Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.912
Filtrar
1.
Zoolog Sci ; 41(2): 141-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587909

RESUMO

The silkworm Bombyx mori exhibits a photoperiodic response (PR) for embryonic diapause induction. This article provides a comprehensive review of literature on the silkworm PR, starting from early works on population to recent studies uncovering the molecular mechanism. Makita Kogure (1933) conducted extensive research on the PR, presenting a pioneering paper on insect photoperiodism. In the 1970s and 80s, artificial diets were developed, and the influence of nutrition on PR was well documented. The photoperiodic photoreceptor has been investigated from organ to molecular level in the silkworm. Culture experiments demonstrated that the photoperiodic induction can be programmed in an isolated brain (Br)-subesophageal ganglion (SG) complex with corpora cardiaca (CC)-corpora allata (CA). The requirement of dietary vitamin A for PR suggests the involvement of opsin pigment in the photoperiodic reception, and a cDNA encoding an opsin (Boceropsin) was cloned from the brain. The effector system concerning the production and secretion of diapause hormone (DH) has also been extensively investigated in the silkworm. DH is produced in a pair of posterior cells of SG, transported to CC by nervi corporis cardiaci, and ultimately released into the hemolymph. Possible involvement of GABAergic and corazonin (Crz) signal pathways was suggested in the control of DH secretion. Knockout (KO) experiments of GABA transporter (GAT) and circadian clock genes demonstrated that GAT plays a crucial role in PR through circadian control. A model outlining the PR mechanism, from maternal photoperiodic light reception to DH secretion, has been proposed.


Assuntos
Bombyx , Diapausa de Inseto , Diapausa , Animais , Bombyx/metabolismo , DNA Complementar , Gânglios , Opsinas/metabolismo
3.
J Virol ; 98(4): e0185823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38445887

RESUMO

Most individuals are latently infected with herpes simplex virus type 1 (HSV-1), and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent HSV-1 is also present in immune cells recovered from the ganglia of experimentally infected mice. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for that conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were near-exclusively detected in mixed populations of cells undergoing cell death. Specific loss of HSV-1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained using compromised scRNA-Seq datasets.IMPORTANCEMost people are infected with herpes simplex virus type 1 (HSV-1) during their life. Once infected, the virus generally remains in a latent (silent) state, hiding within the neurons of peripheral ganglia. Periodic reactivation (reawakening) of the virus may cause fresh diseases such as cold sores. A recent study using single-cell RNA sequencing (scRNA-Seq) proposed that HSV-1 can also establish latency in the immune cells of mice, challenging existing dogma. We reanalyzed the data from that study and identified several flaws in the methodologies and analyses performed that invalidate the published conclusions. Specifically, we showed that the methodologies used resulted in widespread destruction of neurons which resulted in the presence of contaminants that confound the data analysis. We thus conclude that there remains little to no evidence for HSV-1 latency in immune cells.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Animais , Camundongos , Herpesvirus Humano 1/genética , Latência Viral , Gânglios , Análise de Sequência de RNA , Gânglio Trigeminal
4.
Methods Mol Biol ; 2758: 255-289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549019

RESUMO

Crustaceans serve as a useful, simplified model for studying peptides and neuromodulation, as they contain numerous neuropeptide homologs to mammals and enable electrophysiological studies at the single-cell and neural circuit levels. Crustaceans contain well-defined neural networks, including the stomatogastric ganglion, oesophageal ganglion, commissural ganglia, and several neuropeptide-rich organs such as the brain, pericardial organs, and sinus glands. As existing mass spectrometry (MS) methods are not readily amenable to neuropeptide studies, there is a great need for optimized sample preparation, data acquisition, and data analysis methods. Herein, we present a general workflow and detailed methods for MS-based neuropeptidomic analysis of crustacean tissue samples and circulating fluids. In conjunction with profiling, quantitation can also be performed with isotopic or isobaric labeling. Information regarding the localization patterns and changes of peptides can be studied via mass spectrometry imaging. Combining these sample preparation strategies and MS analytical techniques allows for a multi-faceted approach to obtaining deep knowledge of crustacean peptidergic signaling pathways.


