Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.405
Filtrar
1.
J Adhes Dent ; 26(1): 93-102, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602286

RESUMO

PURPOSE: To investigate the influence of contamination and different cleaning methods on resin bonding to cobalt-chro- mium (CoCr) alloy disks. MATERIALS AND METHODS: A total of 160 CoCr disks were divided into 3 groups. The first group (N = 64) was air abraded with alumina particles and contaminated with a silicone disclosing agent and saliva; the second group (N = 64) was air abraded but not contaminated; the third group (N = 32) was neither air abraded nor contaminated. The first two groups were di- vided into 4 subgroups (N = 16) according to the cleaning method: ultrasonic bath in 99% isopropanol, use of a cleaning suspension of zirconium oxide particles, use of a cleaning suspension based on 10-MDP salt, and treatment with atmo- spheric plasma. The third group was divided into 2 subgroups (N = 16): treatment with atmospheric plasma and no treat- ment. All CoCr specimens were bonded to plexiglas tubes filled with a bonding resin that contained phosphate monomer. Tensile bond strength (TBS) was examined by tensile testing after 3 and 150 days of water storage plus 37,500 thermal cy- cles (N = 8). RESULTS: After contamination, TBS was significantly reduced after 150 days of water storage. Groups without air abrasion showed initially low TBS and debonded spontaneously after 150 days of water storage. CONCLUSION: None of the cleaning methods was able to remove saliva and silicone disclosing agent on CoCr-alloy sur- faces. Surface activation by plasma treatment has no long-term effect on the bond strength.


Assuntos
Resinas Compostas , Colagem Dentária , Cimentos de Resina , Ligas , Abrasão Dental por Ar , Propriedades de Superfície , Água , Resistência à Tração , Silicones , Teste de Materiais , Zircônio , Análise do Estresse Dentário
2.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38610453

RESUMO

Nanozymes possess major advantages in catalysis and biosensing compared with natural nanozymes. In this study, the AuPt@BaTiO3 bimetallic alloy Schottky junction is prepared to act as oxidase mimetics, and its photo-piezoelectric effect is investigated. The synergy between the photo-piezoelectric effect and the local surface plasmon resonance enhances the directional migration and separation of photogenerated electrons, as well as hot electrons induced by the AuPt bimetallic alloy. This synergy significantly improves the oxidase-like activity. A GSH colorimetric detection platform is developed based on this fading principle. Leveraging the photo-piezoelectric effect allows for highly sensitive detection with a low detection limit (0.225 µM) and reduces the detection time from 10 min to 3 min. The high recovery rate (ranging from 99.91% to 101.8%) in actual serum detection suggests promising potential for practical applications. The development of bimetallic alloy heterojunctions presents new opportunities for creating efficient nanozymes.


Assuntos
Ligas , Colorimetria , Catálise , Elétrons , Ressonância de Plasmônio de Superfície
3.
J Environ Manage ; 357: 120760, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581891

RESUMO

It is of great significance to solve the environmental problems caused by the unreasonable treatment of coal gasification slag. This study successfully produced Si-Fe-Al-Ca alloy from low-carbon fine slag with petroleum coke as reducing agent in a plasma furnace with an alternating current magnetic field, which solved the problem of the high reactivity requirement of carbon reductant for plasma smelting. The optimum carbon content of the mixed low-carbon fine slag and petroleum coke is 105% of the theoretical value. As the strength of the alternating current magnetic field increased (from 0% to 100% of the maximum power), the yield of the alloy (from 25.46% to 58.19%) and the recovery ratios of each element (Si, Fe, Al, Ca, Ti) increased. In addition, as the magnetic field strength increased, the pores inside the alloy became smaller, the composition of the alloy became more homogeneous, and a better separation of the alloy from the slag was observed. The main composition of the alloy at the strongest alternating current magnetic field is Si: 51.14 wt%, Fe: 28.41 wt%, Al: 9.14 wt%, Ca: 7.15 wt%, Ti: 2.03 wt%. We attribute the enhanced smelting effect of the alternating current magnetic field to the resistive heat and Lorentz force produced by the induced current. In addition, the skin effect concentrated the induced current on the surface of the oxide particles and carbon particles, which increased the temperature of the reaction interface and promoted the carbothermal reduction reaction.


