Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.537
Filtrar
1.
Environ Sci Pollut Res Int ; 31(16): 23822-23838, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430440

RESUMO

The rapid development of industrial society is also accompanied by the generation of a large amount of heavy metal wastewater, which has caused serious harm to the ecological environment and human society. Natural sphalerite has an important value in the environmental field due to its own semiconducting properties. In order to effectively remove Ag+ from wastewater containing silver, this study develops a natural mineral-based Ag+ adsorbent material (sphalerite) based on elemental affinity qualities and mineralization principles. The results of batch experiments showed that the initial Ag+ concentration of 50 mg/L reduced to 0.094 mg/L with a reaction duration of 15 min, a sphalerite dose of 5 g/L, an initial particle size of -400 mesh (38 µm), a reaction temperature of 25 °C, and a pH of 5. The highest adsorption capacity is 19.77 mg/g, and the adsorption behavior is consistent with the Freundlich isotherm model and pseudo-second-order adsorption kinetics. The results of solution chemical analysis indicate that the presence of Ag+ is primarily influenced by the presence of S2-. Further analysis using SEM-EDS, FTIR, and XPS techniques reveals that Ag+ is chemically adsorb onto the mineral surface, resulting in the formation of Ag2S. DFT calculations further confirm the overlap between the Ag 4d orbitals and the S 3p orbitals on the surface of sphalerite, further confirming its chemical adsorption. Mulliken populations suggest that charge transfer occurs between Ag+ and S atoms in the sphalerite surface. This research systematically reveals the Ag+ adsorption mechanism on sphalerite surface and expands research ideas for treating heavy metal wastewater.


Assuntos
Metais Pesados , Sulfetos , Poluentes Químicos da Água , Compostos de Zinco , Humanos , Águas Residuárias , Adsorção , Metais Pesados/análise , Minerais , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
2.
Int J Pharm ; 655: 124004, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38492899

RESUMO

Photodynamic therapy (PDT) is a suitable alternative to currently employed cancer treatments. However, the hydrophobicity of most photosensitizers (e.g., zinc phthalocyanine (ZnPC)) leads to their aggregation in blood. Moreover, non-specific accumulation in skin and low clearance rate of ZnPC leads to long-lasting skin photosensitization, forcing patients with a short life expectancy to remain indoors. Consequently, the clinical implementation of these photosensitizers is limited. Here, benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) micelles encapsulating ZnPC (ZnPC-M) were investigated to increase the solubility of ZnPC and its specificity towards cancers cells. Asymmetric flow field-flow fractionation was used to characterize micelles with different ZnPC-to-polymer ratios and their stability in human plasma. The ZnPC-M with the lowest payload (0.2 and 0.4% ZnPC w/w) were the most stable in plasma, exhibiting minimal ZnPC transfer to lipoproteins, and induced the highest phototoxicity in three cancer cell lines. Nanobodies (Nbs) with binding specificity towards hepatocyte growth factor receptor (MET) or epidermal growth factor receptor (EGFR) were conjugated to ZnPC-M to facilitate cell targeting and internalization. MET- and EGFR-targeting micelles enhanced the association and the phototoxicity in cells expressing the target receptor. Altogether, these results indicate that ZnPC-M decorated with Nbs targeting overexpressed proteins on cancer cells may provide a better alternative to currently approved formulations.


Assuntos
Isoindóis , Compostos Organometálicos , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/química , Micelas , Polímeros , Fotoquimioterapia/métodos , Compostos de Zinco , Compostos Organometálicos/farmacologia , Compostos Organometálicos/química , Receptores ErbB , Linhagem Celular Tumoral
3.
Biomed Mater ; 19(3)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38518361