Assuntos
Neuropeptídeos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neuropeptídeos/metabolismo , Peptídeos , Diagnóstico por Imagem , Gânglios/química , Mamíferos/metabolismo
5.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38267260

RESUMO

The inner ear sensory neurons play a pivotal role in auditory processing and balance control. Though significant progresses have been made, the underlying mechanisms controlling the differentiation and survival of the inner ear sensory neurons remain largely unknown. During development, ISL1 and POU4F transcription factors are co-expressed and are required for terminal differentiation, pathfinding, axon outgrowth and the survival of neurons in the central and peripheral nervous systems. However, little is understood about their functional relationship and regulatory mechanism in neural development. Here, we have knocked out Isl1 or Pou4f1 or both in mice of both sexes. In the absence of Isl1, the differentiation of cochleovestibular ganglion (CVG) neurons is disturbed and with that Isl1-deficient CVG neurons display defects in migration and axon pathfinding. Compound deletion of Isl1 and Pou4f1 causes a delay in CVG differentiation and results in a more severe CVG defect with a loss of nearly all of spiral ganglion neurons (SGNs). Moreover, ISL1 and POU4F1 interact directly in developing CVG neurons and act cooperatively as well as independently in regulating the expression of unique sets of CVG-specific genes crucial for CVG development and survival by binding to the cis-regulatory elements including the promoters of Fgf10, Pou4f2, and Epha5 and enhancers of Eya1 and Ntng2 These findings demonstrate that Isl1 and Pou4f1 are indispensable for CVG development and maintenance by acting epistatically to regulate genes essential for CVG development.


Assuntos
Orelha Interna , Regulação da Expressão Gênica no Desenvolvimento , Animais , Feminino , Masculino , Camundongos , Gânglios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Behav Brain Res ; 458: 114736, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-37923220

RESUMO

Food deprivation may cause neurological dysfunctions including memory impairment. The mollusk Aplysia is a suitable animal model to study prolonged food deprivation-induced memory deficits because it can sustain up to 14 days of food deprivation (14DFD). Sensitization of defensive withdrawal reflexes has been used to illustrate the detrimental effects of 14DFD on memory formation. Under normal feeding conditions (i.e., two days food deprivation, 2DFD), aversive stimuli lead to serotonin (5-HT) release into the hemolymph and neuropil, which mediates sensitization and its cellular correlates including increased excitability of tail sensory neurons (TSNs). Recent studies found that 14DFD prevents both short-term and long-term sensitization, as well as short-term increased excitability of TSNs induced by in vitro aversive training. This study investigated the role of 5-HT in the absence of sensitization and TSN increased excitability under 14DFD. Because 5-HT is synthesized from tryptophan obtained through diet, and its exogeneous application alone induces sensitization and increases TSN excitability, we hypothesized that 1) 5-HT level may be reduced by 14DFD and 2) 5-HT may still induce sensitization and TSN increased excitability in 14DFD animals. Results revealed that 14DFD significantly decreased hemolymph 5-HT level, which may contribute to the lack of sensitization and its cellular correlates, while ganglia 5-HT level was not changed. 5-HT exogenous application induced sensitization in 14DFD Aplysia, albeit smaller than that in 2DFD animals, suggesting that this treatment can only induce partial sensitization in food deprived animals. Under 14DFD, 5-HT increased TSN excitability indistinguishable from that observed under 2DFD. Taken together, these findings characterize 5-HT metabolic deficiency under 14DFD, which may be compensated, at least in part, by 5-HT exogenous application.


Assuntos
Aplysia , Serotonina , Animais , Serotonina/metabolismo , Aplysia/fisiologia , Privação de Alimentos , Neurônios Aferentes/fisiologia , Gânglios
7.
Adv Anat Embryol Cell Biol ; 237: 13-35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946075

RESUMO

The carotid body (CB) is the main peripheral arterial chemoreceptor that registers the levels of pO2, pCO2 and pH in the blood and responds to their changes by regulating breathing. It is strategically located in the bifurcation of each common carotid artery. The organ consists of "glomera" composed of two cell types, glomus and sustentacular cells, interspersed by blood vessels and nerve bundles and separated by connective tissue. The neuron-like glomus or type I cells are considered as the chemosensory cells of the CB. They contain numerous cytoplasmic organelles and dense-cored vesicles that store and release neurotransmitters. They also form both conventional chemical and electrical synapses between each other and are contacted by peripheral nerve endings of petrosal ganglion neurons. The glomus cells are dually innervated by both sensory nerve fibers through the carotid sinus nerve and autonomic fibers of sympathetic origin via the ganglioglomerular nerve. The parasympathetic efferent innervation is relayed by vasomotor fibers of ganglion cells located around or inside the CB. The glial-like sustentacular or type II cells are regarded to be supporting cells although they sustain physiologic neurogenesis in the adult CB and are thus supposed to be progenitor cells as well. The CB is a highly vascularized organ and its intraorgan hemodynamics possibly plays a role in the process of chemoreception.


