Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71.622
Filtrar
3.
Zoolog Sci ; 41(1): 77-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587520

RESUMO

Androgen(s) is one of the sex steroids that are involved in many physiological phenomena of vertebrate species. Although androgens were originally identified as male sex hormones, it is well known now that they are also essential in females. As in the case of other steroid hormones, androgen is produced from cholesterol through serial enzymatic reactions. Although testis is a major tissue to produce androgens in all species, androgens are also produced in ovary and adrenal (interrenal tissue). Testosterone is the most common and famous androgen. It represents a major androgen both in males and females of almost vertebrate species. In addition, testosterone is a precursor for producing significant androgens such as11-ketotestosterone, 5α-dihydrotestosterone, 11-ketodihydrotestosterones and 15α-hydroxytestosterone in a species- or sex-dependent manner for their homeostasis. In this article, we will review the significance and characteristics of these androgens, following a description of the history of testosterone discovery and its synthetic pathways.


Assuntos
Androgênios , Testosterona , Masculino , Animais , Feminino , Ovário , Testículo , Vertebrados
4.
J Morphol ; 285(5): e21694, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619230

RESUMO

We used histological and morphometric methods to study the testis and associated glands, including the epididymis, ductus deferens, and renal sexual segment (RSS), of specimens of Basiliscus vittatus sampled from Tabasco, Mexico (17.5926° N, 92.5816° W). Samples were collected throughout 1 year, which included the dry (February to May) and rainy (June to January) seasons. Spermatogenesis in B. vittatus is active throughout the year, but a significant increase in the testicular volume, diameters of seminiferous tubules, height of the germinal epithelium, spermiogenesis, and released spermatozoa occur in the dry season. During the rainy season, all aforementioned parameters decreased except the secretory activity of the epididymis and the RSS, which increased concomitant with an increase of the spermatozoa population within the ductus deferens. These data strongly suggest that B. vittatus reproduce year-round, but males exhibit a peak in spermatogenic activity during the dry season and a peak in insemination and/or copulation at the beginning of the rainy season. We highlight the importance of analyzing not only the testis but also accessory ducts and glands when determining the reproductive cycles of reptiles. The reproductive cycle of B. vittatus is discussed in relation to the environmental conditions of Southern Mexico and is compared to that of other squamates.


Assuntos
Lagartos , Masculino , Animais , México , Reprodução , Testículo , Túbulos Seminíferos
5.
Cells ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38607002

RESUMO

(1) Background: Spermatozoa acquired motility and matured in epididymis after production in the testis. However, there is still limited understanding of the specific characteristics of sperm development across different species. In this study, we employed a comprehensive approach to analyze cell compositions in both testicular and epididymal tissues, providing valuable insights into the changes occurring during meiosis and spermiogenesis in mouse and pig models. Additionally, we identified distinct gene expression signatures associated with various spermatogenic cell types. (2) Methods: To investigate the differences in spermatogenesis between mice and pigs, we constructed a single-cell RNA dataset. (3) Results: Our findings revealed notable differences in testicular cell clusters between these two species. Furthermore, distinct gene expression patterns were observed among epithelial cells from different regions of the epididymis. Interestingly, regional gene expression patterns were also identified within principal cell clusters of the mouse epididymis. Moreover, through analysing differentially expressed genes related to the epididymis in both mouse and pig models, we successfully identified potential marker genes associated with sperm development and maturation for each species studied. (4) Conclusions: This research presented a comprehensive single-cell landscape analysis of both testicular and epididymal tissues, shedding light on the intricate processes involved in spermatogenesis and sperm maturation, specifically within mouse and pig models.


Assuntos
Sêmen , Testículo , Camundongos , Masculino , Animais , Suínos , Testículo/metabolismo , Espermatozoides/metabolismo , Epididimo/metabolismo , Espermatogênese/genética
6.
Int Braz J Urol ; 50(3): 368-372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598831