Assuntos
Coque , Petróleo , Carvão Mineral , Ligas , Carbono
4.
Skin Res Technol ; 30(4): e13687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566505

RESUMO

BACKGROUND: The physical appearance of an individual plays a primary role as it influences the opinion of the viewer. For this reason, orthodontic therapy to improve perceived aesthetics is in high demand among patients. This factor, combined with the increase in the number of non-invasive facial aesthetic treatments, has led to the need to understand potential risk factors in the application of medical devices to the perioral skin in patients with fixed orthodontic appliances. The aim of this study was to evaluate in vitro heating of the orthodontic bracket following electromagnetic fields and negative pressure (V-EMF) used as an anti-aging treatment. METHODS: Two different types of titanium alloy wires, one made of "beta-Titanium" alloy and the other "Ni-Ti" (DW Lingual Systems GmbH-Bad Essen-Germany) were used. The orthodontic wires and brackets mounted on a resin mouth were covered with porcine muscle tissue, then subjected to anti-aging therapy with a Bi-one LifeTouchTherapy medical device (Expo Italia Srl-Florence-Italy) which generates a combination of vacuum and electromagnetic fields (V-EMF) already adopted for antiaging therapy. During administration of the therapy, the orthodontic brackets and porcine tissue were thermally monitored using a Wavetek Materman TMD90 thermal probe (Willtek Communications GmbH-Germany). In total 20 orthodontic mouths were used, 10 with Beta Titanium wires and 10 with Nickel Titanium wires. RESULTS: A temperature increase of about 1°C was recorded in each group. The outcome of the present research shows that the absolute temperatures measured on orthodontic appliances, which, despite having a slightly different curve, both show an increase in temperature of 1.1°C at the end of the session, thus falling well within the safety range of 2°C as specified by the standard CENELEC EN 45502-1. Therefore, V-EMF therapy can be considered safe for the entire dental system and for metal prostheses, which tend to heat up at most as much as biological tissue (+0.9°C/1.1°C vs. 1.1°C/1.1°C). CONCLUSION: In conclusion, anti-aging therapy with V-EMF causes a thermal increase on orthodontic brackets that is not harmful to pulp health.


Assuntos
Campos Eletromagnéticos , Níquel , Titânio , Humanos , Animais , Suínos , Vácuo , Calefação , Fios Ortodônticos , Ligas , Teste de Materiais
5.
PLoS One ; 19(4): e0299896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568900

RESUMO

The objective was to evaluate the effect of glide path and coronal flaring on the dentin volume removal and percentage of touched walls in curved canals using two heat-treated rotary files. The mesiobuccal canal of forty-eight, randomly selected, extracted mandibular molars was divided into two groups of 24 each, according to the type of instrument used (RACE EVO and EdgeSequel rotary files). Each group was further divided into three subgroups; Group (A): Control using one file shaped to 04/30, Group (B) with a glide path (EdgeGlidePath (EGP)), and Group (C): with a glide path and coronal flaring (EGP and EdgeTaper Platinum (ETP) SX file respectively). The root canals were then instrumented using the assigned instruments. The assessment was carried out using micro-CT. The comparison of the mean values of the tested groups about dentin volume removal and percentage of untouched walls did not reach statistical significance (p<0.05). Glide path and coronal flaring had an insignificant effect on the dentin volume removal and percentage of untouched walls in curved canals.