Assuntos
Corpo Carotídeo , Animais , Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/fisiologia , Neurônios , Artéria Carótida Primitiva , Gânglios , Mamíferos
8.
Stem Cell Res Ther ; 14(1): 290, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798638

RESUMO

BACKGROUND: Neurosphere medium (NSM) and self-renewal medium (SRM) were widely used to isolate enteric neural stem cells (ENSCs) in the form of neurospheres. ENSCs or their neurosphere forms were neurogenic and gliogenic, but the compelling evidence for their capacity of assembling enteric neural networks remained lacking, raising the question of their aptitude for rebuilding the enteric nervous system (ENS) in ENSC therapeutics. It prompted us to explore an effective culture protocol or strategy for assembling ENS networks, which might also be employed as an in vitro model to simplify the biological complexity of ENS embedded in gut walls. METHODS: NSM and SRM were examined for their capacity to generate neurospheres in mass culture of dispersed murine fetal enterocytes at serially diluted doses and assemble enteric neural networks in two- and three-dimensional cell culture systems and ex vivo on gut explants. Time-lapse microphotography was employed to capture cell activities of assembled neural networks. Neurosphere transplantation was performed via rectal submucosal injection. RESULTS: In mass culture of dispersed enterocytes, NSM generated discrete units of neurospheres, whereas SRM promoted neural network assembly with neurospheres akin to enteric ganglia. Both were highly affected by seeding cell doses. SRM had similar ENSC mitosis-driving capacity to NSM, but was superior in driving ENSC differentiation in company with heightened ENSC apoptosis. Enteric neurospheres were motile, capable of merging together. It argued against their clonal entities. When nurtured in SRM, enteric neurospheres proved competent to assemble neural networks on two-dimensional coverslips, in three-dimensional hydrogels and on gut explants. In the course of neural network assembly from enteric neurospheres, neurite extension was preceded by migratory expansion of gliocytes. Assembled neural networks contained motile ganglia and gliocytes that constantly underwent shapeshift. Neurospheres transplanted into rectal submucosa might reconstitute myenteric plexuses of recipients' rectum. CONCLUSION: Enteric neurospheres mass-produced in NSM might assemble neural networks in SRM-immersed two- or three-dimensional environments and on gut explants, and reconstitute myenteric plexuses of the colon after rectal submucosal transplantation. Our results also shed first light on the dynamic entity of ENS and open the experimental avenues to explore cellular activities of ENS and facilitate ENS demystification.


Assuntos
Sistema Nervoso Entérico , Células-Tronco Neurais , Camundongos , Animais , Intestino Delgado , Neurogênese , Diferenciação Celular , Gânglios
9.
J Virol ; 97(10): e0073023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37712701

RESUMO

IMPORTANCE: Herpes simplex virus 1 is an important human pathogen that has been intensively studied for many decades. Nevertheless, the molecular mechanisms regulating its establishment, maintenance, and reactivation from latency are poorly understood. Here, we show that HSV-1-encoded miR-H2 is post-transcriptionally edited in latently infected human tissues. Hyperediting of viral miRNAs increases the targeting potential of these miRNAs and may play an important role in regulating latency. We show that the edited miR-H2 can target ICP4, an essential viral protein. Interestingly, we found no evidence of hyperediting of its homolog, miR-H2, which is expressed by the closely related virus HSV-2. The discovery of post-translational modifications of viral miRNA in the latency phase suggests that these processes may also be important for other non-coding viral RNA in the latency phase, including the intron LAT, which in turn may be crucial for understanding the biology of this virus.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Herpesvirus Humano 1/fisiologia , Latência Viral/genética , Proteínas Virais/metabolismo , Gânglios/metabolismo , Gânglio Trigeminal , Ativação Viral/genética
10.
PLoS One ; 18(8): e0290359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651417

