Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.554
Filtrar
1.
ACS Chem Biol ; 19(3): 660-668, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358369

RESUMO

Cyclopropanol rings are highly reactive and may function as molecular "warheads" that affect natural product bioactivity. Yet, knowledge on their biosynthesis is limited. Using gene cluster analyses, isotope labeling, and in vitro enzyme assays, we shed first light on the biosynthesis of the cyclopropanol-substituted amino acid cleonine, a residue in the antimicrobial depsipeptide valgamicin C and the cytotoxic glycopeptide cleomycin A2. We decipher the biosynthetic origin of valgamicin C and show that the cleonine cyclopropanol ring is derived from dimethylsulfoniopropionate (DMSP). Furthermore, we demonstrate that part of the biosynthesis is analogous to the formation of malleicyprol polyketides in pathogenic bacteria. By genome mining and metabolic profiling, we identify the potential to produce cyclopropanol rings in other bacterial species. Our results reveal a general mechanism for cyclopropyl alcohol biosynthesis across diverse natural products that may be harnessed for bioengineering and drug discovery.


Assuntos
Aminoácidos , Produtos Biológicos , Vias Biossintéticas , Ciclopropanos , Depsipeptídeos , Éteres Cíclicos , Furanos , Policetídeos , Família Multigênica
2.
Science ; 383(6683): 622-629, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38271490

RESUMO

Paclitaxel is a well known anticancer compound. Its biosynthesis involves the formation of a highly functionalized diterpenoid core skeleton (baccatin III) and the subsequent assembly of a phenylisoserinoyl side chain. Despite intensive investigation for half a century, the complete biosynthetic pathway of baccatin III remains unknown. In this work, we identified a bifunctional cytochrome P450 enzyme [taxane oxetanase 1 (TOT1)] in Taxus mairei that catalyzes an oxidative rearrangement in paclitaxel oxetane formation, which represents a previously unknown enzyme mechanism for oxetane ring formation. We created a screening strategy based on the taxusin biosynthesis pathway and uncovered the enzyme responsible for the taxane oxidation of the C9 position (T9αH1). Finally, we artificially reconstituted a biosynthetic pathway for the production of baccatin III in tobacco.


Assuntos
Alcaloides , Sistema Enzimático do Citocromo P-450 , Engenharia Metabólica , Paclitaxel , Proteínas de Plantas , Taxoides , Taxus , Alcaloides/biossíntese , Alcaloides/genética , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Paclitaxel/biossíntese , Taxoides/metabolismo , Taxus/enzimologia , Taxus/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética
3.
J Am Chem Soc ; 146(1): 801-810, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38129385

RESUMO

Taxol is a potent drug used in various cancer treatments. Its complex structure has prompted extensive research into its biosynthesis. However, certain critical steps, such as the formation of the oxetane ring, which is essential for its activity, have remained unclear. Previous proposals suggested that oxetane formation follows the acetylation of taxadien-5α-ol. Here, we proposed that the oxetane ring is formed by cytochrome P450-mediated oxidation events that occur prior to C5 acetylation. To test this hypothesis, we analyzed the genomic and transcriptomic information for Taxus species to identify cytochrome P450 candidates and employed two independent systems, yeast (Saccharomyces cerevisiae) and plant (Nicotiana benthamiana), for their characterization. We revealed that a single enzyme, CYP725A4, catalyzes two successive epoxidation events, leading to the formation of the oxetane ring. We further showed that both taxa-4(5)-11(12)-diene (endotaxadiene) and taxa-4(20)-11(12)-diene (exotaxadiene) are precursors to the key intermediate, taxologenic oxetane, indicating the potential existence of multiple routes in the Taxol pathway. Thus, we unveiled a long-elusive step in Taxol biosynthesis.