RESUMO

Rapid bone regeneration in implants is important for successful transplantation. In this regard, we report the development of calcium silicate/zinc silicate (CS/ZS) dual-compound-incorporated calcium phosphate cement (CPC) scaffolds with a three-dimensional poly (lactic-co-glycolic acid) network that synergistically promote bone regeneration.In vitroresults demonstrated that the incorporation of CS/ZS dual compounds into the CPC significantly promoted the osteogenic differentiation of stem cells compared to the addition of CS or ZS alone. Moreover, the bone-regeneration efficacy of the composite scaffolds was validated by filling in femur condyle defects in rabbits, which showed that the scaffolds with CS and ZS possessed a great bone repair effect, as evidenced by more new bone formation and a faster scaffold biodegradation compared to the scaffold with CS alone.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Compostos de Zinco , Animais , Coelhos , Tecidos Suporte , Zinco/farmacologia , Proliferação de Células , Compostos de Cálcio , Regeneração Óssea , Silicatos , Fosfatos de Cálcio/farmacologia
4.
J Photochem Photobiol B ; 253: 112863, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457992

RESUMO

Phthalocyanines have been described as effective photosensitizers for photodynamic therapy and are therefore, being studied for their biomedical applications. The metalation of photosensitizers can improve their photodynamic therapy potential. Here, we focus on the biological properties of [1,4-Bis(3,6,9,12-Tetraoxatridec-1-yloxy)phthalocyaninato]zinc(II) (ZnPc(αEG4)2) and demonstrate its exceptional anticancer activity upon light stimulation to kill preferentially cancer cells with a start of efficiency at 10 pM. Indeed, in this work we highlighted the high selectivity of ZnPc(αEG4)2 for cancer cells compared with healthy ones and we establish its mechanism of action, enabling us to conclude that ZnPc(αEG4)2 could be a powerful tool for cancer therapy.


Assuntos
Indóis , Compostos Organometálicos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Zinco , Compostos Organometálicos/farmacologia , Compostos de Zinco
5.
J Environ Sci (China) ; 142: 83-91, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527898

RESUMO

Mineral processing wastewater (MPW) with large discharge and high toxicity affects environmental safety, and the realizing zero discharge of MPW is of great significance for reducing environmental pollution, saving water resources, and promoting the sustainable development of the mining industry. In this study, we reported natural marmatite (NM) as a low-cost and efficient photocatalyst for the treatment of MPW to help zero wastewater discharge. The photocatalytic activity of NM was evaluated by the removal of total organic carbon (TOC) from MPW under visible-light illumination, and the optimal degradation conditions were discussed. Results showed that superoxide free radicals (·O2-) were the dominant active species responsible for organic pollutants degradation, and 74.25% TOC removal was obtained after 120 min reaction under the optimum treatment conditions. Meanwhile, the wastewater treated by NM photocatalysis can be reused in the flotation system without adverse impact on the product index. Based on these findings, a model of zero wastewater discharge for flotation with the help of photocatalytic treatment was established, it indicated that the water of the whole system can be balanced without affecting the ore dressing index, which showed that visible light-driven photocatalyst has a promising application prospect in the treatment and recycling of industrial wastewater.


Assuntos
Luz , Sulfetos , Águas Residuárias , Compostos de Zinco , Minerais , Catálise
6.
Environ Geochem Health ; 46(3): 87, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367090

RESUMO

The ecotoxic effect of Zn species arising from the weathering of the marmatite-like sphalerite ((Fe, Zn)S) in Allium cepa systems was herein evaluated in calcareous soils and connected with its sulfide oxidation mechanism to determine the chemical speciation responsible of this outcome. Mineralogical analyses (X-ray diffraction patterns, Raman spectroscopy, scanning electron microscopy and atomic force microscopy), chemical study of leachates (total Fe, Zn, Cd, oxidation-reduction potential, pH, sulfates and total alkalinity) and electrochemical assessments (chronoamperometry, chronopotentiometry, cyclic voltammetry, and electrochemical impedance spectroscopy) were carried out using (Fe, Zn)S samples to elucidate interfacial mechanisms simulating calcareous soil conditions. Results indicate the formation of polysulfides (Sn2-), elemental sulfur (S0), siderite (FeCO3)-like, hematite (Fe2O3)-like with sorbed CO32- species, gunningite (ZnSO4·H2O)-like phase and smithsonite (ZnCO3)-like compounds in altered surface under calcareous conditions. However, the generation of gunningite (ZnSO4·H2O)-like phase was predominant bulk-solution system. Quantification of damage rates ranges from 75 to 90% of bulb cells under non-carbonated conditions after 15-30 days, while 50-75% of damage level is determined under neutral-alkaline carbonated conditions. Damage ratios are 70.08 and 30.26 at the highest level, respectively. These findings revealed lower ecotoxic damage due to ZnCO3-like precipitation, indicating the effect of carbonates on Zn compounds during vegetable up-taking (exposure). Other environmental suggestions of the (Fe, Zn)S weathering and ecotoxic effects under calcareous soil conditions are discussed.