RESUMO

Stick insects respond to visual or tactile stimuli with whole-body turning or directed reach-to-grasp movements. Such sensory-induced turning and reaching behaviour requires interneurons to convey information from sensory neuropils of the head ganglia to motor neuropils of the thoracic ganglia. To date, descending interneurons are largely unknown in stick insects. In particular, it is unclear whether the special role of the front legs in sensory-induced turning and reaching has a neuroanatomical correlate in terms of descending interneuron numbers. Here, we describe the population of descending interneurons with somata in the brain or gnathal ganglion in the stick insect Carausius morosus, providing a first map of soma cluster counts and locations. By comparison of interneuron populations with projections to the pro- and mesothoracic ganglia, we then estimate the fraction of descending interneurons that terminate in the prothoracic ganglion. With regard to short-latency, touch-mediated reach-to-grasp movements, we also locate likely sites of synaptic interactions between antennal proprioceptive afferents to the deutocerebrum and gnathal ganglion with descending or ascending interneuron fibres. To this end, we combine fluorescent dye stainings of thoracic connectives with stainings of antennal hair field sensilla. Backfills of neck connectives revealed up to 410 descending interneuron somata (brain: 205 in 19 clusters; gnathal ganglion: 205). In comparison, backfills of the prothorax-mesothorax connectives stained only up to 173 somata (brain: 83 in 16 clusters; gnathal ganglion: 90), suggesting that up to 60% of all descending interneurons may terminate in the prothoracic ganglion (estimated upper bound). Double stainings of connectives and antennal hair field sensilla revealed that ascending or descending fibres arborise in close proximity of afferent terminals in the deutocerebrum and in the middle part of the gnathal ganglia. We conclude that two cephalothoracic pathways may convey cues about antennal movement and pointing direction to thoracic motor centres via two synapses only.


Assuntos
Encéfalo , Interneurônios , Humanos , Neurópilo , Pescoço , Morte , Gânglios
11.
Cell Physiol Biochem ; 57(4): 279-297, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37597169

RESUMO

BACKGROUND/AIMS: Kynurenic acid (KYNA), a tryptophan metabolite along the kynurenine pathway, is an endogenous antagonist of glutamate ionotropic excitatory amino acid (EAA) receptors and the α7 nicotinic acetylcholine receptor (nAChR). The involvement of KYNA in various pathological conditions and during the aging process is significant. KYNA synthesis from L-kynurenine (L-KYN), through the action of several kynurenine aminotransferases (KATs), is present in the central nervous system (CNS) and periphery of mammals. We were interested in investigating the ability of the brain and peripheral organs of Helix pomatia snails to synthesize KYNA, in an in vitro study. In comparative studies between rat and snail, we looked for the synthesis of KYNA in the liver. We then looked for an effect of age on KYNA synthesis. METHODS: Ten shell parameters of the Helix pomatia snail were used to establish an Age Rating Scale (ARS), i.e. body weight, shell weight, shell length, width and height, shell opening length and width, lip width, number of shell turns and external shell growth rings. An age of the snails was determined according to the ARS and the snails were divided into three groups, i.e. young, middle and old age. Homogenates of dissected regions, i.e. cerebral ganglia (CG), subpharyngeal ganglia (SG) consisting of pedal, visceral and pleural ganglia, heart and liver, were examined. KYNA was measured by high performance liquid chromatography (HPLC) and KAT activities were measured by an enzymatic method. RESULTS: With respect to ARS, an evaluation of the age of the snails between young (1-2 years), middle (5-7 years) and old (9-13 years) showed significant differences (p<0.001). Analysis of KYNA levels in different snail tissues, i.e. CG, SG, heart and liver, showed an occurrence in the low femtomolar range. Marked and significant increases of KYNA were found in the liver of middle and old age groups. In the SG, KYNA decreased significantly with age. There were no differences in KYNA levels between groups in CG and heart. The lowest KAT activity was found in CG and SG (5 pmol/mg/h), while in heart and liver the values were visibly higher (between 8 and 80 pmol/mg/h). Only in the liver, and exceptionally only for KAT I, the activity increased significantly with age, i.e. up to 14 years. No age-related changes in KAT I, II and III activities were found in CG and SG. Snail liver shows a different pattern of KAT activities compared to the rat liver. CONCLUSION: Regions of the CNS and periphery of the snail Helix pomatia are able to synthesize KYNA due to KAT activities. In the snail liver, KAT I activity increased with age. Notably, there was no age-related increase in KAT activities in the heart and especially in the CNS of Helix pomatia, indicating significant differences from mammals. A moderate KYNA metabolism in the Helix pomatia snail in the periods studied, up to 14 years, could be a physiological phenomenon that protects organs from possible functional insufficiency due to high KYNA levels, as has been suggested. It is reasonable to search for the factor(s) that could regulate the concentration of KYNA in the body of the snail.