Assuntos
Sistema Enzimático do Citocromo P-450 , Taxus , Sistema Enzimático do Citocromo P-450/metabolismo , Paclitaxel/metabolismo , Éteres Cíclicos , Catálise , Taxus/genética , Taxus/metabolismo
4.
J Am Chem Soc ; 145(47): 25894-25902, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37972241

RESUMO

Taxol (1) is a clinically used antineoplastic diterpenoid. The tetracyclic ring system comprises a 6/8/6-membered carbocycle (ABC-ring) and a fused oxetane ring (D-ring) embedded with a bridgehead double bond and decorated with multiple oxygen functionalities. Here, we report a convergent total synthesis of this exceedingly complex natural product. The C-ring fragment was designed to possess a bromocyclohexenone and an extra tetrahydrofuran ring to control the reactivity and selectivity, as well as to minimize functional group manipulations en route to 1. The α-alkoxyacyl telluride of the A-ring served as a radical precursor, and intermolecular radical coupling with the C-ring realized the installation of the C2- and C3-stereocenters and reductive removal of the bromide. After the C8-quaternary stereocenter was constructed by exploiting the three-dimensional shape of the intermediate, the C11-vinyl triflate of A-ring and the C8-methyl ketone of C-ring were utilized for Pd(0)-catalyzed cyclization of the central eight-membered B-ring with the bridgehead olefin. Adjustment of the oxidation level and attachment of the oxetane D-ring completed the total synthesis of 1 (28 steps, as the longest linear sequence). The fragment design principle and implementation of the powerful radical coupling reaction described in the present synthesis provide valuable information for planning and executing syntheses of diverse densely oxygenated terpenoids.


Assuntos
Paclitaxel , Paládio , Paclitaxel/química , Ciclização , Éteres Cíclicos , Estereoisomerismo
5.
J Med Chem ; 66(18): 12697-12709, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37676858

RESUMO

The oxetane ring is an emergent, underexplored motif in drug discovery that shows attractive properties such as low molecular weight, high polarity, and marked three-dimensionality. Oxetanes have garnered further interest as isosteres of carbonyl groups and as molecular tools to fine-tune physicochemical properties of drug compounds such as pKa, LogD, aqueous solubility, and metabolic clearance. This perspective highlights recent applications of oxetane motifs in drug discovery campaigns (2017-2022), with emphasis on the effect of the oxetane on medicinally relevant properties and on the building blocks used to incorporate the oxetane ring. Based on this analysis, we provide an overview of the potential benefits of appending an oxetane to a drug compound, as well as potential pitfalls, challenges, and future directions.


Assuntos
Descoberta de Drogas , Éteres Cíclicos , Éteres Cíclicos/química , Cinética , Solubilidade
6.
Eur J Med Chem ; 261: 115802, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37713805

RESUMO

The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.


Assuntos
Química Farmacêutica , Descoberta de Drogas , Humanos , Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Conformação Molecular
7.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298739

RESUMO

Excited-state chemistry relies on the communication between molecules, making it a crucial aspect of the field. One important question that arises is whether intermolecular communication and its rate can be modified when a molecule is confined. To explore the interaction in such systems, we investigated the ground and excited states of 4'-N,N-diethylaminoflavonol (DEA3HF) in an octa acid-based (OA) confined medium and in ethanolic solution, both in the presence of Rhodamine 6G (R6G). Despite the observed spectral overlap between the flavonol emission and the R6G absorption, as well as the fluorescence quenching of the flavonol in the presence of R6G, the almost constant fluorescence lifetime at different amounts of R6G discards the presence of FRET in the studied systems. Steady-state and time-resolved fluorescence indicate the formation of an emissive complex between the proton transfer dye encapsulated within water-soluble supramolecular host octa acid (DEA3HF@(OA)2) and R6G. A similar result was observed between DEA3HF:R6G in ethanolic solution. The respective Stern-Volmer plots corroborate with these observations, suggesting a static quenching mechanism for both systems.


Assuntos
Éteres Cíclicos , Rodaminas/química , Análise Espectral/métodos
8.
Phytochemistry ; 212: 113719, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169137

RESUMO

Bisbibenzyls are specialized metabolites found exclusively in liverworts, until recently; they represent chemical markers of liverworts. Their occurrence in vascular plants was noticed in 2007, when they were found in Primula veris subsp. macrocalyx from Russia. This report prompted us to chemically analyze the two most common Serbian Primula species, P. veris subsp. columnae and P. acaulis, in order to determine the presence of bisbibenzyls in them. Our study revealed nine structurally distinct bisbibenzyls (1-9), identified based on 1D and 2D NMR, IR, UV and HRESIMS data. Among them were five previously undescribed compounds (2-6). The remaining compounds found and previously described in the literature were: the bisbibenzyls riccardin C (1), isoperrottetin A (7), isoplagiochin E (8) and 11-O-demethylmarchantin I (9), as well as 4-hydroxyphenylmethylketone (10) and 4-hydroxy-3-methoxyphenylmethylketone (11). Riccardin C was the most dominant bisbibenzyl in both species studied. Previously, it was the first bisbibenzyl found in vascular plants (P. veris subsp. macrocalyx). An assessment of the cytotoxic activity of the isolated compounds against A549 lung cancer and healthy MRC5 cell lines was also the subject of our study. Compounds 6 and 9 exhibited significant cytotoxic activity expressed by IC50 values of 12 µM, but the selectivity was not satisfactory.