Assuntos
Temperatura Alta , Níquel , Preparo de Canal Radicular , Microtomografia por Raio-X/métodos , Preparo de Canal Radicular/métodos , Ligas , Titânio , Cavidade Pulpar/diagnóstico por imagem , Cavidade Pulpar/cirurgia , Desenho de Equipamento
6.
Sci Rep ; 14(1): 7669, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561485

RESUMO

A tapered stent with inclined proximal end is designed for fitting the iliac anatomically. The aim of the present study was to evaluate the safety and performance of the new stent in ovine left iliac veins. The experiment was performed in 30 adult sheep, and one nitinol-based VENA-BT® iliac venous stent (KYD stent) was implanted into each animal's left common iliac vein. Follow-up in all sheep consisted of angiographic, macroscopic, and microscopic examinations at Day 0 (< 24 h), Day 30, Day 90, Day 180 and Day 360 post-stenting (six animals per each time-point). 30 healthy ~ 50 kg sheep were included in this study and randomly divided into five groups according to the follow-up timepoint. All stents were implanted successfully into the left ovine common iliac vein. No significant migration occurred at follow-up. There is no statistically significant difference between the groups (p > 0.05), indicating no serious lumen loss occurred during the follow-up period. Common iliac venous pressure was further measured and the results further indicated the lumen patency at follow-up. Histological examinations indicated that no vessel injury and wall rupture, stent damage, and luminal thrombus occurred. There was moderate inflammatory cell infiltration around the stent in Day-0 and Day-30 groups with the average inflammation score of 2.278 and 2.167, respectively. The inflammatory reaction was significantly reduced in Day-90, Day-180 and Day-360 groups and the average inflammation scores were 0.9444 (p < 0.001, Day-90 vs Day-0), 1.167 (p < 0.001, Day-180 vs Day-0) and 0.667 (p < 0.001, Day-90 vs Day-0), respectively. The microscopic examinations found that the stents were well covered by endothelial cells in all follow-up time points. The results suggested that the KYD stent is feasible and safe in animal model. Future clinical studies may be required to further evaluate its safety and efficacy.


Assuntos
Ligas , Células Endoteliais , Veia Ilíaca , Animais , Veia Ilíaca/diagnóstico por imagem , Veia Ilíaca/cirurgia , Inflamação , Estudos Retrospectivos , Ovinos , Stents/efeitos adversos , Resultado do Tratamento , Grau de Desobstrução Vascular
7.
Environ Geochem Health ; 46(5): 172, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592578

RESUMO

Advancement in bioinspired alloy nanomaterials has a crucial impact on fuel cell applications. Here, we report the synthesis of PtPd alloy nanoclusters via the hydrothermal method using Piper longum extract, representing a novel and environmentally friendly approach. Physicochemical characteristics of the synthesized nanoclusters were investigated using various instrumentation techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, and High-Resolution Transmission electron microscopy. The electrocatalytic activity of the biogenic PtPd nanoclusters towards the oxidation of formic acid and methanol was evaluated chronoamperometry and cyclic voltammetry studies. The surface area of the electrocatalyst was determined to be 36.6 m2g-1 by Electrochemical Surface Area (ECSA) analysis. The biologically inspired PtPd alloy nanoclusters exhibited significantly higher electrocatalytic activity compared to commercial Pt/C, with specific current responses of 0.24 mA cm - 2 and 0.17 mA cm - 2 at synthesis temperatures of 180 °C and 200 °C, respectively, representing approximately four times higher oxidation current after 120 min. This innovative synthesis approach offers a promising pathway for the development of PtPd alloy nanoclusters with enhanced electrocatalytic activity, thereby advancing fuel cell technology towards a sustainable energy solution.


