but shows a low adsorption capacity of 80.21 mg/g. To improve the removal capacity, DSB after in situ growth of MoS2 (DSB-MoS2) shows enhanced dye degradation to 114.3 mg/g (in the dark) which further improved to 158.74 mg/g during photodegradation, due to catalytically active MoS2. Interestingly, DSB-MoS2 was capable of continuous dye degradation with recyclability for three cycles, reaching an efficiency of > 83%, along with a strong antibacterial response against Gram-positive Staphylococcus aureus (S.aureus) and Gram-negative Escherichia coli (E. coli). The present study introduces a unique strategy for the up-conversion of agricultural biomass into value-added bio-adsorbents, which can effectively and economically address the remediation of dyes with simultaneous microbial decontamination from polluted wastewater streams.


Assuntos
Poluentes Ambientais , Saccharum , Molibdênio/química , Celulose/química , Escherichia coli , Descontaminação , Saccharum/química , Corantes
11.
Environ Monit Assess ; 196(3): 275, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363444

RESUMO

The economic development of a country directly depends upon industries. But this economic development should not be at the cost of our natural environment. A substantial amount of water is spent during paper production, creating water scarcity and generating wastewater. Therefore, the Pollution Control Board classifies this industry into red category. Water is used in different papermaking stages such as debarking, pulping or bleaching, washing, and finishing. The wastewater thus generated contains lignin and xenobiotic compounds such as resin acids, chlorinated lignin, phenols, furans, dioxins, chlorophenols, adsorbable organic halogens (AOX), extractable organic halogens (EOCs), polychlorinated biphenyls, plasticizers, and polychlorinated dibenzodioxins. Nowadays, several microorganisms are used in the detoxification of these hazardous effluents. Researchers have found that microbial degradation is the most promising treatment method to remove high biological oxygen demand (BOD) and chemical oxygen demand (COD) from wastewater. Microorganisms also remove AOX toxicity, chlorinated compounds, suspended solids, color, lignin, derivatives, etc. from the pulp and paper mill effluents. But in the current scenario, mill effluents are known to deteriorate the environment and therefore it is highly desirable to deploy advanced technologies for effluent treatment. This review summarizes the eco-friendly advanced treatment technologies for effluents generated from pulp and paper mills.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos , Lignina , Descontaminação , Monitoramento Ambiental , Halogênios , Água , Resíduos Industriais/análise , Papel
12.
J Environ Manage ; 353: 120187, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38310792

RESUMO

The environmental pollution of water is one of the problems that have plagued human society. The bimetallic nanoscale zero-valent iron (BnZVI) technology has increased wide attention owing to its high performance for water treatment and soil remediation. In recent years, the BnZVI technology based on the development of nZVI has been further developed. The material chemistry, synthesis methods, and immobilization or surface stabilization of bimetals are discussed. Further, the data of BnZVI (Fe/Ni, Fe/Cu, Fe/Pd) articles that have been studied more frequently in the last decade are summarized in terms of the types of contaminants and the number of research literatures on the same contaminants. Five contaminants including trichloroethylene (TCE), Decabromodi-phenyl Ether (BDE209), chromium (Cr(VI)), nitrate and 2,4-dichlorophenol (2,4-DCP) were selected for in-depth discussion on their influencing factors and removal or degradation mechanisms. Herein, comprehensive views towards mechanisms of BnZVI applications including adsorption, hydrodehalogenation and reduction are provided. Particularly, some ambiguous concepts about formation of micro progenitor cell, production of hydrogen radicals (H·) and H2 and the electron transfer are highlighted. Besides, in-depth discussion of selectivity for N2 from nitrates and co-precipitation of chromium are emphasized. The difference of BnZVI is also discussed.


Assuntos
Ferro , Poluentes Químicos da Água , Humanos , Descontaminação , Poluentes Químicos da Água/análise , Poluição Ambiental , Cromo/análise , Adsorção , Nitratos
13.
Clin Exp Dent Res ; 10(1): e839, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345466

RESUMO

OBJECTIVE: To assess which decontamination method(s) used for the debridement of titanium surfaces (disks and dental implants) contaminated with bacterial, most efficiently eliminate bacterial biofilms. MATERIAL AND METHODS: A systematic search was conducted in four electronic databases between January 1, 2010 and October 31, 2022. The search strategy followed the PICOS format and included only in vitro studies completed on either dental implant or titanium disk samples. The assessed outcome variable consisted of the most effective method(s)-chemical or mechanical- removing bacterial biofilm from titanium surfaces. A meta-analysis was conducted, and data was summarized through single- and multi-level random effects model (p < .05). RESULTS: The initial search resulted in 5260 articles after the removal of duplicates. After assessment by title, abstract, and full-text review, a total of 13 articles met the inclusion criteria for this review. Different decontamination methods were assessed, including both mechanical and chemical, with the most common method across studies being chlorhexidine (CHX). Significant heterogeneity was noted across the included studies. The meta-analyses only identified a significant difference in biofilm reduction when CHX treatment was compared against PBS. The remaining comparisons did not identify significant differences between the various decontamination methods. CONCLUSIONS: The present results do not demonstrate that one method of decontamination is superior in eliminating bacterial biofilm from titanium disk and implant surfaces.


Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Peri-Implantite/prevenção & controle , Implantes Dentários/microbiologia , Titânio , Descontaminação/métodos , Clorexidina , Bactérias
14.
Clin Exp Dent Res ; 10(1): e841, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345509

RESUMO

OBJECTIVES: Access to the implant surface plays a significant role in effective mechanical biofilm removal in peri-implantitis treatment. Mechanical decontamination may also alter the surface topography of the implant, potentially increasing susceptibility to bacterial recolonization. This in vitro study aimed to evaluate a newly developed, anatomically realistic, and adaptable three-dimensional (3D)printed model with a peri-implant bone defect to evaluate the accessibility and changes of dental implant surfaces after mechanical decontamination treatment. MATERIAL AND METHODS: A split model of an advanced peri-implant bone defect was prepared using 3D printing. The function of the model was tested by mechanical decontamination of the exposed surface of dental implants (Standard Implant Straumann AG) coated with a thin layer of colored occlusion spray. Two different instruments for mechanical decontamination were used. Following decontamination, the implants were removed from the split model and photographed. Image analysis and fluorescence spectroscopy were used to quantify the remaining occlusion spray both in terms of area and total amount, while scanning electron microscopy and optical profilometry were used to analyze alteration in the implant surface morphology. RESULTS: The 3D model allowed easy placement and removal of the dental implants without disturbing the implant surfaces. Qualitative and quantitative assessment of removal of the occlusion spray revealed differences in the mechanism of action and access to the implant surface between tested instruments. The model permitted surface topography analysis following the decontamination procedure. CONCLUSION: The developed 3D model allowed a realistic simulation of decontamination of implant surfaces with colored occlusion spray in an advanced peri-implant defect. 3D printing allows easy adaptation of the model in terms of the shape and location of the defect. The model presents a valuable tool for in vitro investigation of the accessibility and changes of the implant surface after mechanical and chemical decontamination.


Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Descontaminação/métodos , Propriedades de Superfície , Peri-Implantite/prevenção & controle , Microscopia Eletrônica de Varredura
15.
Waste Manag ; 178: 292-300, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422682

RESUMO

Clean up following the wide-area release of a persistent biological agent has the potential to generate significant waste. Waste containing residual levels of biological contaminants may require off-site shipment under the U.S. Department of Transportation's (US DOT) solid waste regulations for Category A infectious agents, which has packaging and size limitations that do not accommodate large quantities. Treating the waste on-site to inactivate the bio-contaminants could alleviate the need for Category A shipping and open the possibility for categorizing the waste as conventional solid waste with similar shipping requirements as municipal garbage. To collect and package waste for on-site treatment, a semi-permeable nonwoven-based fabric was developed. The fabric was designed to contain residual bio-contaminants while providing sufficient permeability for penetration by a gaseous decontamination agent. The nonwoven fabric was tested in two bench-scale experiments. First, decontamination efficacy and gas permeability were evaluated by placing test coupons inoculated with spores of a Bacillus anthracis surrogate inside the nonwoven material. After chlorine dioxide fumigation, the coupons were analyzed for spore viability and results showed a ≥6 Log reduction on all test materials except glass. Second, filters cut from the nonwoven material were tested in parallel with commercially available cellulose acetate filters having a known pore size (0.45 µm) and results demonstrate that the two materials have similar permeability characteristics. Overall, results suggest that the nonwoven material could be used to package waste at the point of generation and then moved to a nearby staging area where it could be fumigated to inactivate bio-contaminants.


Assuntos
Bacillus anthracis , Resíduos Sólidos , Esporos Bacterianos/fisiologia , Descontaminação/métodos
16.
Chemosphere ; 352: 141367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331264

RESUMO

Nanohydroxyapatite (n-HAP), recognized by its peculiar crystal architecture and distinctive attributes showcased the underlying potential in adsorbing heavy metal ions (HMI). In this paper, the intrinsic mechanism of HMI adsorption by n-HAP was first revealed. Subsequently, the selectivity and competitiveness of n-HAP for HMI in a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, n-HAP was further categorized according to its morphological dimensions, and its adsorption properties and intrinsic mechanisms were investigated based on these different morphologies. It was shown that although n-HAP has excellent adsorption capacity and cost-effectiveness, its application is often challenging to realize due to its inherent fragility and agglomeration, the technical problems required for its handling, and the difficulty of recycling. Finally, to address these issues, this paper discusses the tendency of n-HAP and its hybridized/modified materials to adsorb HMI as well as the limitations of their applications. By summarizing the limitations and future directions of hybridization/modification HAP in the field of HMI contamination abatement, this paper provides insightful perspectives for its gradual improvement and rational application.