Assuntos
Cebolas , Poluentes do Solo , Compostos de Zinco , Solo/química , Sulfetos/química , Tempo (Meteorologia) , Poluentes do Solo/análise
7.
J Mater Chem B ; 12(8): 2180-2196, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323518

RESUMO

In the present work, acidic (direct) and basic precipitation (indirect) methods were used to demonstrate the influence of the mode of precipitation on the structural properties of ZnO nanoparticles (NPs). Four samples of ZnO nanoparticles were prepared, two samples via each mode of precipitation. DZOa and IZOa were the aged samples prepared via acidic and basic precipitation methods, and DZOwa and IZOwa were processed without aging. Both precipitation processes were carried out without using any surfactant reagents. Zinc hydroxide precipitate, which was formed during the basic precipitation method, could be critical in deciding the properties of ZnO NPs, unlike zinc hydroxide formed during acidic precipitation. Aging of zinc hydroxide, synthesised by basic precipitation method for 48 hours was found to be an added advantage in controlling the properties of ZnO NPs. The influence of the mode of precipitation on the structural properties and antibacterial activity of ZnO NPs against Gram-positive and Gram-negative bacterial strains was tested. The antibacterial activity of all four ZnO NPs was analysed via zone of inhibition measurements at a concentration dose of 200 µg ml-1. IZOa nanoparticles prepared using the basic precipitation method showed a higher antibacterial activity against three Gram-negative and one Gram-positive strains, namely, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. DZOa nanoparticles synthesized through acidic precipitation showed relatively high antibacterial activity against Salmonella typhimurium, a Gram-negative strain. ZnO NPs prepared without aging, IZOwa and DZOwa, showed a higher antibacterial activity against E. coli and Bacillus sp. strains, respectively. All ZnO NPs were characterized via UV-visible, FTIR, XRD, and HRSEM techniques.


Assuntos
Hidróxidos , Nanopartículas , Compostos de Zinco , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Escherichia coli , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Positivas
8.
J Air Waste Manag Assoc ; 74(4): 240-252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301037

RESUMO

The heavy metals present in the sludge can undergo a reaction with sulfur, leading to their conversion into metal sulfides through hydrothermal sulfidation. Sulfur ions, possessing a strong sulfidation capability, can operate within a wider pH range at elevated temperatures. The high temperature environment promotes the sulfidation process of zinc within heavy metal-laden sludge. Increasing the temperature of microwave hydrothermal sulfidation and extending the sulfidation duration for heavy metal-containing sludge can enhance the growth of crystal size in the artificially synthesized zinc sulfide. Zinc sulfide predominantly takes the form of ZnS, which facilitates the subsequent flotation recovery of zinc.


Assuntos
Metais Pesados , Compostos de Zinco , Zinco , Esgotos/química , Micro-Ondas , Sulfetos/química , Enxofre
9.
Int J Biol Macromol ; 262(Pt 2): 129986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360231

RESUMO

Until now, many efficient catalysts have been reported that are used for the reduction of nitroarenes. However, a catalyst reusability is a challenge that is often faced in practical environment. In this report, we designed a hydrogel composite (CMC-LDH), which act as support and making it possible to address this challenge. In this research work, zinc/aluminum based layered double hydroxides (Zn/Al LDH) have been assembled with carboxymethyl cellulose (CMC) to prepare CMC/LDH hydrogel beads. The CMC/LDH hydrogel beads were prepared by the ionotropic gelation method. For CMC/LDH/Au preparation, the already prepared CMC/LDH beads were kept in gold ion (Au3+) solution, and their subsequent reduction with sodium borohydride (NaBH4). For the characterization of the prepared samples different instrumental techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and scanning electron microscopy (SEM) were adopted. For the catalytic evaluation of CMC/LDH/Au, it was utilized as a catalyst in 4-NP and 4-NA reduction reactions. The continuity of the reaction was monitored by a UV-visible spectrophotometer. Rate constant (kapp) of 0.48474 min-1 and 0.7486 min-1 were obtained for 4-NP and 4-NA reduction, respectively. The hydrogel beads were recycled and reused for up to five successive cycles without significantly changing their catalytic efficiency.