Assuntos
Formiatos , Metanol , Piper , Ligas , Extratos Vegetais
8.
Sci Rep ; 14(1): 7959, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575608

RESUMO

Cranial reconstructions are essential for restoring both function and aesthetics in patients with craniofacial deformities or traumatic injuries. Titanium prostheses have gained popularity due to their biocompatibility, strength, and corrosion resistance. The use of Superplastic Forming (SPF) and Single Point Incremental Forming (SPIF) techniques to create titanium prostheses, specifically designed for cranial reconstructions was investigated in an ovine model through microtomographic and histomorphometric analyses. The results obtained from the explanted specimens revealed significant variations in bone volume, trabecular thickness, spacing, and number across different regions of interest (VOIs or ROIs). Those regions next to the center of the cranial defect exhibited the most immature bone, characterized by higher porosity, decreased trabecular thickness, and wider trabecular spacing. Dynamic histomorphometry demonstrated differences in the mineralizing surface to bone surface ratio (MS/BS) and mineral apposition rate (MAR) depending on the timing of fluorochrome administration. A layer of connective tissue separated the prosthesis and the bone tissue. Overall, the study provided validation for the use of cranial prostheses made using SPF and SPIF techniques, offering insights into the processes of bone formation and remodeling in the implanted ovine model.


Assuntos
Membros Artificiais , Titânio , Ovinos , Animais , Humanos , Próteses e Implantes , Implantação de Prótese , Osteogênese , Carneiro Doméstico , Crânio/diagnóstico por imagem , Ligas , Teste de Materiais , Propriedades de Superfície
9.
Int J Med Sci ; 21(5): 958-964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617003

RESUMO

Nowadays dog bite is becoming a world public health problem. Therefore, the study aimed to develop a dog bite animal model that is helpful to solve these problems. In this study, the skull of an adult dog was scanned. The three-dimensional model of the dog maxillofacial bones and dentition was built by MIMICS. Next, the model was printed with Co-Cr alloy by using selective laser sintering technology to develop the dog bite simulation pliers. Then, to simulate dog bite to most, the maximum bite force of the pliers was measured and actions contained in dog bite process was analyzed. Afterwards, according to action analysis results, rabbits were bitten by the prepared instrument in actions that simulate dog's bite. Finally, the reproducibility and controllability of this animal model of dog bite injuries was validated in an in vivo study. The results showed a reliable animal model of dog bite injuries has been developed in this study. The sites and severities of the injuries could be adjusted as the operator wishes and the animal model of dog bite injuries was highly repeatable. This study also indicates the feasibility of using digital technology in establishing animal bite models.


Assuntos
Mordeduras e Picadas , Crânio , Cães , Animais , Coelhos , Reprodutibilidade dos Testes , Ligas , Modelos Animais
10.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557764

RESUMO

This protocol describes the synthesis of Au nanoparticle seeds and the subsequent formation of Au-Sn bimetallic nanoparticles. These nanoparticles have potential applications in catalysis, optoelectronics, imaging, and drug delivery. Previously, methods for producing alloy nanoparticles have been time-consuming, require complex reaction conditions, and can have inconsistent results. The outlined protocol first describes the synthesis of approximately 13 nm Au nanoparticle seeds using the Turkevich method. The protocol next describes the reduction of Sn and its incorporation into the Au seeds to generate Au-Sn alloy nanoparticles. The optical and structural characterization of these nanoparticles is described. Optically, prominent localized surface plasmon resonances (LSPRs) are apparent using UV-visible spectroscopy. Structurally, powder X-ray diffraction (XRD) reflects all particles to be less than 20 nm and shows patterns for Au, Sn, and multiple Au-Sn intermetallic phases. Spherical morphology and size distribution are obtained from transmission electron microscopy (TEM) imaging. TEM reveals that after Sn incorporation, the nanoparticles grow to approximately 15 nm in diameter.


