Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.231
Filtrar
1.
J Biomech Eng ; 146(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558115

RESUMO

A previously developed model of a lymphatic vessel as a chain of lymphangions was investigated to determine whether lymphangions of unequal length reduce pumping relative to a similar chain of equal-length ones. The model incorporates passive elastic and active contractile properties taken from ex vivo measurements, and intravascular lymphatic valves as transvalvular pressure-dependent resistances to flow with hysteresis and transmural pressure-dependent bias to the open state as observed experimentally. Coordination of lymphangion contractions is managed by marrying an autonomous transmural pressure-dependent pacemaker for each lymphangion with bidirectional transmission of activation signals between lymphangions, qualitatively matching empirical observations. With eight lymphangions as used here and many nonlinear constraints, the model is capable of complex outcomes. The expected flow-rate advantage conferred by longer lymphangions everywhere was confirmed. However, the anticipated advantage of uniform lymphangions over those of unequal length, compared in chains of equal overall length, was not found. A wide variety of dynamical outcomes was observed, with the most powerful determinant being the adverse pressure difference, rather than the arrangement of long and short lymphangions. This work suggests that the wide variation in lymphangion length which is commonly observed in collecting lymphatic vessels does not confer disadvantage in pumping lymph.


Assuntos
Vasos Linfáticos , Modelos Biológicos , Sistema Linfático/fisiologia , Vasos Linfáticos/fisiologia , Linfa/fisiologia , Pressão , Contração Muscular
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612716

RESUMO

Lymphedema is a chronic and progressive disease of the lymphatic system characterized by inflammation, increased adipose deposition, and tissue fibrosis. Despite early hypotheses identifying lymphedema as a disease of mechanical lymphatic disruption alone, the progressive inflammatory nature underlying this condition is now well-established. In this review, we provide an overview of the various inflammatory mechanisms that characterize lymphedema development and progression. These mechanisms contribute to the acute and chronic phases of lymphedema, which manifest clinically as inflammation, fibrosis, and adiposity. Furthermore, we highlight the interplay between current therapeutic modalities and the underlying inflammatory microenvironment, as well as opportunities for future therapeutic development.


Assuntos
Linfedema , Humanos , Linfedema/etiologia , Linfedema/terapia , Inflamação/terapia , Sistema Linfático , Adiposidade , Obesidade , Fibrose
3.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612867

RESUMO

Lymphatics participate in reverse cholesterol transport, and their presence in the arterial wall of the great vessels and prior experimental results suggest their possible role in the development of atherosclerosis. The aim of this study was to characterize the lymphatic vasculature of the arterial wall in atherosclerosis. Tissue sections and tissue-cleared aortas of wild-type mice unveiled significant differences in the density of the arterial lymphatic network throughout the arterial tree. Male and female Ldlr-/- and ApoE-/- mice on a Western diet showed sex-dependent differences in plaque formation and calcification. Female mice on a Western diet developed more calcification of atherosclerotic plaques than males. The lymphatic vessels within the aortic wall of these mice showed no major changes regarding the number of lymphatic junctions and end points or the lymphatic area. However, female mice on a Western diet showed moderate dilation of lymphatic vessels in the abdominal aorta and exhibited indications of increased peripheral lymphatic function, findings that require further studies to understand the role of lymphatics in the arterial wall during the development of atherosclerosis.


Assuntos
Aterosclerose , Calcinose , Vasos Linfáticos , Placa Aterosclerótica , Masculino , Animais , Camundongos , Aterosclerose/genética , Sistema Linfático , Aorta Abdominal , Placa Amiloide
4.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618951

RESUMO

Central conducting lymphatic anomaly (CCLA) is a complex lymphatic anomaly characterized by abnormalities of the central lymphatics and may present with nonimmune fetal hydrops, chylothorax, chylous ascites, or lymphedema. CCLA has historically been difficult to diagnose and treat; however, recent advances in imaging, such as dynamic contrast magnetic resonance lymphangiography, and in genomics, such as deep sequencing and utilization of cell-free DNA, have improved diagnosis and refined both genotype and phenotype. Furthermore, in vitro and in vivo models have confirmed genetic causes of CCLA, defined the underlying pathogenesis, and facilitated personalized medicine to improve outcomes. Basic, translational, and clinical science are essential for a bedside-to-bench and back approach for CCLA.