Assuntos
Ácido Cinurênico , Cinurenina , Animais , Ratos , Fígado , Transaminases , Biotina , Gânglios , Ácido Glutâmico , Mamíferos
12.
Artigo em Inglês | MEDLINE | ID: mdl-37542866

RESUMO

Shrimp reproduction is controlled by several factors. Central nervous tissues, especially thoracic ganglia and brain, are known sources of gonad stimulating factors (GSFs) in crustaceans, but the GSFs in shrimp have not yet been clarified. Hence, we aimed to characterize and study putative GSFs from thoracic ganglia of adult female Fenneropenaeus merguiensis. An analysis of thoracic ganglia transcriptome revealed 3224 putative GSFs of a total 77,681 unigenes. Only 376 putative GSFs were differentially expressed during ovarian developmental stages. Eight candidate GSFs were validated for their expression patterns in thoracic ganglia, including the Indian hedgehog gene. F. merguiensis Indian hedgehog (FmIHH) was then investigated for its role in vitellogenesis. The obtained full-length cDNA of FmIHH was similar to other crustacean IHHs rather than Sonic and Desert HHs. The FmIHH was dominantly expressed in thoracic ganglia, and its expression was significantly increased in the vitellogenic stages before being downregulated at the mature stage of ovarian development. Injection of the recombinant FmIHH (His-TF-IHH) protein stimulated vitellogenin expression in ovaries on day 3 and 7, and also increased the gonadosomatic index. In addition, crustacean hyperglycemic hormone expression and total sugar were significantly decreased in eyestalks and hemolymph, respectively, after injection of His-TF-IHH, while lactic acid was increased. Both total sugar and lactic acid were unchanged in ovaries of His-TF-IHH injected shrimp. These results suggested that FmIHH plays a crucial role in vitellogenesis and regulate sugar uptake during ovarian development.


Assuntos
Proteínas Hedgehog , Penaeidae , Feminino , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Vitelogênese/genética , Perfilação da Expressão Gênica , Ovário/metabolismo , Gânglios , Penaeidae/genética
13.
Learn Mem ; 30(5-6): 116-123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37442624

RESUMO

Neuropeptides are widely used as neurotransmitters in vertebrates and invertebrates. In vertebrates, a detailed understanding of their functions as transmitters has been hampered by the complexity of the nervous system. The marine mollusk Aplysia, with a simpler nervous system and many large, identified neurons, presents several advantages for addressing this question and has been used to examine the roles of tens of peptides in behavior. To screen for other peptides that might also play roles in behavior, we observed immunoreactivity in individual neurons in the central nervous system of adult Aplysia with antisera raised against the Aplysia peptide FMRFamide and two mammalian peptides that are also found in Aplysia, cholecystokinin (CCK) and neuropeptide Y (NPY), as well as serotonin (5HT). In addition, we observed staining of individual neurons with antisera raised against mammalian somatostatin (SOM) and peptide histidine isoleucine (PHI). However, genomic analysis has shown that these two peptides are not expressed in the Aplysia nervous system, and we have therefore labeled the unknown peptides stained by these two antibodies as XSOM and XPHI There was an area at the anterior end of the cerebral ganglion that had staining by antisera raised against many different transmitters, suggesting that this may be a modulatory region of the nervous system. There was also staining for XSOM and, in some cases, FMRFamide in the bag cell cluster of the abdominal ganglion. In addition, these and other studies have revealed a fairly high degree of colocalization of different neuropeptides in individual neurons, suggesting that the peptides do not just act independently but can also interact in different combinations to produce complex functions. The simple nervous system of Aplysia is advantageous for further testing these ideas.