Assuntos
Carboximetilcelulose Sódica , Nanopartículas Metálicas , Compostos de Zinco , Carboximetilcelulose Sódica/química , Ouro , Nanopartículas Metálicas/química , Hidrogéis/química , Zinco , Compostos Orgânicos , Hidróxidos/química
10.
Nanoscale ; 16(10): 5383-5394, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38375749

RESUMO

Antifungal resistance has become a very serious concern, and Candida albicans is considered one of the most opportunistic fungal pathogens responsible for several human infections. In this context, the use of new antifungal agents such as zinc-based layered double hydroxides to fight such fungal pathogens is considered one possible means to help limit the problem of antifungal resistance. In this study, we show that ZnAl LDH nanoparticles exhibit remarkable antifungal properties against C. albicans and cause serious cell wall damage, as revealed by growth tests and atomic force microscopy (AFM) imaging. To further link the antifungal activity of ZnAl LDHs to their adhesive behaviors toward C. albicans cells, AFM-based single-cell spectroscopy and single-particle force spectroscopy were used to probe the nanoscale adhesive interactions. The force spectroscopy analysis revealed that antimicrobial ZnAl LDHs exhibit specific surface interactions with C. albicans cells, demonstrating remarkable force magnitudes and adhesion frequencies in comparison with non-antifungal negative controls, e.g., Al-coated substrates and MgAl LDHs, which showed limited interactions with C. albicans cells. Force signatures suggest that such adhesive interactions may be attributed to the presence of agglutinin-like sequence (Als) adhesive proteins at the cell wall surface of C. albicans cells. Our findings propose the presence of a strong correlation between the antifungal effect provided by ZnAl LDHs and their nanoscale adhesive interactions with C. albicans cells at both the single-cell and single-particle levels. Therefore, ZnAl LDHs could interact with C. albicans fungal pathogens by specific adhesive interactions through which they adhere to fungal cells, leading to their damage and subsequent growth inhibition.


Assuntos
Antifúngicos , Candida albicans , Compostos de Zinco , Humanos , Antifúngicos/farmacologia , Hidróxidos/farmacologia , Hidróxidos/química , Zinco/farmacologia , Zinco/química , Análise Espectral
11.
J Invertebr Pathol ; 203: 108074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350524

RESUMO

Most honey bee pathogens, such as Vairimorpha (Nosema), cannot be rapidly and definitively diagnosed in a natural setting, consequently there is typically the spread of these diseases through shared and re-use of beekeeping equipment. Furthermore, there are no viable treatment options available for Nosema spores to aid in managing the spread of this bee disease. We therefore aimed to develop a new method using novel Zinc Phthalocyanine (ZnPc) as a photosensitizer for the photodynamic inactivation of Nosema spores that could be used for the decontamination of beekeeping equipment. Nosema spores were propagated for in vitro testing using four caged Apis mellifera honey bees. The ZnPc treatment was characterized, encapsulated with a liposome, and then used as either a 10 or 100 µM treatment for the freshly harvested Nosema spores, for either a 30 and or 60-minute time period, under either light or dark conditions, in-vitro, in 96-well plates. In the dark treatment, after 30-min, the ZnPc 100 µM treatment, caused a 30 % Nosema mortality, while this increased to 80 % at the same concentration after the light treatment. The high rate of anti-spore effects, in a short period of time, supports the notion that this could be an effective treatment for managing honey bee Nosema infections in the future. Our results also suggest that the photo activation of the treatment could be applied in the field setting and this would increase the sterilization of beekeeping equipment against Nosema.