Assuntos
Hepatófitas , Primula , Primula/química , Sérvia , Éteres Cíclicos , Hepatófitas/química
9.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240291

RESUMO

The aim of the work was to analyze the preferential solvation process, and determine the composition of the solvation shell of cyclic ethers using the calorimetric method. The heat of solution of 1,4-dioxane, 12-crown-4, 15-crown-5 and 18-crown-6 ethers in the mixture of N-methylformamide with water was measured at four temperatures, 293.15 K, 298.15 K, 303.15 K, and 308.15 K, and the standard partial molar heat capacity of cyclic ethers has been discussed. 18-crown-6 (18C6) molecules can form complexes with NMF molecules through the hydrogen bonds between -CH3 group of NMF and the oxygen atoms of 18C6. Using the model of preferential solvation, the cyclic ethers were observed to be preferentially solvated by NMF molecules. It has been proved that the molar fraction of NMF in the solvation shell of cyclic ethers is higher than that in the mixed solvent. The exothermic, enthalpic effect of preferential solvation of cyclic ethers increases with increasing ring size and temperature. The increase in the negative effect of the structural properties of the mixed solvent with increase in the ring size in the process of preferential solvation of the cyclic ethers indicates an increasing disturbance of the mixed solvent structure, which is reflected in the influence of the energetic properties of the mixed solvent.


Assuntos
Éteres de Coroa , Água , Temperatura , Água/química , Éteres Cíclicos , Éteres de Coroa/química , Solventes
10.
Nat Rev Chem ; 7(6): 380, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37237162
11.
Angew Chem Int Ed Engl ; 62(26): e202305287, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37118881

RESUMO

Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm-2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes.


Assuntos
Lítio , Metais , Eletrólitos , Ácidos Carboxílicos , Éteres Cíclicos , Polímeros
12.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049741

RESUMO

EPR imaging techniques are known to be successful tools for mapping living bodies, especially because of the high transparency of tissues in the microwave range. This technique assumes the presence of radicals whose in vivo transport is also controlled by serum albumins. Accordingly, in this study, the interactions between 3-hydroxymethyl-1-oxyl-4-(pyren-1-yl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole radical and the human serum albumin molecules were investigated. To clarify the adsorption processes of this radical onto the surface of human serum albumin (HSA), the interaction of the OMe derivative of the radical was also examined parallel with the studies on the radical-HSA interactions. Considering the solubility issues and also to modulate the transport, inclusion complexes of the radical with a cavitand derivative were also studied. The latter interactions were observed through fluorescence spectroscopy, fluorescence polarization, and by EPR spectroscopy. As a double-sensor molecule, we found that the fluorophore nitroxide is a good candidate as it gave further information about host-guest interactions (fluorescence, fluorescence polarization, and EPR). We also found that in the presence of a cavitand, a complex with greater stability was formed between the sensor molecule and the human serum albumin. Based on these observations, we can conclude that applying this double-sensor (spin, fluorescent) molecule is useful in cases when different interactions can affect the EPR measurements.


Assuntos
Éteres Cíclicos , Resorcinóis , Humanos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Albumina Sérica Humana , Radicais Livres , Marcadores de Spin
13.
Chem Commun (Camb) ; 59(6): 784-787, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36562323

RESUMO

A telescoped three-step sequence to functionalised spirocyclic oxetanes is reported, involving Paternò-Büchi reactions between maleic acid derivatives and cyclic ketones. p-Xylene suppresses the competing alkene dimerization that has plagued previous work, allowing access to 35 novel spirocyclic oxetanes that cannot be prepared using existing methodologies, and which represent versatile intermediates for further elaboration.