Assuntos
Aplysia , Neuropeptídeos , Animais , Aplysia/fisiologia , FMRFamida , Sistema Nervoso Central/química , Gânglios/química , Mamíferos
14.
Curr Opin Virol ; 60: 101333, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37267706

RESUMO

Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) infect and establish latency in neurons of the peripheral nervous system to persist lifelong in the host and to cause recurrent disease. During primary infection, HSV replicates in epithelial cells in the mucosa and skin and then infects neurites, highly dynamic structures that grow or retract in the presence of attracting or repelling cues, respectively. Following retrograde transport in neurites, HSV establishes latency in the neuronal nucleus. Viral and cellular proteins participate in the chromatinization of the HSV genome that regulates gene expression, persistence, and reactivation. HSV-2 modulates neurite outgrowth during primary infection and upon reactivation, probably to facilitate infection and survival of neurons. Whether HSV-1 modulates neurite outgrowth and the underlying mechanism is currently under investigation. This review deals with HSV-1 and HSV-2 colonization of peripheral neurons, with a focus on the modulation of neurite outgrowth by these viruses.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Gânglios/metabolismo , Latência Viral
15.
J Neurophysiol ; 130(1): 56-60, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283483

RESUMO

Using single neurons of rat paratracheal ganglia (PTG) attached with presynaptic boutons, the effects of suplatast tosilate on excitatory postsynaptic currents (EPSCs) were investigated with nystatin-perforated patch-clamp recording technique. We found that suplatast concentration dependently inhibited the EPSC amplitude and its frequency in single PTG neurons attached with presynaptic boutons. EPSC frequency was higher sensitive to suplatast than EPSC amplitude. IC50 for EPSC frequency was 1.1 × 10-5 M, being similar to that for the effect on histamine release from mast cells and lower than that for the inhibitory effect on cytokine production. Suplatast also inhibited the EPSCs potentiated by bradykinin (BK), but it did not affect the potentiation itself by BK. Thus suplatast inhibited the EPSC of PTG neurons attached with presynaptic boutons at both the presynaptic and postsynaptic sites.NEW & NOTEWORTHY In this study, using single neurons of rat paratracheal ganglia (PTG) attached with presynaptic boutons, the effects of suplatast tosilate on excitatory postsynaptic currents (EPSCs) were investigated with patch-clamp recording technique. We found that suplatast concentration dependently inhibited the EPSC amplitude and its frequency in single PTG neurons attached with presynaptic boutons. Thus suplatast inhibited the function of PTG neurons at both of presynaptic and postsynaptic sites.


Assuntos
Neurônios , Compostos de Sulfônio , Ratos , Animais , Neurônios/fisiologia , Sulfonatos de Arila/farmacologia , Compostos de Sulfônio/farmacologia , Bradicinina/farmacologia , Gânglios
16.
Neurosci Res ; 196: 32-39, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37328111

RESUMO

Anorexia is a behavioral change caused by functional brain disorders in patients with Alzheimer's disease (AD). Amyloid-ß (1-42) oligomers (o-Aß) are possible causative agents of AD that impair signaling via synaptic dysfunction. In this study, we used Aplysia kurodai to study functional disorders of the brain through o-Aß. Administration of o-Aß to the buccal ganglia (feeding brain for oral movements) by surgical treatment significantly reduced food intake for at least five days. Furthermore, we explored the effects of o-Aß on the synaptic function in the feeding neural circuit, focusing on a specific inhibitory synaptic response in jaw-closing motor neurons produced by cholinergic buccal multi-action neurons because we recently found that this cholinergic response decreases with aging, which is consistent with the cholinergic hypothesis for aging. Administration of o-Aß to the buccal ganglia significantly reduced the synaptic response within minutes, whereas administration of amyloid-ß (1-42) monomers did not. These results suggest that o-Aß may impair the cholinergic synapses, even in Aplysia, which is consistent with the cholinergic hypothesis for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Peptídeos beta-Amiloides/farmacologia , Aplysia/fisiologia , Gânglios , Sinapses/fisiologia , Colinérgicos/farmacologia , Ingestão de Alimentos
17.
Biomolecules ; 13(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36979395