Assuntos
Ligas de Ouro , Nanopartículas Metálicas , Prata/química , Ouro/química , Estanho , Nanopartículas Metálicas/química , Ligas/química
11.
Biomed Phys Eng Express ; 10(3)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564254

RESUMO

The high demand for bone grafts has motivated the development of implants with excellent osteogenic activity, whereas the risk of implant-associated infection, particularly given the rise of antimicrobial resistance, has compelled the development of implants with innovative antimicrobial strategies in which a small amount of bactericidal agent can effectively kill a wide range of bacteria. To induce antibacterial property, the surface of Grade-5 bone plate titanium implants used in clinical applications was modified using direct current (DC) sputter coating followed by thermal annealing. The 15 nm silver film-coated implants were thermally annealed in the furnace for 15 min at 750 °C. The modified implant surface's antibacterial efficacy againstEscherichia coli(E. coli),Staphylococcus aureus(S. aureus),Salmonella typhi, andMethicillin-resistant staphylococcus aureusbacteria has been assessed using a colony-forming assay. On the modified implant surface, the growth ofE. coliandS. aureusbacteria is reduced by 99.72%, while highly drug-resistant bacteria are inhibited by 96.59%. The MTT assay was used to assess the cytotoxicity of the modified bone-implant surface against NIH3T3 mouse fibroblast cells. The modified bone-implant surface promoted fibroblast growth and demonstrated good cytocompatibility. Furthermore, the mechanical properties of the implant were not harmed by this novel surface modification method. This method is simple and provides new insight into surface modification of commercial metallic implants to have effective antibacterial properties against various classes of bacteria.


Assuntos
Ligas , Staphylococcus aureus Resistente à Meticilina , Prata , Animais , Camundongos , Titânio , Placas Ósseas , Escherichia coli , Células NIH 3T3 , Staphylococcus aureus , Antibacterianos/farmacologia
12.
Sci Rep ; 14(1): 6765, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514805

RESUMO

Surfaces on transit vehicles are frequently touched and could potentially act as reservoirs for micro-organism transmission. Regular cleaning and disinfection to minimize the spread of micro-organisms is operationally challenging due to the need to keep vehicles in circulation. The application of copper (Cu) alloys to high- touch surfaces could help reduce the risk of cross-contamination, however, little is known about the durability and efficacy of engineered copper surfaces after prolonged use. Three Cu products (decal, thermal fabrication, and alloy covers) were assessed over a 12-month period. These Cu products were randomly installed on 110 stanchions on three buses and four train (SkyTrain) cars in Vancouver and three buses, two subway cars, and two streetcars in Toronto with mirrored control surfaces directly opposite. Bacterial counts (Colony forming units, CFU) and ATP bioluminescence (ATPB) were measured every two months after peak morning routes. Durability of the Cu products were assessed monthly through visual inspection and colorimetry assays or by ex-situ microscopy. Cu products on stanchions reduced the mean colony forming units (CFU) of all vehicles by 42.7% in the mean CFU (0.573 (CI 95% 0.453-0.726), p-value < 0.001) compared to control surfaces. The three Cu products exhibited an overall 87.1% reduction in the mean ATPB readings (0.129 (CI 95% 0.059-0.285, p-value < 0.001) compared to controls. Surface Cu concentration for all three products was consistent throughout the 12-month period. Electron microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS) cross-sectional analysis showed no change in thickness or dealloying of Cu products, however SEM top-down analysis revealed substantial carbon accumulation on all surfaces. Cu products installed on transit vehicles maintained antimicrobial efficacy and durability after 12 months of use.


Assuntos
Anti-Infecciosos , Cobre , Cobre/química , Estudos Transversais , Desinfecção/métodos , Ligas/química
13.
BMC Oral Health ; 24(1): 294, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431556