Assuntos
Éteres Cíclicos , Cetonas
14.
ACS Chem Biol ; 17(12): 3284-3289, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36454686

RESUMO

Triceptides are ribosomally synthesized and post-translationally modified peptides characterized by three-residue cyclophanes. The cyclophanes are installed by radical SAM/SPASM maturases referred to as 3-residue cyclophane forming enzymes (3-CyFEs) which catalyze C(sp2)-Cß(sp3) bond formation on three residue motifs at the C-terminus of precursor peptides. Here, we bioinformatically map uncharacterized rSAM/SPASM enzymes, referred to as Actinobacterial multiple cyclophane maturases. The enzyme FwwB from Actinospira robinae was selected for in vivo functional studies in Escherichia coli, and was found to catalyze formation of multiple Phe- and Trp-derived 3-residue cyclophanes. FwwB was shown to accept a series of engineered substrates but showed specificity for the native 3-residue motif.


Assuntos
Actinobacteria , Peptídeos , S-Adenosilmetionina , Humanos , Peptídeos/química , S-Adenosilmetionina/química , Actinobacteria/enzimologia , Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Proteínas de Bactérias/química
15.
J Am Chem Soc ; 144(51): 23677-23684, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36529936

RESUMO

Controlling bottom-up syntheses from chiral seeds to construct architectures with specific chiralities is currently challenging. Herein, a twisted chiral cavitand with 5-fold symmetry was constructed by bottom-up synthesis using corannulene as the chiral seed and pillar[5]arene as the chiral wall. After docking between the seed and the wall, their dynamic chiralities (M and P) are fixed. Moreover, the formed hedges also exhibit M and P chirality. Through dynamic covalent bonding, the thermodynamically stable product is obtained selectively as a pair of enantiomers (MMM and PPP), where all three subcomponents, i.e., the corannulene, hedges, and pillar[5]arene, are tilted in the same direction. Furthermore, the twisted cavitand exhibits length-selective binding to alkylene dibromides, with three maximum binding constants being unexpectedly observed.


Assuntos
Calixarenos , Gastrópodes , Animais , Éteres Cíclicos
16.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364331

RESUMO

Supramolecular recognition of dopamine by two quinoxaline cavitands was studied in solution by fluorescence titrations, ESI-MS and ROESY measurements. In addition, the tetraquinoxaline cavitand was dropped onto a siloxane-based polymeric solid support, obtaining a sensor able to detect dopamine in a linear range of concentrations 10 Mm-100 pM, with a detection limit of 1 pM, much lower than the normal concentration values in the common human fluids (plasma, urine and saliva), by using a simple smartphone as detector. This sensor shows also good selectivity for dopamine respect to the other common analytes contained in a saliva sample and can be reused after acid-base cycles, paving the way for the realization of real practical sensor for human dopamine detection.


Assuntos
Dopamina , Smartphone , Humanos , Éteres Cíclicos , Corantes Fluorescentes , Limite de Detecção
17.
Acc Chem Res ; 55(23): 3537-3550, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36384272

