Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.218
Filtrar
1.
Methods Mol Biol ; 2798: 141-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587740

RESUMO

Carotenoids and tocopherols are among the most powerful lipophilic antioxidants accumulated in fruit and vegetable crops. This chapter describes a method for the separation and quantification of carotenoids/chlorophylls and tocopherols based on microextraction followed by reverse- and normal-phase HPLC, respectively. Using this method, high-throughput, accurate analysis of these compounds can be performed in leaf and fruit samples.


Assuntos
Carotenoides , Tocoferóis , Frutas , Vitamina E , Antioxidantes
2.
Free Radic Biol Med ; 216: 46-49, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458392

RESUMO

Since the discovery of tocopherols a century ago, α-tocopherol has been distinguished for its unique biological functions. In this study, we aim to elucidate the unique characteristics of α-tocopherol from a chemical perspective. Utilizing density functional theory (DFT) calculations, we evaluated the thermodynamic and kinetic properties of tocopherols, tocotrienols and their oxidation products. Our findings highlight the superior thermodynamic and kinetic properties of α-tocopherol. Although tocopherol substrates generally exhibit similar reactivities, α-tocopherol is distinguished by a larger gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in intermediates, indicating a potential for greater energy release and favoring reaction progression. Moreover, α-tocopherol shows enhanced efficiency in quenching radical intermediates, especially when combined with vitamin C. All these dates provide valuable support for the naming of vitamin E.


Assuntos
Antioxidantes , Tocotrienóis , Antioxidantes/química , Vitamina E , alfa-Tocoferol , Tocoferóis
3.
J Oleo Sci ; 73(3): 275-292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432993

RESUMO

Roselle is an annual botanical plant that widely planted in different countries worldwide. Its different parts, including seeds, leaves, and calyces, can offer multi-purpose applications with economic importance. The present review discusses the detailed profile of bioactive compounds present in roselle seeds, leaves, and calyces, as well as their extraction and processing, to explore their potential application in pharmaceutical, cosmetic, nutraceutical, food and other industries. Roselle seeds with high phenolics, fiber, and protein contents, which are suitable to use in functional food product development. Besides, roselle seeds can yield 17-20% of roselle seed oil with high content of linoleic acid (35.0-45.3%) and oleic acid (27.1- 36.9%). This unique fatty acid composition of roselle seed oil makes it suitable to use as edible oil to offer the health benefits of essential fatty acid. Moreover, high contents of tocopherols, phenolics, and phytosterols were detected in roselle seed oil to provide nutritional, pharmaceutical, and therapeutic properties. On the other hand, roselle leaves with valuable contents of phenols, flavonoids, organic acid, and tocopherols can be applied in silver nanoparticles, food product development, and the pharmaceutical industry. Roselle calyces with high content of anthocyanins, protocatechuic acids, and organic acids are widely applied in food and colorant industries.


Assuntos
Hibiscus , Nanopartículas Metálicas , Antocianinas , Prata , Sementes , Fenóis , Tocoferóis , Preparações Farmacêuticas , Óleos de Plantas
4.
J Oleo Sci ; 73(4): 393-409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556275

RESUMO

Cold-pressed oils are oils prepared from pressing plant materials with a screw or hydraulic press, yielding oils with little contamination of harmful chemicals and high content of nutrients and functional constituents. Cold-pressed oils have gained increasing recognition as food supplements for preventing and ameliorating body deterioration due to ageing and the progression of lifestyle diseases or non-communicable diseases. This article aimed to review their structure, bioactivity, and chromatographic analysis of the mostly found functional compounds in cold-pressed oils, including phytosterols, carotenoids, tocols (tocopherols and tocotrienols), phenolic compounds (flavonoids, phenolic acids, tannins, stilbenes, and lignans), and squalene.


Assuntos
Óleos de Plantas , Carotenoides/análise , Fitosteróis/análise , Óleos de Plantas/química , Tocoferóis/análise
5.
J Nanobiotechnology ; 22(1): 50, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317220

RESUMO

Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.


Assuntos
Adipogenia , Ácidos Linoleicos Conjugados , Tocoferóis , Masculino , Humanos , Ratos , Animais , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Distribuição Tecidual , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo
6.
Biochem J ; 481(4): 279-293, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38314636

RESUMO

Tocopherols are lipophilic antioxidants known as vitamin E and synthesized from the condensation of two metabolic pathways leading to the formation of homogentisate and phytyl diphosphate. While homogentisate is derived from tyrosine metabolism, phytyl diphosphate may be formed from geranylgeranyl diphosphate or phytol recycling from chlorophyll degradation. Here, we hypothesized that abscisic acid (ABA) could induce tocopherol biosynthesis in sweet cherries by modifying the expression of genes involved in vitamin E biosynthesis, including those from the phytol recycling pathway. Hence, the expression of key tocopherol biosynthesis genes was determined together with vitamin E and chlorophyll contents during the natural development of sweet cherries on the tree. Moreover, the effects of exogenously applied ABA on the expression of key tocopherol biosynthesis genes were also investigated during on-tree fruit development, and tocopherols and chlorophylls contents were analyzed. Results showed that the expression of tocopherol biosynthesis genes, including VTE5, VTE6, HPPD and HPT showed contrasting patterns of variation, but in all cases, increased by 2- and 3-fold over time during fruit de-greening. This was not the case for GGDR and VTE4, the first showing constitutive expression during fruit development and the second with marked down-regulation at ripening onset. Furthermore, exogenous ABA stimulated the production of both α- and γ-tocopherols by 60% and 30%, respectively, promoted chlorophyll degradation and significantly enhanced VTE5 and VTE6 expression, and also that of HPPD and VTE4, altogether increasing total tocopherol accumulation. In conclusion, ABA increases promote the transcription of phytol recycling enzymes, which may contribute to vitamin E biosynthesis during fruit development in stone fruits like sweet cherries.