RESUMO

BACKGROUND: The preparation of the middle mesial (MM) canal of mandibular molars represents a challenge because it is often curved, narrow, and close to the root concave. The purpose of this study was to evaluate the ex vivo shaping ability of 3 nickel-titanium (NiTi) rotary systems in the MM canal using 3D printed resin tooth replicas. METHODS: A permanent mandibular first molar with a MM canal was acquired from a pool of extracted teeth and reproduced by a 3D printer. The resin tooth replicas (n = 18) were equally assigned to 3 groups for the evaluation of the shaping abilities of 3 NiTi rotary systems (OneShape [OS], Twisted Files [TF], and ProTaper Gold [PTG]) according to the manufacturer's recommendations. The tooth replicas were scanned by micro-computed tomography (micro-CT) twice before and after instrumentation of the mesiobuccal (MB), mesiolingual (ML), and MM root canals. After 3D reconstruction, the canal straightening, change of root canal volume and surface area, the mesial and distal canal wall thickness and canal transportation at the levels of 1, 2, and 3 mm below furcation were assessed. One-way variance analysis and Turkey's post hoc test were used for comparisons of the means among different groups, and paired-t test was used to compare the mesial and distal sides of the mesial roots. RESULTS: As compared with OS and TF, the use of PTG in preparation of MM canals resulted in significantly more straightening of canal curvature (p < 0.05), greater post-instrumentation canal volume and surface area, and thinner mesial and distal remaining canal wall thickness at 1, 2 and 3 mm below furcation (all p < 0.05). Regarding the root canal transportation in the mesiodistal direction, there was no significant difference among the 3 instruments (all p > 0.05) after the preparation of the MB and ML canals. However, in the MM canal, more pronounced transportation was detected in the PTG group at 2 mm below furcation, and in the TF group at 3 mm below furcation as compared with the other 2 systems (both p < 0.05). CONCLUSIONS: 3D printed tooth replicas have the advantages of consistency and can be an ideal model to evaluate the shaping ability of different instruments in the MM canal. OS and TF files performed similarly and both are appropriate for shaping the MM canal, while PTG may cause excessive and uneven resin removal, especially near the furcation, and may lead to root fragility and procedural errors.


Assuntos
Ligas , Cavidade Pulpar , Níquel , Humanos , Cavidade Pulpar/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Titânio , Preparo de Canal Radicular , Dente Molar/diagnóstico por imagem , Dente Molar/cirurgia , Impressão Tridimensional , Desenho de Equipamento
15.
Iran Biomed J ; 28(1): 38-45, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477251

RESUMO

Background: The surface properties of dental and orthopedic implants are directly related to their osseointegration rate. Coating and/or modifying the implant surface might reduce the time of healing. In this study, we aimed to examine the effects of a hybrid surface consisting of a brushite surface coating and cross-linked water-soluble eggshell membrane protein on the osseointegration of titanium (Ti) screws under in vivo conditions. Methods: Twenty Ti alloy screws were implanted monocortically in anteromedial regions of New Zealand rabbit tibiae. Ten screws were untreated and used as controls. The remaining 10 screws were coated with calcium phosphate and following cross-linked with ostrich eggshell membrane protein. All rabbits were sacrificed six weeks after the surgery. Peri-screw tissues were evaluated by micro-computed tomography (µ-CT), histological and histomorphometrical methods. Results: The µ-CT assessments indicated that the experimental group had significantly higher mean bone surface area (BSA) and trabeculae number (TbN) than those of the control group (p ˂ 0.05). Bone surface area (BV), trabecular separation (TbSp), trabecular thickness (TbTh), and bone mineral density (BMD) scores of the control and experimental groups were quite similar (p > 0.05). The vascularization score of the experimental group was significantly higher than the control group (4.29 vs. 0.92%). No sign of the graft-versus-host reaction was observed. Conclusion: Our findings reveal that coating Ti alloy implants with calcium phosphate cross-linked with ostrich eggshell membrane protein increases the osseointegration of Ti alloy screws by increasing the bone surface area, number of trabeculae and vascularization in the implant site.


