Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58.493
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2315379121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625946

RESUMO

A key feature of excitatory synapses is the existence of subsynaptic protein nanoclusters (NCs) whose precise alignment across the cleft in a transsynaptic nanocolumn influences the strength of synaptic transmission. However, whether nanocolumn properties vary between excitatory synapses functioning in different cellular contexts is unknown. We used a combination of confocal and DNA-PAINT super-resolution microscopy to directly compare the organization of shared scaffold proteins at two important excitatory synapses-those forming onto excitatory principal neurons (Ex→Ex synapses) and those forming onto parvalbumin-expressing interneurons (Ex→PV synapses). As in Ex→Ex synapses, we find that in Ex→PV synapses, presynaptic Munc13-1 and postsynaptic PSD-95 both form NCs that demonstrate alignment, underscoring synaptic nanostructure and the transsynaptic nanocolumn as conserved organizational principles of excitatory synapses. Despite the general conservation of these features, we observed specific differences in the characteristics of pre- and postsynaptic Ex→PV nanostructure. Ex→PV synapses contained larger PSDs with fewer PSD-95 NCs when accounting for size than Ex→Ex synapses. Furthermore, the PSD-95 NCs were larger and denser. The identity of the postsynaptic cell was also represented in Munc13-1 organization, as Ex→PV synapses hosted larger Munc13-1 puncta that contained less dense but larger and more numerous Munc13-1 NCs. Moreover, we measured the spatial variability of transsynaptic alignment in these synapse types, revealing protein alignment in Ex→PV synapses over a distinct range of distances compared to Ex→Ex synapses. We conclude that while general principles of nanostructure and alignment are shared, cell-specific elements of nanodomain organization likely contribute to functional diversity of excitatory synapses.


Assuntos
Neurônios , Sinapses , Neurônios/metabolismo , Sinapses/metabolismo , Interneurônios/fisiologia , Transmissão Sináptica , Proteína 4 Homóloga a Disks-Large/metabolismo
2.
Methods Mol Biol ; 2794: 221-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630233

RESUMO

The patch-clamp technique is one of the most useful tools to analyze the function of electrically active cells such as neurons. This technique allows for the analysis of proteins (ion channels and receptors), cells (neurons), and synapses that are the building blocks of neuronal networks. Cortical development involves coordinated changes in functional measures at each of these levels of analysis that reflect both cellular and circuit maturation. This chapter explains the technical and theoretical basis of patch-clamp methodology and introduces several examples of how this technique can be applied in the context of cortical development.


Assuntos
Eletricidade , Neurônios , Técnicas de Patch-Clamp , Sinapses
3.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568976

RESUMO

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Assuntos
Receptores Colinérgicos , Sinapses , Sinapses/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia , Neurônios Motores/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo , Colinérgicos , Receptores Pré-Sinápticos
4.
Proc Natl Acad Sci U S A ; 121(15): e2320505121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568977

RESUMO

The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.


Assuntos
Sinapses , Vesículas Sinápticas , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Potenciais de Ação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transmissão Sináptica/fisiologia
5.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607012

RESUMO

Neuronal timing with millisecond precision is critical for many brain functions such as sensory perception, learning and memory formation. At the level of the chemical synapse, the synaptic delay is determined by the presynaptic release probability (Pr) and the waveform of the presynaptic action potential (AP). For instance, paired-pulse facilitation or presynaptic long-term potentiation are associated with reductions in the synaptic delay, whereas paired-pulse depression or presynaptic long-term depression are associated with an increased synaptic delay. Parallelly, the AP broadening that results from the inactivation of voltage gated potassium (Kv) channels responsible for the repolarization phase of the AP delays the synaptic response, and the inactivation of sodium (Nav) channels by voltage reduces the synaptic latency. However, whether synaptic delay is modulated during depolarization-induced analogue-digital facilitation (d-ADF), a form of context-dependent synaptic facilitation induced by prolonged depolarization of the presynaptic neuron and mediated by the voltage-inactivation of presynaptic Kv1 channels, remains unclear. We show here that despite Pr being elevated during d-ADF at pyramidal L5-L5 cell synapses, the synaptic delay is surprisingly unchanged. This finding suggests that both Pr- and AP-dependent changes in synaptic delay compensate for each other during d-ADF. We conclude that, in contrast to other short- or long-term modulations of presynaptic release, synaptic timing is not affected during d-ADF because of the opposite interaction of Pr- and AP-dependent modulations of synaptic delay.