RESUMO

PURPOSE: This video aims to present an in-depth, step-by-step tutorial on microsurgical reconstruction for obstructive azoospermia, featuring a distinctive case involving anastomosis from vas deferens to rete testis. The primary aim of this endeavor is to offer thorough and practical insights for healthcare professionals and researchers within the realm of reproductive medicine. The video endeavors to disseminate expertise, methodologies, and perspectives that can be advantageous to individuals grappling with obstructive azoospermia, providing a significant contribution to the progress of reproductive medicine and the augmentation of existing treatment alternatives. MATERIALS AND METHODS: Surgical footage was recorded using the ORBEYE 4K 3D Orbital Camera System by Olympus America, with patient consent acquired for research purposes. Additionally, a retrospective examination of patient records was undertaken to compile relevant medical histories. RESULTS: This video furnishes an exhaustive guide to microsurgical reconstruction for obstructive azoospermia, encompassing a distinctive instance of anastomosis from vas deferens to rete testis. State-of-the-art technology, such as the ORBEYE 4K 3D Orbital Camera, heightens procedural transparency, accentuating the significance of advanced instrumentation. The ethical underpinning is emphasized by obtaining patient consent for footage utilization, and a retrospective chart review augments the repository of valuable patient data. This comprehensive approach serves as an invaluable reservoir of knowledge for medical professionals and underscores excellence in clinical and ethical healthcare research. CONCLUSIONS: Anastomosis from vas deferens to rete testis emerges as a viable surgical reconstruction alternative for obstructive azoospermia, particularly when confronted with non-dilated tubules within the epididymis.


Assuntos
Azoospermia , Ducto Deferente , Masculino , Humanos , Ducto Deferente/cirurgia , Rede do Testículo/cirurgia , Azoospermia/cirurgia , Estudos Retrospectivos , Epididimo , Anastomose Cirúrgica , Testículo/cirurgia
7.
Acta Med Indones ; 56(1): 1-2, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38561883

RESUMO

Hypogonadism is a condition characterized by diminished or absent production of sex hormones by the testicles in men and the ovaries in women. Hypogonadism is classified into primary and secondary hypogonadism. Each type of hypogonadism can be caused by congenital and acquired factors. There are many factors that contribute to the occurrence of hypogonadism, including genetic and developmental disorders, infection, kidney disease, liver disease, autoimmune disorders, chemotherapy, radiation, surgery, and trauma. This represents the considerable challenge in diagnosing hypogonadism.The goals of treatment include restore sexual functionality and well-being, initiating and sustaining virilization, osteoporosis prevention, normalize growth hormone levels in elderly men if possible, and restoring fertility in instances of hypogonadotropic hypogonadism. The main approach to treating hypogonadism is hormone replacement therapy. Male with prostate cancer, breast cancer, and untreated prolactinoma are contraindicated for hormone replacement therapy. When selecting a type of testosterone therapy for male with hypogonadism, several factors need to be considered, such as the diversity of treatment response and the  type of testosterone formulation. The duration of therapy depends on individual response, therapeutic goals, signs and symptoms, and hormonal levels. The response to testosterone therapy is evaluated based on symptoms and signs as well as improvements in hormone profiles in the blood. Endocrine Society Clinical Practice Guideline recommend therapeutic goals based on the alleviation of symptoms and signs, as well as reaching testosterone levels between 400 - 700 ng/dL (one week after administering testosterone enanthate or cypionate) and maintaining baseline hematocrit.Hormone therapy is the primary modality in the management of hypogonadism. The variety of signs and symptoms makes early diagnosis of this condition challenging. Moreover, administering hypogonadism therapy involves numerous considerations influenced by various patient factors and the potential for adverse effects. This poses a challenge for physicians to provide targeted hypogonadism therapy with minimal complications.


Assuntos
Hipogonadismo , Humanos , Masculino , Feminino , Idoso , Hipogonadismo/diagnóstico , Hipogonadismo/tratamento farmacológico , Testosterona/uso terapêutico , Testículo , Terapia de Reposição Hormonal/efeitos adversos
8.
PeerJ ; 12: e17142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563001

RESUMO

Background: Genetic knockout-based studies conducted in mice provide a powerful means of assessing the significance of a gene for fertility. Forkhead-associated phosphopeptide binding domain 1 (FHAD1) contains a conserved FHA domain, that is present in many proteins with phospho-threonine reader activity. How FHAD1 functions in male fertility, however, remains uncertain. Methods: Fhad1-/- mice were generated by CRISPR/Cas9-mediated knockout, after which qPCR was used to evaluate changes in gene expression, with subsequent analyses of spermatogenesis and fertility. The testis phenotypes were also examined using immunofluorescence and histological staining, while sperm concentrations and motility were quantified via computer-aided sperm analysis. Cellular apoptosis was assessed using a TUNEL staining assay. Results: The Fhad1-/-mice did not exhibit any abnormal changes in fertility or testicular morphology compared to wild-type littermates. Histological analyses confirmed that the testicular morphology of both Fhad1-/-and Fhad1+/+ mice was normal, with both exhibiting intact seminiferous tubules. Relative to Fhad1+/+ mice, however, Fhad1-/-did exhibit reductions in the total and progressive motility of epididymal sperm. Analyses of meiotic division in Fhad1-/-mice also revealed higher levels of apoptotic death during the first wave of spermatogenesis. Discussion: The findings suggest that FHAD1 is involved in both meiosis and the modulation of sperm motility.