Assuntos
Osseointegração , Titânio , Coelhos , Animais , Titânio/farmacologia , Água , Ligas/farmacologia , Microtomografia por Raio-X , Casca de Ovo , Materiais Revestidos Biocompatíveis/farmacologia , Fosfatos de Cálcio/farmacologia , Proteínas de Membrana , Propriedades de Superfície
16.
J Mater Sci Mater Med ; 35(1): 18, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526654

RESUMO

Surface modification of titanium and its alloys has been seriously considered by researchers to improve their biological behaviors, in the past few decades. In present research, hydroxyapatite (HA) based composite coatings with different concentrations of 0, 2, 4, and 6 wt% of silver (Ag) nanoparticles were electrophoretically deposited (EPD) on anodized and non-anodized Ti6Al4V, using a direct current at a voltage of 30 V for 10 min at room temperature. The specimens were then characterized by means of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The cell adhesion images and cell viability results showed that HA-Ag composite coatings significantly promoted the biocompatibility of samples compared with the non-anodized and anodized Ti6Al4V. The viabilities of Mg-63 cells on HA-4%Ag coating and bi-layer coating (HA-4%Ag on anodized specimen) were approximately 91% and they were considered as the best coatings in term of biocompatibility. On the other hand, the antibacterial assessments demonstrated that HA-6%Ag coating had the best antibacterial performance compared with other samples. Furthermore, Tafel polarization curves indicated that corrosion resistance of the bi-layer coating was higher than those of the other specimens. The polarization resistance of this coating was about 7 times more than that of theTi6Al4V alloy.


Assuntos
Durapatita , Nanopartículas Metálicas , Durapatita/química , Titânio/química , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Materiais Revestidos Biocompatíveis/química , Corrosão , Difração de Raios X , Ligas/química , Antibacterianos
17.
J Biomed Mater Res B Appl Biomater ; 112(4): e35404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533765

RESUMO

Literature data has shown that reactive oxygen species (ROS), generated by immune cells during post-operative inflammation, could induce corrosion of standard Ti-based biomaterials. For Ti6Al4V alloy, this process can be further accelerated by the presence of albumin. However, this phenomenon remains unexplored for Ti ß-phase materials, such as TiNb alloys. These alloys are attractive due to their relatively low elastic modulus value. This study aims to address the question of how albumin influences the corrosion resistance of TiNb alloy under simulated inflammation. Electrochemical and ion release tests have revealed that albumin significantly enhances corrosion resistance over both short (2 and 24 h) and long (2 weeks) exposure periods. Furthermore, post-immersion XPS and cross-section TEM analysis have demonstrated that prolonged exposure to an albumin-rich inflammatory solution results in the complete coverage of the TiNb surface by a protein layer. Moreover, TEM studies revealed that H2O2-induced oxidation and further formation of a defective oxide film were suppressed in the solution enriched with albumin. Overall results indicate that contrary to Ti6Al4V, the addition of albumin to the PBS + H2O2 solution is not necessary to simulate the harsh inflammatory conditions as could possibly be found in the vicinity of a TiNb implant.


Assuntos
Ligas , Peróxido de Hidrogênio , Humanos , Titânio , Albuminas , Corrosão , Inflamação , Teste de Materiais , Propriedades de Superfície
18.
J Mech Behav Biomed Mater ; 153: 106477, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428204

RESUMO

Lattice structures have found significant applications in the biomedical field due to their interesting combination of mechanical and biological properties. Among these, functionally graded structures sparked interest because of their potential of varying their mechanical properties throughout the volume, allowing the design of biomedical devices able to match the characteristics of a graded structure like human bone. The aim of this works is the study of the effect of the density grading on the mechanical response and the failure mechanisms of a novel functionally graded lattice structure, namely Triply Arranged Octagonal Rings (TAOR). The mechanical behaviour was compared with the same lattice structures having constant density ratio. Electron Beam Melting technology was used to manufacture titanium alloy specimens with global relative densities from 10% to 30%. Functionally graded structures were obtained by increasing the relative density along the specimen, by individually designing the lattice's layers. Scanning electron and a digital microscopy were used to evaluate the dimensional mismatch between actual and designed structures. Compressive tests were carried out to obtain the mechanical properties and to evaluate the collapse modes of the structures in relation to their average relative density and lattice grading. Open-source Digital Image Correlation algorithm was applied to evaluate the deformation behaviour of the structures and to calculate their elastic moduli. The results showed that uniform density structures provide higher mechanical properties than functionally graded ones. The Digital Image Correlation results showed the possibility of effectively designing the different layers of functionally graded structures selecting desired local mechanical properties to mimic the different characteristics of cortical and cancellous bone.