Assuntos
Ácidos Nucleicos Livres , Vasos Linfáticos , Genômica , Genótipo , Sistema Linfático , Vasos Linfáticos/diagnóstico por imagem
5.
Ann Plast Surg ; 92(4S Suppl 2): S258-S261, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556685

RESUMO

BACKGROUND: Anatomic and functional descriptions of trunk and breast lymphedema following breast cancer treatment are emerging as indicators of lymphatic dysfunction. Indocyanine green-lymphangiography has been instrumental in characterizing this dysfunction in the extremity and can be applied to other regions. Previous work has established a validated Pittsburgh Trunk Lymphedema Staging System to characterize such affected areas. This study aims to identify risk and protective factors for the development of truncal and upper extremity lymphedema using alternative lymphatic drainage, providing implications for medical and surgical treatment. METHODS: Patients undergoing revisional breast surgery with suspicion of upper extremity lymphedema between 12/2014 and 3/2020 were offered lymphangiography. The breast and lateral/anterior trunks were visualized and blindly evaluated for axillary and inguinal lymphatic flow. A linear-weighted Cohen's kappa statistic was calculated comparing alternative drainage evaluation. Binomial regression was used to compute relative risks (RRs). Significance was assessed at alpha = 0.05. RESULTS: Eighty-six sides (46 patients) were included. Twelve sides underwent no treatment and were considered controls. Eighty-eight percent of the noncontrols had alternative lymphatic flow to the ipsilateral axillae (64%), ipsilateral groins (57%), contralateral axillae (20.3%), and contralateral groins (9.3%). Cohen's kappa for alternative drainage was 0.631 ± 0.043. Ipsilateral axillary and contralateral inguinal drainage were associated with reduced risk of developing truncal lymphedema [RR 0.78, confidence interval (CI) 0.63-0.97, P = 0.04; RR 0.32, CI 0.13-0.79, P = 0.01, respectively]. Radiation therapy increased risk of truncal and upper extremity lymphedema (RR 3.69, CI 0.96-14.15, P = 0.02; RR 1.92, CI 1.09-3.39, P = 0.03, respectively). Contralateral axillary drainage and axillary lymph node dissection were associated with increased risk of upper extremity lymphedema (RR 4.25, CI 1.09-16.61, P = 0.01; RR 2.83, CI 1.23-6.52, P = 0.01, respectively). CONCLUSIONS: Building upon previous work, this study shows risk and protective factors for the development of truncal and upper extremity lymphedema. Most prevalent alternative channels drain to the ipsilateral axilla and groin. Ipsilateral axillary and contralateral inguinal drainage were associated with reduced risk of truncal lymphedema. Patients with radiation, axillary dissection, and contralateral axillary drainage were associated with increased risk of upper extremity lymphedema. These findings have important clinical implications for postoperative manual lymphatic drainage and for determining eligibility for lymphovenous bypass surgery.


Assuntos
Neoplasias da Mama , Vasos Linfáticos , Linfedema , Humanos , Feminino , Extremidade Superior/patologia , Excisão de Linfonodo/efeitos adversos , Axila/cirurgia , Sistema Linfático , Linfedema/cirurgia , Neoplasias da Mama/patologia , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/cirurgia , Linfonodos/patologia
7.
J Clin Invest ; 134(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488007

RESUMO

The lymphatic vascular system is gaining recognition for its multifaceted role and broad pathological significance. Once perceived as a mere conduit for interstitial fluid and immune cell transport, recent research has unveiled its active involvement in critical physiological processes and common diseases, including inflammation, autoimmune diseases, and atherosclerosis. Consequently, abnormal development or functionality of lymphatic vessels can result in serious health complications. Here, we discuss lymphatic malformations (LMs), which are localized lesions that manifest as fluid-filled cysts or extensive infiltrative lymphatic vessel overgrowth, often associated with debilitating, even life-threatening, consequences. Genetic causes of LMs have been uncovered, and several promising drug-based therapies are currently under investigation and will be discussed.