Assuntos
Fosfopeptídeos , Motilidade dos Espermatozoides , Masculino , Camundongos , Animais , Motilidade dos Espermatozoides/genética , Fosfopeptídeos/metabolismo , Camundongos Knockout , Sêmen , Testículo/anatomia & histologia
9.
BMC Genomics ; 25(1): 326, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561689

RESUMO

BACKGROUND: Jilin white goose is an excellent local breed in China, with a high annual egg production and laying eggs mainly from February to July each year. The testis, as the only organ that can produce sperm, can affect the sexual maturity and fecundity of male animals. Its growth and development are affected and regulated by a variety of factors. Proteomics is generally applied to identify and quantify proteins in cells and tissues in order to understand the physiological or pathological changes that occur in tissues or cells under specific conditions. Currently, the female poultry reproductive system has been extensively studied, while few related studies focusing on the regulatory mechanism of the reproductive system of male poultry have been conducted. RESULTS: A total of 1753 differentially expressed proteins (DEPs) were generated in which there were 594, 391 and 768 different proteins showing differential expression in three stages, Initial of Laying Cycle (ILC), Peak of Laying Cycle (PLC) and End of Laying Cycle (ELC). Furthermore, bioinformatics was used to analyze the DEPs. Gene ontology (GO) enrichment, Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis were adopted. All DEPs were found to be implicated in multiple biological processes and pathways associated with testicular development, such as renin secretion, Lysosomes, SNARE interactions in vesicle trafficking, the p53 signaling pathway and pathways related to metabolism. Additionally, the reliability of transcriptome results was verified by real-time quantitative PCR by selecting the transcript abundance of 6 selected DEPs at the three stages of the laying cycle. CONCLUSIONS: The funding in this study will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of testicles in Jilin white goose.


Assuntos
Gansos , Testículo , Animais , Masculino , Feminino , Gansos/genética , Reprodutibilidade dos Testes , Sêmen , Transcriptoma , Perfilação da Expressão Gênica
10.
Stem Cell Res Ther ; 15(1): 93, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561834

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) were considered to be stem cells with limited potencies due to their existence in adult organisms. However, the production of spermatogonial stem cell colonies with broader differentiation capabilities in primary germ cell cultures from mice of select genetic backgrounds (C57BL6/Tg14, ddY, FVB and 129/Ola) indicated that SSCs from these strains were pluripotent. METHODS: We established primary cultures of SSCs from neonatal and adult Swiss 3T3 Albino mice. Stemness of SSC colonies were evaluated by performing real-time PCR and immunofluorescence analysis for a panel of chosen stemness markers. Differentiation potentials of SSCs were examined by attempting the generation of embryoid bodies and evaluating the expression of ectodermal, mesodermal and endodermal markers using immunofluorescence and real-time PCR analysis. RESULTS: Spermatogonial stem cells from neonatal and mature mice testes colonised in vitro and formed compact spermatogonial stem cell colonies in culture. The presence of stem cell markers ALPL, ITGA6 and CD9 indicated stemness in these colonies. The differentiation potential of these SSC colonies was demonstrated by their transformation into embryoid bodies upon withdrawal of growth factors from the culture medium. SSC colonies and embryoid bodies formed were evaluated using immunofluorescence and real-time PCR analysis. Embryoid body like structures derived from both neonatal and adult mouse testis were quite similar in terms of the expression of germ layer markers. CONCLUSION: These results strongly suggest that SSC-derived EB-like structures could be used for further differentiation into cells of interest in cell-based therapeutics.