Assuntos
Neurônios , Sinapses , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Células Piramidais/fisiologia , Potenciação de Longa Duração
6.
Proc Natl Acad Sci U S A ; 121(17): e2303664121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621124

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cálcio , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Transmissão Sináptica/fisiologia , Sinapses/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio da Dieta , Receptor trkB/genética , Receptor trkB/metabolismo , Glutamatos/metabolismo
7.
Nano Lett ; 24(15): 4336-4345, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567915

RESUMO

This study demonstrates the conceptual design and fabrication of a vertically integrated monolithic (VIM) neuromorphic device. The device comprises an n-type SnO2 nanowire bottom channel connected by a shared gate to a p-type P3HT nanowire top channel. This architecture establishes two distinct neural pathways with different response behaviors. The device generates excitatory and inhibitory postsynaptic currents, mimicking the corelease mechanism of bilingual synapses. To enhance the signal processing efficiency, we employed a bipolar spike encoding strategy to convert fluctuating sensory signals to spike trains containing positive and negative pulses. Utilizing the neuromorphic platform for synaptic processing, physiological signals featuring bidirectional fluctuations, including electrocardiogram and breathing signals, can be classified with an accuracy of over 90%. The VIM device holds considerable promise as a solution for developing highly integrated neuromorphic hardware for healthcare and edge intelligence applications.


Assuntos
Nanofios , Sinapses
8.
Mol Brain ; 17(1): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566234

RESUMO

Synaptopodin (SP), an actin-associated protein found in telencephalic neurons, affects activity-dependant synaptic plasticity and dynamic changes of dendritic spines. While being required for long-term depression (LTD) mediated by metabotropic glutamate receptor (mGluR-LTD), little is known about its role in other forms of LTD induced by low frequency stimulation (LFS-LTD) or spike-timing dependent plasticity (STDP). Using electrophysiology in ex vivo hippocampal slices from SP-deficient mice (SPKO), we show that absence of SP is associated with a deficit of LTD at Sc-CA1 synapses induced by LFS-LTD and STDP. As LTD is known to require AMPA- receptors internalization and IP3-receptors calcium signaling, we tested by western blotting and immunochemistry if there were changes in their expression which we found to be reduced. While we were not able to induce LTD, long-term potentiation (LTP), albeit diminished in SPKO, can be recovered by using a stronger stimulation protocol. In SPKO we found no differences in NMDAR, which are the primary site of calcium signalling to induce LTP. Our study shows, for the first time, the key role of the requirement of SP to allow induction of activity-dependant LTD at Sc-CA1 synapses.


Assuntos
Depressão , Colaterais de Schaffer , Animais , Camundongos , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo
9.
Nat Commun ; 15(1): 2868, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570478

RESUMO

Signal communication mechanisms within the human body rely on the transmission and modulation of action potentials. Replicating the interdependent functions of receptors, neurons and synapses with organic artificial neurons and biohybrid synapses is an essential first step towards merging neuromorphic circuits and biological systems, crucial for computing at the biological interface. However, most organic neuromorphic systems are based on simple circuits which exhibit limited adaptability to both external and internal biological cues, and are restricted to emulate only specific the functions of an individual neuron/synapse. Here, we present a modular neuromorphic system which combines organic spiking neurons and biohybrid synapses to replicate a neural pathway. The spiking neuron mimics the sensory coding function of afferent neurons from light stimuli, while the neuromodulatory activity of interneurons is emulated by neurotransmitters-mediated biohybrid synapses. Combining these functions, we create a modular connection between multiple neurons to establish a pre-processing retinal pathway primitive.