Assuntos
Anormalidades Linfáticas , Vasos Linfáticos , Humanos , Anormalidades Linfáticas/genética , Anormalidades Linfáticas/terapia , Sistema Linfático
8.
J Exp Med ; 221(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442271

RESUMO

Meningeal lymphatics are conduits for cerebrospinal fluid drainage to lymphatics and lymph nodes in the neck. In this issue of JEM, Boisserand et al. (https://doi.org/10.1084/jem.20221983) provide evidence that expansion of meningeal lymphatics protects against ischemic stroke.


Assuntos
Vasos Linfáticos , Acidente Vascular Cerebral , Humanos , Sistema Linfático , Linfonodos
9.
ACS Nano ; 18(13): 9688-9703, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38517764

RESUMO

Numerous evidence has demonstrated that the brain is not an immune-privileged organ but possesses a whole set of lymphatic transport system, which facilitates the drainage of harmful waste from brains to maintain cerebral homeostasis. However, as individuals age, the shrinkage and dysfunction of meningeal and deep cervical lymphatic networks lead to reduced waste outflow and elevated neurotoxic molecules deposition, further inducing aging-associated cognitive decline, which act as one of the pathological mechanisms of Alzheimer's disease. Consequently, recovering the function of meningeal and deep cervical lymph node (dCLNs) networks (as an important part of the brain waste removal system (BWRS)) of aged brains might be a feasible strategy. Herein we showed that the drug brain-entering efficiency was highly related to administration routes (oral, subcutaneous, or dCLN delivery). Besides, by injecting a long-acting lyotropic liquid crystalline implant encapsulating cilostazol (an FDA-approved selective PDE-3 inhibitor) and donepezil hydrochloride (a commonly used symptomatic relief agent to inhibit acetylcholinesterase for Alzheimer's disease) near the deep cervical lymph nodes of aged mice (about 20 months), an increase of lymphatic vessel coverage in the nodes and meninges was observed, along with accelerated drainage of macromolecules from brains. Compared with daily oral delivery of cilostazol and donepezil hydrochloride, a single administered dual drugs-loaded long-acting implants releasing for more than one month not only elevated drug concentrations in brains, improved the clearing efficiency of brain macromolecules, reduced Aß accumulation, enhanced cognitive functions of the aged mice, but improved patient compliance as well, which provided a clinically accessible therapeutic strategy toward aged Alzheimer's diseases.


Assuntos
Doença de Alzheimer , Vasos Linfáticos , Humanos , Camundongos , Animais , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Cilostazol , Donepezila , Acetilcolinesterase , Sistema Linfático/patologia , Encéfalo/patologia , Drenagem
10.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474100

RESUMO

The lymphatic kidney system plays a crucial role in managing interstitial fluid removal, regulating fluid balance, and tuning immune response. It also assists in the reabsorption of proteins, electrolytes, cytokines, growth factors, and immune cells. Pathological conditions, including tissue damage, excessive interstitial fluid, high blood glucose levels, and inflammation, can initiate lymphangiogenesis-the formation of new lymphatic vessels. This process is associated with various kidney diseases, including polycystic kidney disease, hypertension, ultrafiltration challenges, and complications post-organ transplantation. Although lymphangiogenesis has beneficial effects in removing excess fluid and immune cells, it may also contribute to inflammation and fibrosis within the kidneys. In this review, we aim to discuss the biology of the lymphatic system, from its development and function to its response to disease stimuli, with an emphasis on renal pathophysiology. Furthermore, we explore how innovative treatments targeting the lymphatic system could potentially enhance the management of kidney diseases.


Assuntos
Nefropatias , Nefrite , Humanos , Linfangiogênese , Rim/patologia , Nefrite/patologia , Sistema Linfático/patologia , Inflamação/patologia , Nefropatias/patologia , Fibrose
11.
Br J Nurs ; 33(3): 100-103, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38335097

RESUMO

Lymphoedema is the gradual, abnormal build-up of lymph fluid in the tissues resulting from a failure of the lymphatic system. The swelling impedes movement and is painful. Compression garments are contraindicated and not tolerated by patients with extensive peripheral arterial disease. In this case study, simple lymphatic drainage was therefore considered a safer treatment option to reduce oedema and to encourage proactive self-management for a patient with bilateral amputations, diabetes and peripheral arterial disease.