Assuntos
Isoindóis , Nosema , Compostos Organometálicos , Compostos de Zinco , Abelhas , Animais , Nosema/fisiologia , Criação de Abelhas
12.
Environ Sci Pollut Res Int ; 31(13): 19986-20000, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368301

RESUMO

In recent years, the growing concern over the presence of toxic aquatic pollutants has prompted intensive research into effective and environmentally friendly remediation methods. Photocatalysis using semiconductor quantum dots (QDs) has developed as a promising technology for pollutant degradation. Among various QD materials, indium phosphide (InP) and its hybrid with zinc sulfide (ZnS) have gained considerable attention due to their unique optical and photocatalytic properties. Herein, InP and InP/ZnS QDs were employed for the removal of dyes (crystal violet, and congo red), polyaromatic hydrocarbons (pyrene, naphthalene, and phenanthrene), and pesticides (deltamethrin) in the presence of visible light. The degradation efficiencies of crystal violet (CV) and congo red (CR) were 74.54% and 88.12% with InP, and 84.53% and 91.78% with InP/ZnS, respectively, within 50 min of reaction. The InP/ZnS showed efficient performance for the removal of polyaromatic hydrocarbons (PAHs). For example, the removal percentage for naphthalene, phenanthrene, and pyrene was 99.8%, 99.6%, and 88.97% after the photocatalytic reaction. However, the removal percentage of InP/ZnS for pesticide deltamethrin was 90.2% after 90 min light irradiation. Additionally, advanced characterization techniques including UV-visible spectrophotometer (UV-Vis), photoluminescence (PL), X-ray diffractometer (XRD), energy-dispersive spectrometer (EDS) elemental mapping, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) were used to analyze the crystal structure, morphology, and purity of the fabricated materials in detail. The particle size results obtained from TEM are in the range of 2.28-4.60 nm. Both materials (InP and InP/ZnS) exhibited a spherical morphology, displaying distinct lattice fringes. XRD results of InP depicted lattice planes (111), (220), and (311) in good agreement with cubic geometry. Furthermore, the addition of dopants was discovered to enhance the thermal stability of the fabricated material. In addition, QDs exhibited efficacy in the breakdown of PAHs. The analysis of their fragmentation suggests that the primary mechanism for PAHs degradation is the phthalic acid pathway.


Assuntos
Poluentes Ambientais , Índio , Nitrilas , Fenantrenos , Fosfinas , Piretrinas , Pontos Quânticos , Sulfetos , Compostos de Zinco , Pontos Quânticos/química , Vermelho Congo , Violeta Genciana , Pirenos
13.
ACS Nano ; 18(4): 3720-3732, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237072

RESUMO

Piezoelectric hydrogel sensors are becoming increasingly popular for wearable sensing applications due to their high sensitivity, self-powered performance, and simple preparation process. However, conventional piezoelectric hydrogels lack antifreezing properties and are thus confronted with the liability of rupture in low temperatures owing to the use of water as the dispersion medium. Herein, a kind of piezoelectric organohydrogel that integrates piezoelectricity, low-temperature tolerance, mechanical robustness, and stable electrical performance is reported by using poly(vinylidene fluoride) (PVDF), acrylonitrile (AN), acrylamide (AAm), p-styrenesulfonate (NaSS), glycerol, and zinc chloride. In detail, the dipolar interaction of the PVDF chain with the PAN chain facilitates the crystal phase transition of PVDF from the α to ß phase, which endows the organohydrogels with a high piezoelectric constant d33 of 35 pC/N. In addition, the organohydrogels are highly ductile and can withstand significant tensile and compressive forces through the synergy of the dipolar interaction and amide hydrogen bonding. Besides, by incorporating glycerol and zinc chloride, the growth of ice crystals is inhibited, allowing the organohydrogels to maintain stable flexibility and sensitivity even at -20 °C. The real-time monitoring of the pulse signal for up to 2 min indicates that the gel sensor has stable sensitivity. It is believed that our organohydrogels will have good prospects in future wearable electronics.