Assuntos
Interneurônios , Neurônios , Humanos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Neurônios Aferentes , Sinapses/fisiologia , Neurotransmissores
10.
J Neuroinflammation ; 21(1): 86, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584255

RESUMO

Ischemic stroke is the leading cause of adult disability. Ischemia leads to progressive neuronal death and synapse loss. The engulfment of stressed synapses by microglia further contributes to the disruption of the surviving neuronal network and related brain function. Unfortunately, there is currently no effective target for suppressing the microglia-mediated synapse engulfment. Stimulator of interferon genes (STING) is an important participant in innate immune response. In the brain, microglia are the primary cell type that mediate immune response after brain insult. The intimate relationship between STING and microglia-mediated neuroinflammation has been gradually established. However, whether STING affects other functions of microglia remains elusive. In this study, we found that STING regulated microglial phagocytosis of synapses after photothrombotic stroke. The treatment of STING inhibitor H151 significantly improved the behavioral performance of injured mice in grid-walking test, cylinder test, and adhesive removal test after stroke. Moreover, the puncta number of engulfed SYP or PSD95 in microglia was reduced after consecutive H151 administration. Further analysis showed that the mRNA levels of several complement components and phagocytotic receptors were decreased after STING inhibition. Transcriptional factor STAT1 is known for regulating most of the decreased molecules. After STING inhibition, the nucleus translocation of phosphorylated STAT1 was also suppressed in microglia. Our data uncovered the novel regulatory effects of STING in microglial phagocytosis after stroke, and further emphasized STING as a potential drug-able target for post-stroke functional recovery.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Isquemia Encefálica/metabolismo , Microglia/metabolismo , Fagocitose , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Sinapses/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(16): e2315958121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588427

RESUMO

The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood, as neurodevelopment and structural plasticity are tightly linked. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity and synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We report that while both synapse development and activity-induced synaptic remodeling at the fly NMJ require macroautophagy (hereafter referred to as autophagy), bifurcation in the autophagy pathway differentially impacts development and synaptic plasticity. We demonstrate that neuronal activity enhances autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a transsynaptic signaling mechanism modulating synaptic plasticity.


Assuntos
Proteínas de Drosophila , Junção Neuromuscular , Animais , Humanos , Junção Neuromuscular/metabolismo , Sinapses/metabolismo , Drosophila/fisiologia , Neurônios/metabolismo , Autofagia/genética , Plasticidade Neuronal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transmissão Sináptica/fisiologia , GTP Fosfo-Hidrolases/metabolismo
12.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639569

RESUMO

Dynamical balance of excitation and inhibition is usually invoked to explain the irregular low firing activity observed in the cortex. We propose a robust nonlinear balancing mechanism for a random network of spiking neurons, which works also in the absence of strong external currents. Biologically, the mechanism exploits the plasticity of excitatory-excitatory synapses induced by short-term depression. Mathematically, the nonlinear response of the synaptic activity is the key ingredient responsible for the emergence of a stable balanced regime. Our claim is supported by a simple self-consistent analysis accompanied by extensive simulations performed for increasing network sizes. The observed regime is essentially fluctuation driven and characterized by highly irregular spiking dynamics of all neurons.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia
13.
Nat Commun ; 15(1): 2965, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580652

RESUMO

VGluT3-expressing mouse retinal amacrine cells (VG3s) respond to small-object motion and connect to multiple types of bipolar cells (inputs) and retinal ganglion cells (RGCs, outputs). Because these input and output connections are intermixed on the same dendrites, making sense of VG3 circuitry requires comparing the distribution of synapses across their arbors to the subcellular flow of signals. Here, we combine subcellular calcium imaging and electron microscopic connectomic reconstruction to analyze how VG3s integrate and transmit visual information. VG3s receive inputs from all nearby bipolar cell types but exhibit a strong preference for the fast type 3a bipolar cells. By comparing input distributions to VG3 dendrite responses, we show that VG3 dendrites have a short functional length constant that likely depends on inhibitory shunting. This model predicts that RGCs that extend dendrites into the middle layers of the inner plexiform encounter VG3 dendrites whose responses vary according to the local bipolar cell response type.


Assuntos
Células Amácrinas , Retina , Camundongos , Animais , Células Amácrinas/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/metabolismo , Microscopia Eletrônica , Dendritos/fisiologia
14.
Commun Biol ; 7(1): 421, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582813

RESUMO

Moderate noise exposure induces cochlear synaptopathy, the loss of afferent ribbon synapses between cochlear hair cells and spiral ganglion neurons, which is associated with functional hearing decline. Prior studies have demonstrated noise-induced changes in the distribution and number of synaptic components, but the dynamic changes that occur after noise exposure have not been directly visualized. Here, we describe a live imaging model using RIBEYE-tagRFP to enable direct observation of pre-synaptic ribbons in mature hearing mouse cochleae after synaptopathic noise exposure. Ribbon number does not change, but noise induces an increase in ribbon volume as well as movement suggesting unanchoring from synaptic tethers. A subgroup of basal ribbons displays concerted motion towards the cochlear nucleus with subsequent migration back to the cell membrane after noise cessation. Understanding the immediate dynamics of synaptic damage after noise exposure may facilitate identification of specific target pathways to treat cochlear synaptopathy.