RESUMO

Macrobrachium rosenbergii is an important aquaculture prawn that exhibits sexual dimorphism in growth, with males growing much faster than females. However, the mechanisms controlling these complex traits are not well understood. The nervous system plays an important role in regulating life functions. In the present work, we applied PacBio RNA-seq to obtain and characterize the full-length transcriptomes of the brains and thoracic ganglia of female and male prawns, and we performed comparative transcriptome analysis of female and male prawns. A total of 159.1-Gb of subreads were obtained with an average length of 2175 bp and 93.2% completeness. A total of 84,627 high-quality unigenes were generated and annotated with functional databases. A total of 6367 transcript factors and 6287 LncRNAs were predicted. In total, 5287 and 6211 significantly differentially expressed genes (DEGs) were found in the brain and thoracic ganglion, respectively, and confirmed by qRT-PCR. Of the 435 genes associated with protein processing pathways in the endoplasmic reticula, 42 DEGs were detected, and 21/26 DEGs with upregulated expression in the male brain/thoracic ganglion. The DEGs in this pathway are regulated by multiple LncRNAs in polypeptide folding and misfolded protein degradation in the different organs and sexes of the prawn. Our results provide novel theories and insights for studying the nervous system, sexual control, and growth dimorphism.


Assuntos
Palaemonidae , Penaeidae , RNA Longo não Codificante , Animais , Feminino , Masculino , Transcriptoma/genética , Palaemonidae/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Encéfalo , Gânglios
18.
J Comp Neurol ; 531(8): 921-934, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36976533

RESUMO

The locus coeruleus (LC) is a small noradrenergic brainstem nucleus that plays a central role in regulating arousal, attention, and performance. In the mammalian brain, individual LC neurons make divergent axonal projections to different brain regions, which are distinguished in part by which noradrenaline (NA) receptor subtypes they express. Here, we sought to determine whether similar organizational features characterize LC projections to corticobasal ganglia (CBG) circuitry in the zebra finch song system, with a focus on the basal ganglia nucleus Area X, the thalamic nucleus DLM, as well as the cortical nuclei HVC, LMAN, and RA. Single and dual retrograde tracer injections reveal that single LC-NA neurons make divergent projections to LMAN and Area X, as well as to the dopaminergic VTA/SNc complex that innervates this CBG circuit. Moreover, in situ hybridization revealed that differential expression of mRNA encoding α2A and α2C adrenoreceptors distinguishes LC-recipient CBG song nuclei. Therefore, LC-NA signaling in the zebra finch CBG circuit employs a similar strategy as in mammals, which could allow a relatively small number of LC neurons to exert widespread yet distinct effects across multiple brain regions.


Assuntos
Tentilhões , Locus Cerúleo , Animais , Masculino , Área Tegmentar Ventral , Vias Neurais/fisiologia , Vocalização Animal/fisiologia , Tentilhões/fisiologia , Gânglios , Mamíferos
19.
Cell Rep ; 42(3): 112194, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857184

RESUMO

The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.


Assuntos
Sistema Nervoso Entérico , Gânglios , Multiômica , Neurogênese , Neuroglia , Análise de Célula Única , Neuroglia/classificação , Neuroglia/citologia , Neuroglia/metabolismo , Neurogênese/genética , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , RNA/análise , RNA/genética , Gânglios/citologia , Masculino , Feminino , Animais , Camundongos , Sistema Nervoso Entérico/citologia , Análise da Expressão Gênica de Célula Única , Técnicas de Cultura de Células , Intestino Delgado/citologia , Desmame
20.
J Hand Surg Asian Pac Vol ; 28(1): 139-143, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36803471

RESUMO

Intraneural ganglia are rare, benign cysts that form within the epineurium of the affected nerve. Patients present with features of compressive neuropathy, including numbness. We report a 74-year-old male patient with pain and numbness on his right thumb of 1-year duration. Magnetic resonance imaging revealed a cystic lesion with a possible scaphotrapezium-trapezoid joint connection. The articular branch was not identified during the surgery and decompression with excision of the cyst wall was done. A recurrence of the mass was noted 3 years later, but the patient was asymptomatic and no additional intervention was done. Decompression alone can relieve the symptoms of an intraneural ganglion, but excision of the articular branch may be essential in preventing its recurrence. Level of Evidence: Level V (Therapeutic).


Assuntos
Cistos Glanglionares , Polegar , Masculino , Humanos , Idoso , Polegar/cirurgia , Hipestesia , Cistos Glanglionares/diagnóstico por imagem , Cistos Glanglionares/cirurgia , Nervos Periféricos , Gânglios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...