Assuntos
Cloretos , Polímeros de Fluorcarboneto , Glicerol , Polivinil , Dispositivos Eletrônicos Vestíveis , Compostos de Zinco , Humanos , Acrilamida , Hidrogéis
14.
Nutrients ; 16(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257144

RESUMO

Purpose: We examined whether supplementation of zinc magnesium aspartate (ZMA), while partially sleep deprived, was beneficial to sleep quality and subsequent morning (07:00 h) submaximal weightlifting. Methods: Using a double-blinded, randomized counterbalanced design, sixteen trained males were recruited and completed six sessions: (i) one repetition max (1 RM) for bench press and back squat; (ii) two familiarisation sessions; (iii) three conditions with 4 h sleep and either: ZMA, placebo (PLA), or NoPill control (NoPill). Submaximal exercise session consisted of three repetitions at 40, 60 and 80% of 1 RM for bench press and back squat. Average power (AP), average velocity (AV), peak velocity (PV), displacement (D) and time-to-peak velocity (tPV) were recorded using MuscleLab linear encoders. Data were analysed using a general linear model with repeated measures and linear correlation. Results: No significant main effect for condition was found for performance values or subjective ratings of fatigue. Main effect for "load" on the bar was found, where AP and tPV values increased with load (p < 0.05). No significant relationship between dose of zinc or magnesium ingested and change in performance for 80% 1 RM power-outputs was found. Conclusion: Supplementation of ZMA for two nights of partial sleep deprivation had no effect on sleep or subsequent morning performance.


Assuntos
Privação do Sono , Qualidade do Sono , Compostos de Zinco , Masculino , Humanos , Ácido Aspártico , Magnésio , Zinco/farmacologia
15.
Environ Sci Pollut Res Int ; 31(10): 15209-15222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38289558

RESUMO

Utilizing cost-effective corn cob, zinc chloride-modified biochar was synthesized through one-step method for benzene adsorption from air. Study on impregnation ratio impact showed optimal benzene adsorption at ZnCl2:CC ratio of 1.5:1, with capacity reaching 170.53 mg g-1. Characterization using BET, SEM, FTIR, and XPS was conducted. BET results indicated specific surface area of Zn1.5BC at 1260.63 m2 g-1 and maximum pore volume of 0.546 m3 g-1. SEM analysis revealed microporous-mesoporous structure in Zn1.5BC, marking significant improvement over original biomass. DFT pore size distribution and FTIR analysis suggested post-modification dehydration and elimination reactions, leading to volatile compound release, functional group reduction, and pore widening. XPS analysis showed decrease in O = C-OH content with increased impregnation ratio, enhancing biochar's π-π electron diffusion for benzene. Langmuir isotherm and pseudo-second-order kinetic models effectively described experimental data, indicating multilayer benzene adsorption on biochar controlled by complex physicochemical adsorption and pore diffusion. Adsorption condition assessment, including adsorption temperature (20-120 â„ƒ) and benzene concentration in inlet phase (159.73-383.36 mg L-1), was performed. Yoon-Nelson model fitting indicated adsorption site loss at higher temperatures and reduced capture ability due to increased adsorbate molecule kinetic energy. Higher adsorbate concentrations aided adsorption molecule diffusion to biochar surface and internal pores, increasing adsorption rate and shortening equilibrium time. Overall, zinc chloride-modified biochar facilitates benzene adsorption through pore filling and π-π interactions, with pore filling as primary mechanism. Produced biochar shows excellent regeneration properties and reusability.


Assuntos
Benzeno , Cloretos , Poluentes Químicos da Água , Compostos de Zinco , Zea mays , Adsorção , Poluentes Químicos da Água/química , Carvão Vegetal/química , Cinética
16.
Int J Biol Macromol ; 260(Pt 2): 129556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244732

RESUMO

Effective loading and delivering the wound healing-based materials to the wound site and area with an optimum concentration and limited cytotoxicity are essential for a complete and fast healing process. Here, we have designed Zn/Al-LDH nanoparticles-loaded CMC films for encapsulation and delivery of gallic acid (GA) in order to develop an effective and efficient wound-healing scaffold. The physicochemical properties of the prepared Zn/Al-LDH nanohybrids were thoroughly characterized by several characterization techniques, such as FESEM, Hi-TEM, FTIR, and XRD techniques. The thermal properties of the scaffolds were evaluated by DSC and TGA analysis. The release profiles of GA from fabricated films were studied over 8 h by UV-vis spectroscopy. In vitro drug release studies in PBS solutions with pH 7.4 showed a mono-phasic profile in which the liberation of the drug mainly occurred by scaffold erosion and increased by increasing the experiment period. The in vitro antibacterial activity of Zn/Al-LDH-GA-loaded CMC films was assessed by disk diffusion and cell viability contact tests. The results showed the desired antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria. Incorporating GA within CMC and CMC-Zn/Al-LDH films rereleased good cytocompatibility at the studied incubation time and different concentrations toward human normal HFF cell line than the free drug. The results of the present study indicated that the Zn/Al-LDH and Zn/Al-LDH-GA-loaded CMC have promising wound healing features to further develop a better future for clinical remedy of the different non-healing and hard-to-heal wounds.