Assuntos
Perda Auditiva Provocada por Ruído , Animais , Camundongos , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/metabolismo , Cóclea , Audição , Ruído/efeitos adversos , Sinapses/fisiologia
15.
Science ; 384(6693): 338-343, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38635709

RESUMO

The computational capabilities of neuronal networks are fundamentally constrained by their specific connectivity. Previous studies of cortical connectivity have mostly been carried out in rodents; whether the principles established therein also apply to the evolutionarily expanded human cortex is unclear. We studied network properties within the human temporal cortex using samples obtained from brain surgery. We analyzed multineuron patch-clamp recordings in layer 2-3 pyramidal neurons and identified substantial differences compared with rodents. Reciprocity showed random distribution, synaptic strength was independent from connection probability, and connectivity of the supragranular temporal cortex followed a directed and mostly acyclic graph topology. Application of these principles in neuronal models increased dimensionality of network dynamics, suggesting a critical role for cortical computation.


Assuntos
Neurônios , Sinapses , Animais , Humanos , Sinapses/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Roedores , Rede Nervosa/fisiologia
16.
Phys Rev E ; 109(2-1): 024407, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491664

RESUMO

The steady-state firing rate and firing-rate response of the leaky and exponential integrate-and-fire models receiving synaptic shot noise with excitatory and inhibitory reversal potentials is examined. For the particular case where the underlying synaptic conductances are exponentially distributed, it is shown that the master equation for a population of such model neurons can be reduced from an integrodifferential form to a more tractable set of three differential equations. The system is nevertheless more challenging analytically than for current-based synapses: where possible, analytical results are provided with an efficient numerical scheme and code provided for other quantities. The increased tractability of the framework developed supports an ongoing critical comparison between models in which synapses are treated with and without reversal potentials, such as recently in the context of networks with balanced excitatory and inhibitory conductances.


Assuntos
Modelos Neurológicos , Neurônios , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Ruído , Simulação por Computador
17.
Methods Enzymol ; 694: 109-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492948

RESUMO

In neuroscience, understanding the mechanics of synapses, especially the function of force-sensitive proteins at the molecular level, is essential. This need emphasizes the importance of precise measurement of synaptic protein interactions. Addressing this, we introduce high-resolution magnetic tweezers (MT) as a novel method to probe the mechanics of synapse-related proteins with high precision. We demonstrate this technique through studying SNARE-complexin interactions, crucial for synaptic transmission, showcasing its capability to apply specific forces to individual molecules. Our results reveal that high-resolution MT provides in-depth insights into the stability and dynamic transitions of synaptic protein complexes. This method is a significant advancement in synapse biology, offering a new tool for researchers to investigate the impact of mechanical forces on synaptic functions and their implications for neurological disorders.


Assuntos
Proteínas SNARE , Sinapses , Proteínas SNARE/metabolismo , Transmissão Sináptica , Fenômenos Magnéticos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
18.
PLoS Biol ; 22(3): e3002536, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427708

RESUMO

Associating values to environmental cues is a critical aspect of learning from experiences, allowing animals to predict and maximise future rewards. Value-related signals in the brain were once considered a property of higher sensory regions, but their wide distribution across many brain regions is increasingly recognised. Here, we investigate how reward-related signals begin to be incorporated, mechanistically, at the earliest stage of olfactory processing, namely, in the olfactory bulb. In head-fixed mice performing Go/No-Go discrimination of closely related olfactory mixtures, rewarded odours evoke widespread inhibition in one class of output neurons, that is, in mitral cells but not tufted cells. The temporal characteristics of this reward-related inhibition suggest it is odour-driven, but it is also context-dependent since it is absent during pseudo-conditioning and pharmacological silencing of the piriform cortex. Further, the reward-related modulation is present in the somata but not in the apical dendritic tuft of mitral cells, suggesting an involvement of circuit components located deep in the olfactory bulb. Depth-resolved imaging from granule cell dendritic gemmules suggests that granule cells that target mitral cells receive a reward-related extrinsic drive. Thus, our study supports the notion that value-related modulation of olfactory signals is a characteristic of olfactory processing in the primary olfactory area and narrows down the possible underlying mechanisms to deeper circuit components that contact mitral cells perisomatically.