Assuntos
Espermatogônias , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Transdiferenciação Celular , Células Cultivadas , Células-Tronco/metabolismo
11.
Reprod Domest Anim ; 59(4): e14556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566398

RESUMO

Scrotal surface thermography is a non-invasive method for assessing testicular thermoregulation in stallions; however, few studies have explored the application of this technique concerning the thermal physiology of equine reproductive systems. This study aimed to evaluate the consistency of testicular thermoregulation in stallions over a year using thermography to measure the scrotal surface temperature (SST). Moreover, we assessed the best region for measuring the surface body temperature compared with the SST. Ten light-breed stallions were used in the experiment. Thermographic images of the scrotal and body surfaces (neck and abdomen) were captured. Fresh, cooled and frozen-thawed semen samples were evaluated to verify the impact of thermoregulation on semen quality. Testicular thermoregulation was maintained throughout the year in stallions amidst changes in the external temperature, as evidenced by the weak correlation between the SST and ambient temperature. A lower correlation was observed between the environmental temperature and body surface temperature (BTS) obtained from the abdomen (BTS-A; R = .4772; p < .0001) than with that obtained from the neck (BTS-N; R = .7259; p < .0001). Moreover, both BTS-A and SST were simultaneously captured in a single image. The consistent quality of the fresh, cooled and frozen semen suggests efficient thermoregulation in stallions throughout the year.


Assuntos
Análise do Sêmen , Termografia , Animais , Cavalos , Masculino , Temperatura , Termografia/veterinária , Termografia/métodos , Análise do Sêmen/veterinária , Escroto/fisiologia , Testículo/fisiologia , Sêmen/fisiologia
12.
Reprod Biol Endocrinol ; 22(1): 40, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600586

RESUMO

The epididymal function and gene expression in mammals are under the control of the testis. Sex steroids are secreted from the testis and act on the epididymis in an endocrine manner. There is another, non-sex steroidal secreted signaling, named lumicrine signaling, in which testis-derived secreted proteins go through the male reproductive tract and act on the epididymis. The effects of such multiple regulations on the epididymis by the testis have been investigated for many genes. The recent development of high-throughput next-generation sequencing now enables us a further comparative survey of endocrine and lumicrine action-dependent gene expression. In the present study, testis-derived endocrine and lumicrine actions on epididymal gene expression were comparatively investigated by RNA-seq transcriptomic analyses. This investigation utilized experimental animal models in which testis-derived endocrine and/or lumicrine actions were interfered with, such as unilateral or bilateral orchidectomy. By bilateral orchidectomy, which interferes with both endocrine and lumicrine actions, 431 genes were downregulated. By unilateral orchidectomy, which also interferes with endocrine and lumicrine actions by the unilateral testis, but the endocrine action was compensated by the contralateral testis, 283 genes were downregulated. The content of such genes downregulated by unilateral orchidectomy was like those of lumicrine action-interfered efferent duct-ligation, W/Wv, and Nell2-/- mice. When genes affected by unilateral and bilateral orchidectomy were compared, 154 genes were commonly downregulated, whereas 217 genes were specifically downregulated only by bilateral orchidectomy, indicating the distinction between endocrine and lumicrine actions on the proximal epididymal transcriptome. Comparative transcriptome analyses also showed that the expressions of genes emerging since Amniota were notably impacted by bilateral orchidectomy, unilateral orchidectomy, and lumicrine action-interfering treatments; the degree of influence from these treatments varied based on the evolutionary stage beyond Amniota. These findings unveil an evolutional transition of regulated gene expression in the proximal epididymis by two different testis-derived signaling mechanisms.


Assuntos
Epididimo , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Epididimo/metabolismo , Transcriptoma , Orquiectomia , Transdução de Sinais/genética , Mamíferos
13.
PLoS One ; 19(4): e0292198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574116

RESUMO

The surgical sterilization of cats and dogs has been used to prevent their unwanted breeding for decades. However, this is an expensive and invasive procedure, and often impractical in wider contexts, for example the control of feral populations. A sterilization agent that could be administered in a single injection, would not only eliminate the risks imposed by surgery but also be a much more cost-effective solution to this worldwide problem. In this study, we sought to develop a targeting peptide that would selectively bind to Leydig cells of the testes. Subsequently, after covalently attaching a cell ablation agent, Auristatin, to this peptide we aimed to apply this conjugated product (LH2Auristatin) to adult male mice in vivo, both alone and together with a previously developed Sertoli cell targeting peptide (FSH2Menadione). The application of LH2Auristatin alone resulted in an increase in sperm DNA damage, reduced mean testes weights and mean seminiferous tubule size, along with extensive germ cell apoptosis and a reduction in litter sizes. Together with FSH2Menadione there was also an increase in embryo resorptions. These promising results were observed in around a third of all treated animals. Given this variability, we discuss how these reagents might be modified in order to increase target cell ablation and improve their efficacy as sterilization agents.