Assuntos
Diabetes Mellitus , Linfedema , Doença Arterial Periférica , Humanos , Linfedema/terapia , Edema/etiologia , Edema/terapia , Sistema Linfático , Doença Arterial Periférica/complicações , Doença Arterial Periférica/terapia
12.
Medicina (Kaunas) ; 60(2)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38399594

RESUMO

Lymphedema is a complex clinical condition that appears as a result of the failure of the lymphatic system function, and it is characterized by edema, fibrosis, and adipose deposition [...].


Assuntos
Sistema Linfático , Linfedema , Humanos , Linfedema/cirurgia , Obesidade , Fibrose , Adiposidade
13.
Commun Biol ; 7(1): 229, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402351

RESUMO

Crosstalk between central nervous system (CNS) and systemic responses is important in many pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc. Accumulating evidence suggest that signals for central-systemic crosstalk may utilize glymphatic and lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic system, and together these pathways may be involved in the distribution of soluble proteins and clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, ß-amyloid) might activate a systemic inflammatory response. There is also an element of time since the immune system is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been shown to change during the day and night. Understanding the mechanisms regulating the brain-cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is fundamental to find specific targets and timing for therapeutic interventions.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Vasos Linfáticos/fisiologia , Encéfalo/metabolismo , Sistema Linfático , Meninges
14.
Hypertension ; 81(4): 727-737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385255

RESUMO

Blood pressure is regulated by vascular resistance and intravascular volume. However, exchanges of electrolytes and water between intra and extracellular spaces and filtration of fluid and solutes in the capillary beds blur the separation between intravascular, interstitial and intracellular compartments. Contemporary paradigms of microvascular exchange posit filtration of fluids and solutes along the whole capillary bed and a prominent role of lymphatic vessels, rather than its venous end, for their reabsorption. In the last decade, these concepts have stimulated greater interest in and better understanding of the lymphatic system as one of the master regulators of interstitial volume homeostasis. Here, we describe the anatomy and function of the lymphatic system and focus on its plasticity in relation to the accumulation of interstitial sodium in hypertension. The pathophysiological relevance of the lymphatic system is exemplified in the kidneys, which are crucially involved in the control of blood pressure, but also hypertension-mediated cardiac damage. Preclinical modulation of the lymphatic reserve for tissue drainage has demonstrated promise, but has also generated conflicting results. A better understanding of the hydraulic element of hypertension and the role of lymphatics in maintaining fluid balance can open new approaches to prevent and treat hypertension and its consequences, such as heart failure.


Assuntos
Hipertensão , Vasos Linfáticos , Humanos , Sódio , Sistema Linfático/fisiologia , Pressão Sanguínea
15.
Brain Res ; 1831: 148825, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38403041

RESUMO

Reduced blood supply to the brain activates the intracranial inflammatory response, a key contributor to secondary brain damage in ischemic stroke. Post-stroke, activation of peripheral immune cells leads to systemic inflammatory responses. Usingin vivo approaches, we investigated meningeal lymphatics' role in central immune cell infiltration and peripheral immune cell activation. The bilateral deep cervical lymph nodes (dCLNs) were removed 7 days before right middle cerebral artery occlusion in Sprague Dawley (SD) rats. At 3, 24, and 72 h post-intervention, brain immune cell infiltration and microglial and astrocyte activation were measured, while immune cells were classified in the spleen and blood. Inflammatory factor levels in peripheral blood were analyzed. Simultaneously, reverse verification was conducted by injecting AAV-vascular endothelial growth factor C (AAV-VEGFC) adenovirus into the lateral ventricle 14 days before middle cerebral artery occlusion (MCAO) induction to enhance meningeal lymph function. Blocking meningeal LVs in MCAO rats significantly reduced infarct area and infiltration, and inhibited microglia and pro-inflammatory astrocytes activation. After removing dCLNs, CD4+ T lymphocytes, CD8+ T lymphocytes, B lymphocytes, macrophages, and neutrophils in the spleen and blood of MCAO rats decreased significantly at different time points. The levels of inflammatory factors IL-6, IL-10, IL-1ß, and TNF-α in plasma decreased significantly. Tests confirmed the results, and AAV-VEGFC-induced MCAO rats provided reverse validation.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Ratos , Animais , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/complicações , Fator C de Crescimento do Endotélio Vascular , Ratos Sprague-Dawley , Sistema Linfático , Isquemia Encefálica/complicações
16.
Pharmacol Rev ; 76(2): 228-250, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351070