RESUMO

The stereoselective intermolecular bond-forming reactions through the direct manipulation of ubiquitous yet inert C(sp3)-H bonds represent an important and long-standing goal in chemistry. In particular, developing such a stereoselective bimolecular transformation involving carbocation intermediates generated via site-selective hydride abstraction or formal hydride abstraction by organic oxidants would avoid the preinstallation of directing groups and is therefore attractive. Hydride-abstraction-initiated bimolecular transformations have received considerable attention, but existing examples lack stereoselective studies. Prevalent stereoselective studies typically suffer from the narrow substrate scope of specific and highly reactive N-aryl amines and diarylmethanes together with limited synthetic utility. This Account describes our recent advances in the development and synthetic application of hydride-abstraction-initiated stereoselective intermolecular C-C and C-H bond-forming processes with significantly expanded scopes involving structurally diverse N-acyl amines and ethers together with nitriles, esters, and perfluoroalkyl moieties.We first explored hydride-abstraction-initiated stereoselective intermolecular C-C bond-forming processes. Utilizing triarylmethyl cations or oxoammonium ions as hydride abstractors, we accomplished the diastereoselective oxidative C-H functionalization of structurally diverse N-acyl amines and ethers with a range of organoboranes and C-H components, efficiently installing a series of alkyl, alkenyl, aryl, and alkynyl species into the α-position of heteroatoms with good levels of diastereocontrol. Subsequently, we developed an "acetal pool" strategy as the toolbox to regulate the stability of cationic intermediates and the compatibility of organic oxidants with a delicate asymmetric catalysis system. Utilizing this strategy, we achieved the catalytic enantioselective oxidative C-H alkenylation, arylation, alkynylation, and alkylation of diverse N-acyl heterocycles with a range of boronates and C-H components. Simultaneously, we extended this strategy to the asymmetric oxidative C-H alkylation of ethers. Notably, the method allows solvents that are used daily, such as tetrahydrofuran, tetrahydropyran, and diethyl ether, to be facilely transformed to high-value-added optically pure bioactive molecules. We further expanded the scope of this challenging area from the C(sp3)-H bond adjacent to electron-donating heteroatoms to valuable electron-withdrawing functional groups including nitriles, esters, and perfluoroalkyl moieties for the stereoselective construction of single and vicinal quaternary carbon stereocenters, respectively.We studied hydride-abstraction-initiated catalytic asymmetric intermolecular C-H bond-forming processes, known as redox deracemization. Utilizing the acetal pool strategy, we reported the first redox deracemization of cyclic benzylic ethers. Later, we disclosed an aerobic one-pot deracemization of diverse α-amino acid derivatives with excellent functional group compatibility. We further achieved the deracemization of the tertiary stereogenic center adjacent to electron-withdrawing groups including perfluoroalkyl, cyano, and ester moieties, which are otherwise difficult to construct.


Assuntos
Acetais , Fluorocarbonos , Catálise , Aminas/química , Éteres/química , Carbono/química , Éteres Cíclicos , Nitrilas , Oxidantes
18.
Bioorg Med Chem Lett ; 76: 129014, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36202189

RESUMO

Starting from an already known MMP-13 inhibitor, 1, we pursued an SAR-approach focusing on optimizing interactions close to the Zn2+ binding site of the enzyme. We found the oxetane containing compound 32 (MMP-13 IC50 = 42 nM), which exhibited complete inhibition of collagenolysis in in vitro studies and an excellent selectivity profile among the MMP family. Interestingly, docking studies propose that the oxetane ring in 32 is oriented towards the Zn2+ ion for chelating the metal ion. Chelating properties of MMP13-inhibitors are often connected with non-selectivity within the enzyme family. Compound 32 demonstrates a rare example where the selectivity can be explained via combinatorial effects of interactions within the S1' loop and a chelating effect of the oxetane moiety. Furthermore, in vivo pharmacokinetic studies were performed demonstrating a concentration of 1.97 µM of 32 within the synovial fluid of the rat knee joint, which makes the compound a promising lead compound for further optimization and development for osteoarthritis.


Assuntos
Éteres Cíclicos , Inibidores de Metaloproteinases de Matriz , Ratos , Animais , Metaloproteinase 13 da Matriz/química , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Quelantes/farmacologia , Quelantes/química , Zinco/química
20.
Chemistry ; 28(72): e202202416, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36168151

RESUMO

We report Pd-catalyzed cyclotrimerization of (+)-α-bromoenone, obtained from monoterpene ß-pinene, into an enantiopure cyclotrimer. This C3 symmetric compound has three bicyclo[3.1.1]heptane rings fused to its central benzene with each ring carrying a carbonyl group. The cyclotrimer undergoes diastereoselective threefold alkynylation with the lithium salts of five terminal alkynes (41-63 %, de=4-83 %). The addition enabled a rapid synthesis of a small library of novel chiral cavitands that, in shape, resemble a tripod stand. These molecular tripods include a tris-bicycloannelated benzene head attached to three alkyne legs twisted in one direction to form a nonpolar cavity with polar groups as feet. Tripods with methylpyridinium and methylisoquinolinium legs, respectively, form inclusion complexes with anti-inflammatory and chiral drugs (R)/(S)-ibuprofen and (R)/(S)-naproxen. The mode of binding shows drug molecules docked in the cavity of the host through ion-ion, cation-π, and C-H-π contacts that, in addition of desolvation, give rise to complexes having millimolar to micromolar stability in water. Our findings open the door to creating a myriad of enantiopure tripods with tunable functions that, in the future, might give novel chemosensors, catalysts or sequestering agents.


Assuntos
Benzeno , Naproxeno , Naproxeno/química , Éteres Cíclicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...