Assuntos
Células Intersticiais do Testículo , Testículo , Masculino , Camundongos , Animais , Gatos , Cães , Espermatogênese , Sêmen , Células de Sertoli/metabolismo , Peptídeos/metabolismo
14.
Reprod Biol Endocrinol ; 22(1): 36, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570783

RESUMO

Microtubule-associated protein 1a (Map1a) is a microtubule (MT) regulatory protein that binds to the MT protofilaments in mammalian cells to promote MT stabilization. Maps work with MT cleavage proteins and other MT catastrophe-inducing proteins to confer MT dynamics to support changes in the Sertoli cell shape to sustain spermatogenesis. However, no functional studies are found in the literature to probe its role in spermatogenesis. Using an RNAi approach, coupled with the use of toxicant-induced testis (in vivo)- and Sertoli cell (in vitro)-injury models, RNA-Seq analysis, transcriptome profiling, and relevant bioinformatics analysis, immunofluorescence analysis, and pertinent biochemical assays for cytoskeletal organization, we have delineated the functional role of Map1a in Sertoli cells and testes. Map1a was shown to support MT structural organization, and its knockdown (KD) also perturbed the structural organization of actin, vimentin, and septin cytoskeletons as these cytoskeletons are intimately related, working in concert to support spermatogenesis. More importantly, cadmium-induced Sertoli cell injury that perturbed the MT structural organization across the cell cytoplasm was associated with disruptive changes in the distribution of Map1a and a surge in p-p38-MAPK (phosphorylated p38-mitogen-activated protein kinase) expression but not total p38-MAPK. These findings thus support the notion that p-p38-MAPK activation is involved in cadmium-induced Sertoli cell injury. This conclusion was supported by studies using doramapimod, a specific p38-MAPK phosphorylation (activation) inhibitor, which was capable of restoring the cadmium-induced disruptive structural organization of MTs across the Sertoli cell cytoplasm. In summary: this study provides mechanistic insights regarding restoration of toxicant-induced Sertoli cell and testis injury and male infertility.


Assuntos
Actinas , Células de Sertoli , Ratos , Animais , Masculino , Actinas/metabolismo , Células de Sertoli/metabolismo , Cádmio , Ratos Sprague-Dawley , Barreira Hematotesticular/metabolismo , Microtúbulos/metabolismo , Testículo/metabolismo , Espermatogênese/fisiologia , Mamíferos
15.
Sci Total Environ ; 926: 172036, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554964

RESUMO

Fluoride, a ubiquitous environmental pollutant, poses a significant public health threat. Our previous study revealed a correlation between fluoride-induced testicular pyroptosis and male reproductive dysfunction. However, the underlying mechanism remains unclear. Wild-type and interleukin 17A knockout mice were exposed to sodium fluoride (100 mg/L) in deionized drinking water for 18 weeks. Bifidobacterium intervention (1 × 109 CFU/mL, 0.2 mL/day, administered via gavage) commenced in the 10th week. Sperm quality, testicular morphology, key pyroptosis markers, spermatogenesis key genes, IL-17A signaling pathway, and pyroptosis pathway related genes were determined. The results showed that fluoride reduced sperm quality, damaged testicular morphology, affected spermatogenesis, elevated IL-17A levels, and induced testicular pyroptosis. Bifidobacterium intervention alleviated adverse reproductive outcomes. Fluoride-activated testicular pyroptosis through both typical and atypical pathways, with IL-17A involvement. Bifidobacterium supplementation attenuated pyroptosis by downregulating IL-17A, inhibiting NLRP3 and PYRIN-mediated caspase-1 and caspase-11 dependent pathways in testis, thereby alleviating fluoride-induced male reproductive damage. In summary, this study uncovers the mechanism underlying fluorine-induced testicular pyroptosis and illustrates the novel protecting feature of Bifidobacterium against fluoride-induced harm to male reproduction, along with its potential regulatory mechanism. These results provide fresh perspectives on treating male reproductive dysfunction resulting from fluoride or other environmental toxins.