RESUMO

The role of advanced drug delivery strategies in drug repositioning and minimizing drug attrition rates, when applied early in drug discovery, is poised to increase the translational impact of various therapeutic strategies in disease prevention and treatment. In this context, drug delivery to the lymphatic system is gaining prominence not only to improve the systemic bioavailability of various pharmaceutical drugs but also to target certain specific diseases associated with the lymphatic system. Although the role of the lymphatic system in lupus is known, very little is done to target drugs to yield improved clinical benefits. In this review, we discuss recent advances in drug delivery strategies to treat lupus, the various routes of drug administration leading to improved lymph node bioavailability, and the available technologies applied in other areas that can be adapted to lupus treatment. Moreover, this review also presents some recent findings that demonstrate the promise of lymphatic targeting in a preclinical setting, offering renewed hope for certain pharmaceutical drugs that are limited by efficacy in their conventional dosage forms. These findings underscore the potential and feasibility of such lymphatic drug-targeting approaches to enhance therapeutic efficacy in lupus and minimize off-target effects of the pharmaceutical drugs. SIGNIFICANCE STATEMENT: The World Health Organization estimates that there are currently 5 million humans living with some form of lupus. With limited success in lupus drug discovery, turning to effective delivery strategies with existing drug molecules, as well as those in the early stage of discovery, could lead to better clinical outcomes. After all, effective delivery strategies have been proven to improve treatment outcomes.


Assuntos
Sistemas de Liberação de Medicamentos , Lúpus Eritematoso Sistêmico , Humanos , Preparações Farmacêuticas , Sistema Linfático , Lúpus Eritematoso Sistêmico/tratamento farmacológico
17.
Radiographics ; 44(3): e230065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38386603

RESUMO

The lymphatic system (or lymphatics) consists of lymphoid organs and lymphatic vessels. Despite the numerous previously published studies describing conditions related to perirenal and intrarenal lymphoid organs in the radiology literature, the radiologic findings of conditions related to intrarenal and perirenal lymphatic vessels have been scarcely reported. In the renal cortex, interlobular lymphatic capillaries do not have valves; therefore, lymph can travel along the primary route toward the hilum, as well as toward the capsular lymphatic plexus. These two lymphatic pathways can be opacified by contrast medium via pyelolymphatic backflow at CT urography, which reflects urinary contrast agent leakage into perirenal lymphatic vessels via forniceal rupture. Pyelolymphatic backflow toward the renal hilum should be distinguished from urinary leakage due to urinary injury. Delayed subcapsular contrast material retention via pyelolymphatic backflow, appearing as hyperattenuating subcapsular foci on CT images, mimics other subcapsular cystic diseases. In contrast to renal parapelvic cysts originating from the renal parenchyma, renal peripelvic cysts are known to be of lymphatic origin. Congenital renal lymphangiectasia is mainly seen in children and assessed and followed up at imaging. Several lymphatic conditions, including lymphatic leakage as an early complication and acquired renal lymphangiectasia as a late complication, are sometimes identified at imaging follow-up of kidney transplant. Lymphangiographic contrast material accumulation in the renal hilar lymphatic vessels is characteristic of chylo-urinary fistula. Chyluria appears as a fat-layering fluid-fluid level in the urinary bladder or upper urinary tract. Recognition of the anatomic pathway of tumor spread via lymphatic vessels at imaging is of clinical importance for accurate management at oncologic imaging. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Assuntos
Cistos , Neoplasias Renais , Vasos Linfáticos , Criança , Humanos , Meios de Contraste , Sistema Linfático , Vasos Linfáticos/diagnóstico por imagem
18.
Nature ; 628(8006): 204-211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418880

RESUMO

The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina1. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.