Assuntos
Nanocompostos , Compostos de Zinco , Zinco , Humanos , Zinco/farmacologia , Carboximetilcelulose Sódica/química , Alumínio/farmacologia , Hidróxido de Alumínio , Antibacterianos/farmacologia , Antibacterianos/química , Hidróxidos/química , Nanocompostos/química , Cicatrização
17.
Clin Oral Investig ; 28(1): 90, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217757

RESUMO

OBJECTIVES: To support the daily oral hygiene of patients experiencing gum inflammation, a new mouthwash was developed containing an amine + zinc lactate + fluoride system. In vitro and clinical efficacy was assessed using traditional methods as well as using novel site-specific and subject-specific analyses of the clinical data. MATERIALS AND METHODS: This mouthwash was evaluated in a 12-h biofilm regrowth assay against a negative control mouthwash and in a 6-month plaque and gingivitis clinical study as compared to a negative control mouthwash. Analyses of healthy versus inflamed sites, visible plaque versus non-visible plaque sites, as well as subject-level evaluations bring new perspectives to the overall performance of this mouthwash and its significance from a patient outcome perspective. RESULTS: Studies demonstrated that this new mouthwash provided long-term (12-h) antibacterial activity after single application in vitro and reduced clinically all plaque and gingivitis parameters after 3 months and 6 months of use when compared to the negative control mouthwash. Examination of site-level and subject-level data determined that this mouthwash significantly increased the number of healthy sites in the oral cavity and significantly improved the gum health of subjects in the study, as compared to the negative control mouthwash. CONCLUSIONS: In vitro and clinical research has demonstrated the antibacterial and clinical benefits of this mouthwash containing an amine compound + zinc lactate + fluoride system. CLINICAL RELEVANCE: Our subject-specific and site-specific analyses provide the dental practitioner with tools that can be used to guide patients who suffer from gingivitis toward optimal product selection and use. CLINICAL TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov (reference no. NCT05821712).


Assuntos
Placa Dentária , Gengivite , Compostos de Zinco , Humanos , Antissépticos Bucais/farmacologia , Fluoretos/farmacologia , Ácido Láctico , Odontólogos , Papel Profissional , Placa Dentária/tratamento farmacológico , Placa Dentária/prevenção & controle , Resultado do Tratamento , Gengivite/tratamento farmacológico , Gengivite/prevenção & controle , Método Duplo-Cego , Antibacterianos/farmacologia , Zinco/farmacologia , Índice de Placa Dentária
18.
Int J Biol Macromol ; 256(Pt 1): 128360, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000601

RESUMO

This work aims to prepare a composite adsorbent with a fixed shape to improve the performance of carbon materials and to solve the problem of adsorbent in powder form which is difficult to recycle after use. The BC-ZnS composite system was successfully prepared by hydrothermal method based on the preparation of biomass carbon (BC) using alginate (Alg), while the ZnS component was grown in-situ on the surface of BC. The effects of Alg, Zn source, hydrothermal temperature and time on the synthesis of BC-ZnS were explored, the results indicated that ZnS was successfully grown in-situ on the BC surface, while the BC maintained its original morphology. BC-ZnS showed excellent adsorption capacity for methylene blue (MB), basic fuchsin (BF), and copper ions (Cu2+), reaching 301.50 mg/g for MB and exhibiting good cyclic stability. The adsorption of MB/BF/Cu2+ by BC-ZnS was characterized by the presence of multiple forces, where the BC component mainly depended on the electrostatic force of Alg residue, while the ZnS involves electrostatic forces, ion exchange and Lewis acid/base soft-soft interactions. The adsorption process conforms to pseudo-first-kinetics and is a spontaneous entropy-increasing process. BC-ZnS can be a candidate for reusable wastewater treatment and has excellent potential for application.