Assuntos
Fluoretos , Testículo , Camundongos , Animais , Masculino , Testículo/metabolismo , Fluoretos/metabolismo , Caspase 1/metabolismo , Piroptose , Interleucina-17/genética , Interleucina-17/metabolismo , Sêmen
16.
Mol Reprod Dev ; 91(3): e23739, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480999

RESUMO

During male fetal development, testosterone plays an essential role in the differentiation and maturation of the male reproductive system. Deficient fetal testosterone production can result in variations of sex differentiation that may cause infertility and even increased tumor incidence later in life. Fetal Leydig cells in the fetal testis are the major androgen source in mammals. Although fetal and adult Leydig cells are similar in their functions, they are two distinct cell types, and therefore, the knowledge of adult Leydig cells cannot be directly applied to understanding fetal Leydig cells. This review summarizes our current knowledge of fetal Leydig cells regarding their cell biology, developmental biology, and androgen production regulation in rodents and human. Fetal Leydig cells are present in basement membrane-enclosed clusters in between testis cords. They originate from the mesonephros mesenchyme and the coelomic epithelium and start to differentiate upon receiving a Desert Hedgehog signal from Sertoli cells or being released from a NOTCH signal from endothelial cells. Mature fetal Leydig cells produce androgens. Human fetal Leydig cell steroidogenesis is LHCGR (Luteinizing Hormone Chronic Gonadotropin Receptor) dependent, while rodents are not, although other Gαs -protein coupled receptors might be involved in rodent steroidogenesis regulation. Fetal steroidogenesis ceases after sex differentiation is completed, and some fetal Leydig cells dedifferentiate to serve as stem cells for adult testicular cell types. Significant gaps are acknowledged: (1) Why are adult and fetal Leydig cells different? (2) What are bona fide progenitor and fetal Leydig cell markers? (3) Which signaling pathways and transcription factors regulate fetal Leydig cell steroidogenesis? It is critical to discover answers to these questions so that we can understand vulnerable targets in fetal Leydig cells and the mechanisms for androgen production that when disrupted, leads to variations in sex differentiation that range from subtle to complete sex reversal.


Assuntos
Androgênios , Células Intersticiais do Testículo , Animais , Masculino , Humanos , Células Intersticiais do Testículo/metabolismo , Androgênios/metabolismo , Células Endoteliais/metabolismo , Proteínas Hedgehog/metabolismo , Testículo/metabolismo , Testosterona , Hormônio Luteinizante/metabolismo , Receptores do LH/metabolismo , Mamíferos
17.
Eur Rev Med Pharmacol Sci ; 28(5): 1680-1694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497852

RESUMO

OBJECTIVE: The goal of this study was to investigate the potential protective effect of L-carnitine (20 mg/kg bw, 1/20 LD 50) against aluminum chloride (AlCl3) on the quality of the male rats' testicles and sperm, as well as to determine whether or not the effects of AlCl3 could be counteracted by using L-carnitine as an antioxidant. MATERIALS AND METHODS: Six groups of 36 adult male albino rats (n=6) were randomly formed. In Group I (Gp I), saline injection was given orally as a control. Group II (Gp II) was injected orally with 75 mg/kg body weight of L-carnitine. Group III (Gp III) was given a high dose of L-carnitine (150 mg/kg body weight) orally, while Group IV (G IV) was given a low dose of AlCl3 (20 mg/kg body weight). Group V (Gp V) was given an oral injection of AlCl3 (20 mg/kg) and L-carnitine (75 mg/kg body weight). Group VI (Gp VI) was given AlCl3 at a dose of 20 mg/kg and L-carnitine at a dose of 150 mg/kg body weight for 60 days. The reproductive capacity of each group was assessed. Thus, in addition to histopathological analysis and the comet assay to evaluate sperm DNA deterioration, final body weight, testicular weight change, and sperm analysis were carried out. RESULTS: The findings revealed that AlCl3 caused a significant decrease in final body weight, relative weight of sex organs, sperm concentration, motility and viability, serum testosterone concentration, and a significant increase in sperm abnormalities. Furthermore, AlCl3 caused visible changes in the histological structure of the testis. CONCLUSIONS: L-carnitine treatment alleviated the harmful effects of AlCl3, as evidenced histopathologically by a noticeable improvement in testis tissues. When it comes to treating AlCl3-induced reproductive toxicity in male rat testes, L-carnitine shows promise.