Assuntos
Encéfalo , Olho , Sistema Linfático , Animais , Feminino , Humanos , Masculino , Camundongos , Coelhos , Bactérias/imunologia , Encéfalo/anatomia & histologia , Encéfalo/imunologia , Dependovirus/imunologia , Olho/anatomia & histologia , Olho/imunologia , Glioblastoma/imunologia , Herpesvirus Humano 2/imunologia , Injeções Intravítreas , Sistema Linfático/anatomia & histologia , Sistema Linfático/imunologia , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/imunologia , Macaca mulatta , Meninges/imunologia , Nervo Óptico/imunologia , Suínos , Peixe-Zebra , Fator C de Crescimento do Endotélio Vascular/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia
19.
Radiographics ; 44(2): e230075, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271257

RESUMO

Lymphatic flow and anatomy can be challenging to study, owing to variable lymphatic anatomy in patients with diverse primary or secondary lymphatic pathologic conditions and the fact that lymphatic imaging is rarely performed in healthy individuals. The primary components of the lymphatic system outside the head and neck are the peripheral, retroperitoneal, mesenteric, hepatic, and pulmonary lymphatic systems and the thoracic duct. Multiple techniques have been developed for imaging components of the lymphatic system over the past century, with trade-offs in spatial, temporal, and contrast resolution; invasiveness; exposure to ionizing radiation; and the ability to obtain information on dynamic lymphatic flow. More recently, dynamic contrast-enhanced (DCE) MR lymphangiography (MRL) has emerged as a valuable tool for imaging both lymphatic flow and anatomy in a variety of congenital and acquired primary or secondary lymphatic disorders. The authors provide a brief overview of lymphatic physiology, anatomy, and imaging techniques. Next, an overview of DCE MRL and the development of an MRL practice and workflow in a hybrid interventional MRI suite incorporating cart-based in-room US is provided, with an emphasis on multidisciplinary collaboration. The spectrum of congenital and acquired lymphatic disorders encountered early in an MRL practice is provided, with emphasis on the diversity of imaging findings and how DCE MRL can aid in diagnosis and treatment of these patients. Methods such as DCE MRL for assessing the hepatic and mesenteric lymphatic systems and emerging technologies that may further expand DCE MRL use such as three-dimensional printing are introduced. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Assuntos
Doenças Linfáticas , Linfografia , Humanos , Linfografia/métodos , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Doenças Linfáticas/diagnóstico por imagem , Doenças Linfáticas/patologia , Sistema Linfático/patologia
20.
World J Gastroenterol ; 30(1): 34-49, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38293325

RESUMO

Crohn's disease (CD) is caused by immune, environmental, and genetic factors. It can involve the entire gastrointestinal tract, and although its prevalence is rapidly increasing its etiology remains unclear. Emerging biological and small-molecule drugs have advanced the treatment of CD; however, a considerable proportion of patients are non-responsive to all known drugs. To achieve a breakthrough in this field, innovations that could guide the further development of effective therapies are of utmost urgency. In this review, we first propose the innovative concept of pan-lymphatic dysfunction for the general distribution of lymphatic dysfunction in various diseases, and suggest that CD is the intestinal manifestation of pan-lymphatic dysfunction based on basic and clinical preliminary data. The supporting evidence is fully summarized, including the existence of lymphatic system dysfunction, recognition of the inside-out model, disorders of immune cells, changes in cell plasticity, partial overlap of the underlying mechanisms, and common gut-derived fatty and bile acid metabolism. Another benefit of this novel concept is that it proposes adopting the zebrafish model for studying intestinal diseases, especially CD, as this model is good at presenting and mimicking lymphatic dysfunction. More importantly, the ensuing focus on improving lymphatic function may lead to novel and promising therapeutic strategies for CD.


Assuntos
Doença de Crohn , Vasos Linfáticos , Humanos , Animais , Doença de Crohn/complicações , Doença de Crohn/diagnóstico , Doença de Crohn/tratamento farmacológico , Peixe-Zebra , Sistema Linfático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...