Assuntos
Neurônios , Bulbo Olfatório , Camundongos , Animais , Bulbo Olfatório/fisiologia , Neurônios/fisiologia , Olfato/fisiologia , Odorantes , Sinapses/fisiologia
19.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471777

RESUMO

Synchronization in the gamma band (25-150 Hz) is mediated by PV+ inhibitory interneurons, and evidence is accumulating for the essential role of gamma oscillations in cognition. Oscillations can arise in inhibitory networks via synaptic interactions between individual oscillatory neurons (mean-driven) or via strong recurrent inhibition that destabilizes the stationary background firing rate in the fluctuation-driven balanced state, causing an oscillation in the population firing rate. Previous theoretical work focused on model neurons with Hodgkin's Type 1 excitability (integrators) connected by current-based synapses. Here we show that networks comprised of simple Type 2 oscillators (resonators) exhibit a supercritical Hopf bifurcation between synchrony and asynchrony and a gradual transition via cycle skipping from coupled oscillators to stochastic population oscillator (SPO), as previously shown for Type 1. We extended our analysis to homogeneous networks with conductance rather than current based synapses and found that networks with hyperpolarizing inhibitory synapses were more robust to noise than those with shunting synapses, both in the coupled oscillator and SPO regime. Assuming that reversal potentials are uniformly distributed between shunting and hyperpolarized values, as observed in one experimental study, converting synapses to purely hyperpolarizing favored synchrony in all cases, whereas conversion to purely shunting synapses made synchrony less robust except at very high conductance strengths. In mature neurons the synaptic reversal potential is controlled by chloride cotransporters that control the intracellular concentrations of chloride and bicarbonate ions, suggesting these transporters as a potential therapeutic target to enhance gamma synchrony and cognition.


Assuntos
Cloretos , Transmissão Sináptica , Transmissão Sináptica/fisiologia , Simulação por Computador , Interneurônios/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Modelos Neurológicos
20.
Front Neural Circuits ; 18: 1280604, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505865

RESUMO

A feature of the brains of intelligent animals is the ability to learn to respond to an ensemble of active neuronal inputs with a behaviorally appropriate ensemble of active neuronal outputs. Previously, a hypothesis was proposed on how this mechanism is implemented at the cellular level within the neocortical pyramidal neuron: the apical tuft or perisomatic inputs initiate "guess" neuron firings, while the basal dendrites identify input patterns based on excited synaptic clusters, with the cluster excitation strength adjusted based on reward feedback. This simple mechanism allows neurons to learn to classify their inputs in a surprisingly intelligent manner. Here, we revise and extend this hypothesis. We modify synaptic plasticity rules to align with behavioral time scale synaptic plasticity (BTSP) observed in hippocampal area CA1, making the framework more biophysically and behaviorally plausible. The neurons for the guess firings are selected in a voluntary manner via feedback connections to apical tufts in the neocortical layer 1, leading to dendritic Ca2+ spikes with burst firing, which are postulated to be neural correlates of attentional, aware processing. Once learned, the neuronal input classification is executed without voluntary or conscious control, enabling hierarchical incremental learning of classifications that is effective in our inherently classifiable world. In addition to voluntary, we propose that pyramidal neuron burst firing can be involuntary, also initiated via apical tuft inputs, drawing attention toward important cues such as novelty and noxious stimuli. We classify the excitations of neocortical pyramidal neurons into four categories based on their excitation pathway: attentional versus automatic and voluntary/acquired versus involuntary. Additionally, we hypothesize that dendrites within pyramidal neuron minicolumn bundles are coupled via depolarization cross-induction, enabling minicolumn functions such as the creation of powerful hierarchical "hyperneurons" and the internal representation of the external world. We suggest building blocks to extend the microcircuit theory to network-level processing, which, interestingly, yields variants resembling the artificial neural networks currently in use. On a more speculative note, we conjecture that principles of intelligence in universes governed by certain types of physical laws might resemble ours.


Assuntos
Neocórtex , Sinapses , Animais , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Células Piramidais/fisiologia , Dendritos/fisiologia , Neocórtex/fisiologia , Atenção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...