Assuntos
Antioxidantes , Testículo , Masculino , Ratos , Animais , Cloreto de Alumínio , Antioxidantes/farmacologia , Sêmen , Carnitina/farmacologia , Peso Corporal
18.
Nat Commun ; 15(1): 2343, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491008

RESUMO

The intermitochondrial cement (IMC) and chromatoid body (CB) are posited as central sites for piRNA activity in mice, with MIWI initially assembling in the IMC for piRNA processing before translocating to the CB for functional deployment. The regulatory mechanism underpinning MIWI translocation, however, has remained elusive. We unveil that piRNA loading is the trigger for MIWI translocation from the IMC to CB. Mechanistically, piRNA loading facilitates MIWI release from the IMC by weakening its ties with the mitochondria-anchored TDRKH. This, in turn, enables arginine methylation of MIWI, augmenting its binding affinity for TDRD6 and ensuring its integration within the CB. Notably, loss of piRNA-loading ability causes MIWI entrapment in the IMC and its destabilization in male germ cells, leading to defective spermatogenesis and male infertility in mice. Collectively, our findings establish the critical role of piRNA loading in MIWI translocation during spermatogenesis, offering new insights into piRNA biology in mammals.


Assuntos
Proteínas Argonautas , Grânulos de Ribonucleoproteínas de Células Germinativas , RNA de Interação com Piwi , Animais , Masculino , Camundongos , Proteínas Argonautas/metabolismo , Células Germinativas/metabolismo , Mamíferos/genética , Mitocôndrias/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espermatogênese/genética , Testículo/metabolismo
19.
Mol Genet Genomics ; 299(1): 35, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489045

RESUMO

Asthenoteratospermia is a significant cause of male infertility. FAM71D (Family with sequence similarity 71, member D), as a novel protein exclusively expressed in the testis, has been found to be associated with sperm motility. However, the association of FAM71D mutation with male infertility has yet to be examined. Here, we conducted whole-exome sequencing and identified a homozygous missense mutation c.440G > A (p. Arg147Gln) of FAM71D in an asthenoteratospermia-affected man from a consanguineous family. The FAM71D variant is extremely rare in human population genome databases and predicted to be deleterious by multiple bioinformatics tools. Semen analysis indicated decreased sperm motility and obvious morphological abnormalities in sperm cells from the FAM71D-deficient man. Immunofluorescence assays revealed that the identified FAM71D mutation had an important influence on the assembly of sperm structure-related proteins. Furthermore, intra-cytoplasmic sperm injection (ICSI) treatment performed on the infertile man with FAM71D variant achieved a satisfactory outcome. Overall, our study identified FAM71D as a novel causative gene for male infertility with asthenoteratospermia, for which ICSI treatment may be suggested to acquire good prognosis. All these findings will provide effective guidance for genetic counselling and assisted reproduction treatments of asthenoteratospermia-affected subjects.


Assuntos
Infertilidade Masculina , Sêmen , Masculino , Humanos , Motilidade dos Espermatozoides , Espermatozoides , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Testículo/metabolismo , Mutação
20.
BMC Res Notes ; 17(1): 77, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486279

RESUMO

BACKGROUND: Spermatogenesis is the process of producing mature sperm from Spermatogonial stem cells (SSCs) and this process requires a complex cooperation of different types of somatic and germ cells. Undifferentiated spermatogonia initiate the spermatogenesis and Sertoli cells as the only somatic cells inside of the seminiferous tubule play a key role in providing chemical and physical requirements for normal spermatogenesis, here, we investigated the dysfunction of these cells in non-obstructive azoospermia. MATERIAL AND METHOD: In this study, we analyzed the expression of sox9 and UTF1 in the non-obstructive human testis by immunohistochemistry. Moreover, we used the KEGG pathway and bioinformatics analysis to reveal the connection between our object genes and protein. RESULTS: The immunohistochemistry analysis of the non-obstructive human seminiferous tubule showed low expression of Sox9 and UTF1 that was detected out of the main location of the responsible cells for these expressions. Our bioinformatics analysis clearly and strongly indicated the relation between UTF1 in undifferentiated spermatogonia and Sox9 in Sertoli cells mediated by POU5F1. CONCLUSION: Generally, this study showed the negative effect of POU5F1 as a mediator between Sertoli cells as the somatic cells within seminiferous tubules and undifferentiated spermatogonia as the spermatogenesis initiator germ cells in non-obstructive conditions.


Assuntos
Azoospermia , Testículo , Humanos , Masculino , Azoospermia/genética , Regulação para Baixo , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero , Sêmen , Espermatogônias/metabolismo , Testículo/metabolismo , Transativadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...