Assuntos
Osso Esponjoso , Titânio , Humanos , Porosidade , Módulo de Elasticidade , Titânio/química , Ligas/química
19.
Medicina (Kaunas) ; 60(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38541166

RESUMO

Background and Objectives: Spring-assisted surgery is a popular option for the treatment of non-syndromic craniosynostosis. The main drawback of this procedure is the need for a second surgery for spring removal, which could be avoided if a distractor material could be metabolised over time. Iron-Manganese alloys (FeMn) have a good trade-off between degradation rate and strength; however, their biocompatibility is still debated. Materials and Methods: In this study, the neuro-compatibility of Fe-20Mn (wt.%) was assessed using standard assays. PC-12 cells were exposed to Fe-20Mn (wt.%) and stainless steel via indirect contact. To examine the cytotoxicity, a Cell Tox Green assay was carried out after 1, 2, and 3 days of incubation. Following differentiation, a neurite morphological examination after 1 and 7 days of incubation time was carried out. The degradation response in modified Hank's solution at 1, 3, and 7 days was investigated, too. Results: The cytotoxicity assay showed a higher toxicity of Fe-20Mn than stainless steel at earlier time points; however, at the latest time point, no differences were found. Neurite morphology was similar for cells exposed to Fe-20Mn and stainless steel. Conclusions: In conclusion, the Fe-20Mn alloy shows promising neuro-compatibility. Future studies will focus on in vivo studies to confirm the cellular response to Fe-20Mn.


Assuntos
Implantes Absorvíveis , Aço Inoxidável , Humanos , Teste de Materiais , Ligas
20.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(1): 75-81, 2024 Feb 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38475954

RESUMO

OBJECTIVES: This study aimed to compare the differences among four kinds of mechanical Ni-Ti files including T-Flex, Reciproc Blue (RB), ProTaper Gold (PTG), and ProTaper Universal (PTU) in dentinal microcrack generation after root canal preparation in vitro by using micro-computed tomography (micro-CT) analysis. METHODS: A total of 32 freshly extracted double-root-canal premolars with an angle not exceeding 10° were selected and established as root canal preparation models in vitro. Then, the specimens were randomly assigned to four experimental groups (n=8) according to the different Ni-Ti systems used for root canal preparation: group T-Flex, group RB, group PTG, and group PTU. The voxel size of the micro-CT was set at 17.18 µm. Pre- and post-operative cross-sectional images of roots (n=56 940) were scanned and analyzed to identify the presence of dentinal microcracks. The results of each group were expressed by the quantity and percentage of sectional images with microcracks. McNemar test was used to determine whether a significant difference existed in the existence of dentinal microcracks before and after instrumentation. The level of significance was set at P<0.05. RESULTS: Overall, 11.04% of the images presented dentinal defects (n=6 288). Dentinal microcracks were observed in 9.82%, 10.79%, 12.27%, and 11.25% of the post-instrumentation images from groups T-Flex, RB, PTG, and PTU, respectively. However, all these dentinal microcracks were already present in the corresponding pre-operative images. No new microcrack of premolars were generated after the root canal preparation utilizing the aforementioned systems. CONCLUSIONS: Denti-nal microcracks already existed in advance in extracted teeth before root canal preparation. Root canal preparation using the T-Flex, RB, PTG, and PTU systems did not induce the formation of new dentinal microcracks on the straight root canals of premolars.


Assuntos
Ligas , Níquel , Preparo de Canal Radicular , Preparo de Canal Radicular/métodos , Titânio , Microtomografia por Raio-X , Dentina , Cavidade Pulpar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...