Assuntos
Carbono , Corantes de Rosanilina , Sulfetos , Poluentes Químicos da Água , Compostos de Zinco , Carbono/química , Cobre/química , Azul de Metileno/química , Alginatos/química , Biomassa , Cinética , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
19.
J Pharm Sci ; 113(2): 463-470, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37852536

RESUMO

Photodynamic therapy (PDT) is a potential treatment strategy for melanoma. As a second-generation photosensitizer, Zinc phthalocyanine (ZnPc) has many advantages for anti-tumor PDTs, such as strong absorption in the red and near infrared regions, high photo and chemical stability, etc. However, ZnPc has a poor water solubility and is apt to aggregate due to the π-π interaction between molecules, which limits its applications. In this study, various solvents and surfactants were screened for dissolving ZnPc and preparing ZnPc@SDC-TPGS micelle and thermosensitive in situ gel. After the cytotoxic effects of thermosensitive gels on PDT were tested, the antitumor effects on PDT of them in mice by intratumoral injection were evaluated, including body weight, and tumor weight, volume and morphology. The cell death pathway and the relationship of reactive oxygen species yield with apoptotic rate of tumor cells induced by ZnPc in situ gel were investigated. The results were that N-methyl-pyrrolidone (NMP) mixed with 2 % SDC and aqueous solution containing 2 % TPGS and 2 % SDC were used to synthesize ZnPc@SDC-TPGS micelle and the thermosensitive in situ gel. The cytotoxic effects of thermosensitive gels showed good tumor suppression of ZnPc@SDC-TPGS in situ gel and no toxicity of the blank gel. Intratumoral injection in situ gel containing 3 µg ZnPc under irradiation demonstrated good tumor inhibition in mice with melanoma. Apoptosis has been established as the primary pathway of cell death, and the production of reactive oxygen species (ROS) plays a crucial role in cellular apoptosis induced by ZnPc@SDC-TPGS in situ gel. In conclusion, the intratumoral injection of ZnPc@SDC-TPGS thermosensitive in situ gel provides a promising local treatment option for melanoma.


Assuntos
Antineoplásicos , Isoindóis , Melanoma , Compostos Organometálicos , Fotoquimioterapia , Compostos de Zinco , Camundongos , Animais , Melanoma/tratamento farmacológico , Micelas , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Injeções Intralesionais , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Géis
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123818, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157742

RESUMO

This paper presents a novel room temperature phosphorescence sensor (IMIPs-ZnS QDs RTP sensor) based on inorganic surface molecularly imprinted polymers and Mn-doped ZnS quantum dots (QDs) for the rapid detection of trace melamine (MEL) in commercial milk products. The surface of Mn-ZnS QDs was modified with 3-(mercaptopropyl) trimethoxy silane (MPTS). Then, MEL, 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were used as a template/target molecule, functional monomer, and cross-linker, respectively. IMIPs-ZnS QDs RTP sensor was characterized using spectrofluorimeter, UV-Vis spectrophotometer, FT-IR, transmission electron microscope (TEM), and X-ray photoelectron spectrometer (XPS). Detection time and linear range for IMIPs-ZnS QDs RTP sensor were 30 min and 4.0-79.2 µM with a correlation coefficient value of 0.9946, respectively. Furthermore, LOD and LOQ values were calculated using Stern-Volmer equation as 0.29 and 0.97 µM, respectively. Thus, IMIPs-ZnS QDs RTP sensor was successfully applied for the detection of MEL residue in milk samples. Recovery values were in the range of 88.62-90.22 % with relatively high precision values (0.57-0.92 % RSD). Our findings indicate that the developed IMIPs-ZnS QDs RTP sensor exhibits high sensitivity and selectivity towards the MEL in milk sample containing potentially relatively high number of interfering compounds.


Assuntos
Pontos Quânticos , Triazinas , Animais , Pontos Quânticos/química , Compostos de Zinco/química , Leite , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...