Assuntos
Durapatita , Metais Pesados , Durapatita/química , Adsorção , Descontaminação , Cátions
17.
Eur Biophys J ; 53(3): 133-145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418765

RESUMO

A new method for repackaging optical metamaterials formed from quartz spheres (fibers) of various diameters is proposed for ultraviolet C disinfection of infected liquids by pathogens (viruses and bacteria). The main idea of the new equipment is connected with the rotation of a contaminated fluid by screw channels within a metamaterial matrix prepared from UVC fibers/spherical optics, to improve the decontamination efficiency. In demonstration of the viability of this approach, dynamic and static inactivation of Baker's yeast via Ultraviolet C radiation regimes are used in this paper to show the efficacy of decontamination within the screw channels.


Assuntos
Descontaminação , Desinfecção , Descontaminação/métodos , Desinfecção/métodos , Bactérias , Raios Ultravioleta
18.
Bioresour Technol ; 394: 130296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185447

RESUMO

In this work, a novel boehmite-modified carbon adsorbent (BMCC) derived from moldy corn was used for simultaneous removal of P and bisphenol A (BPA) from livestock wastewater. The results showed that BMCC had a high specific surface area (308.82 m2/g) with boehmite nanoparticles anchored on its surface. BMCC showed high P and BPA decontamination capabilities (40.98 mg/g for P and 54.65 mg/g for BPA by Langmuir model). The adsorbed amount of P declined as pH increased from 4 to 10, while the adsorbed amount of BPA remained steady until pH increased to 10. After 6 cycles of BMCC use, the P and BPA adsorption efficiencies reduced by 21.75 % and 19.41 %, respectively. The adsorption of P was dominated by electrostatic attraction and complexation, while the adsorption of BPA was controlled by hydrogen bonding, electrostatic interaction, and π-π association. In conclusion, BMCC is an effective treatment for decontaminating P- and BPA-contaminated livestock wastewater.


Assuntos
Hidróxido de Alumínio , Óxido de Alumínio , Carbono , Fenóis , Poluentes Químicos da Água , Animais , Águas Residuárias , Gado , Fósforo , Descontaminação , Cinética , Compostos Benzidrílicos , Adsorção , Concentração de Íons de Hidrogênio
19.
Water Res ; 251: 121119, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219690

RESUMO

The rising debate on the dilemma of photocatalytic water treatment technologies has driven researchers to revisit its prospects in water decontamination. Nowadays, heterogeneous photocatalysis coupled oxidant activation techniques are intensively studied due to their dual advantages of high mineralization and high oxidation efficiency in pollutant degradation. This paved a new way for the development of solar-driven oxidation technologies. Previous reviews focused on the advances in one specific coupling technique, such as photocatalytic persulfate activation and photocatalytic ozonation, but lack a consolidated understanding of the synergy between photocatalytic oxidation and oxidant activation. The synergy involves the migration of photogenerated carriers, radical reaction, and the increase in oxidation rate and mineralization. This review systematically summarizes the fundamentals of activation mechanism, advanced characterization techniques and synergistic effects of coupling techniques for water decontamination. Besides, specific cases that lead researchers astray in revealing mechanisms and assessing synergy are critically discussed. Finally, the prospects and challenges are put forward to further deepen the research on heterogeneous photocatalytic activation of oxidants. This work provides a consolidated view of the existing heterogeneous photocatalysis coupled oxidant activation techniques and inspires researchers to develop more promising solar-driven technologies for water decontamination.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Oxidantes , Descontaminação , Poluentes Químicos da Água/análise , Catálise , Oxirredução , Purificação da Água/métodos
20.
Toxins (Basel) ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251243

RESUMO

Maize (Zea mays L.) is an important crop in Argentina. Aspergillus section Flavi can infect this crop at the pre-harvest stage, and the harvested grains can be contaminated with aflatoxins (AFs). During the production of bioethanol from maize, AF levels can increase up to three times in the final co-products, known as, dry and wet distiller's grain with solubles (DDGS and WDGS), intended for animal feed. Fungal enzymes like laccases can be a useful tool for reducing AF contamination in the co-products obtained from this process. The aim of the present study was to evaluate the ability of laccase enzymes included in enzymatic extracts (EE) produced by different species in the Basidiomycota phylum to reduce AF (AFB1 and AFB2) accumulation under the conditions of in vitro assays. Four laccase activities (5, 10, 15, and 20 U/mL) exerted by nine isolates were evaluated in the absence and presence of vanillic acid (VA), serving as a laccase redox mediator for the degradation of total AFs. The enzymatic stability in maize steep liquor (MSL) was confirmed after a 60 h incubation period. The most effective EE in terms of reducing AF content in the buffer was selected for an additional assay carried out under the same conditions using maize steep liquor obtained after the saccharification stage during the bioethanol production process. The highest degradation percentages were observed at 20 U/mL of laccase enzymatic activity and 1 mM of VA, corresponding to 26% for AFB1 and 26.6% for AFB2. The present study provides valuable data for the development of an efficient tool based on fungal laccases for preventing AF accumulation in the co-products of bioethanol produced from maize used for animal feed.


Assuntos
Aflatoxinas , Basidiomycota , Animais , Zea mays , Descontaminação , Lacase , Ácido Vanílico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...