Assuntos
Difosfatos , Prunus avium , Vitamina E , Vitamina E/metabolismo , Frutas , Prunus avium/metabolismo , Ácido Abscísico/metabolismo , Tocoferóis/metabolismo , Clorofila/metabolismo , Fitol/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
BMC Plant Biol ; 24(1): 108, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347449

RESUMO

Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.


Assuntos
Brassica napus , Metais Pesados , Poluentes do Solo , Antioxidantes/metabolismo , alfa-Tocoferol/farmacologia , alfa-Tocoferol/metabolismo , Brassica napus/metabolismo , Cloreto de Mercúrio/toxicidade , Cloreto de Mercúrio/metabolismo , Tocoferóis/metabolismo , Tocoferóis/farmacologia , Metais Pesados/metabolismo , Prolina/metabolismo , Poluentes do Solo/metabolismo
8.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398559

RESUMO

Popcorn is a specialty maize variety with popping abilities. Although considered a snack, popcorn flakes provide a variety of benefits for the human diet. To evaluate the change in content of bioactive compounds in response to microwave popping, the kernels and flakes of twelve popcorn hybrids were assayed. Accordingly, the content of phytic acid, glutathione, phenolic compounds, carotenoids, and tocopherols, as well as the antioxidant activity, were evaluated. In all evaluated popcorn hybrids, the most pronounced significant average decrease of 71.94% was observed for GSH content, followed by 57.72% and 16.12% decreases for lutein + zeaxanthin and phytic acid content, respectively. In response to popping, in the majority of the evaluated hybrids, the most pronounced significant average changes of a 63.42% increase and a 27.61% decrease were observed for DPPH, followed by a 51.52% increase and a 24.48% decrease for ß-carotene, as well as, a 48.62% increase and a 16.71% decrease for α-Tocopherol content, respectively. The applied principal component and hierarchical cluster analyses revealed the distinct separation of popcorn hybrids' kernels and flakes, indicating the existence of a unique linkage of changes in bioactive compound content in response to popping.


Assuntos
Carotenoides , Ácido Fítico , Humanos , Antioxidantes , beta Caroteno , Tocoferóis , Zea mays/química , Glutationa
9.
Fitoterapia ; 174: 105857, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354821

RESUMO

Mauritia flexuosa, known as buriti in Brazil, is a widespread palm tree in Amazonia. It has many ethnobotanical uses, including food, oil, and medicine. The oil obtained from buriti's fruit pulp has high levels of monounsaturated fatty acids, carotenoids, and tocopherols, and is used in the food, cosmetic, and pharmaceutical industries for its antioxidant properties. Many biological activities have been reported for buriti oil, such as antioxidant, antimicrobial, chemopreventive, and immunomodulatory. Due to its high content of bioactive compounds, buriti oil is considered a functional ingredient with possible benefits in preventing oxidative stress and chronic diseases, particularly in the gastrointestinal tract. Peptic ulcer disease is a multifactorial disorder, involving lesions in the stomach and duodenum mucosa, which has a complex healing process. In this context, some nutrients and bioactive compounds help the maintenance of gastrointestinal mucosal integrity and function, such as carotenoids, tocopherols, and unsaturated fatty acids, which makes buriti oil an interesting candidate to be used in the prevention and management of gastrointestinal diseases. This study aimed to evaluate the gastroprotective and antiulcer effects of buriti oil and its possible mechanisms of action. Buriti oil reduced the ulcerative area and lipid peroxidation induced by ethanol. The gastroprotective activity of buriti oil partially depends on nitric oxide and sulfhydryl compounds. In acetic acid-induced gastric ulcers, buriti oil accelerated healing and stimulated the formation of new gastric glands. These results demonstrated the potential of buriti oil as a functional ingredient to promote health benefits in the gastrointestinal tract.


Assuntos
Antioxidantes , Arecaceae , Óleos de Plantas , Antioxidantes/farmacologia , Promoção da Saúde , Estrutura Molecular , Carotenoides/farmacologia , Tocoferóis/farmacologia
10.
Cancer Epidemiol Biomarkers Prev ; 33(4): 480-488, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38284815

RESUMO

BACKGROUND: Despite the various anticancer activities of tocopherols, little is known about tocopherols associated with lung cancer risk among low-income African Americans (AA) and European Americans (EA) who are disproportionately affected by the disease. METHODS: We conducted a nested case-control study that included 209 incident lung cancer cases and 406 matched controls within the Southern Community Cohort Study. Using biospecimens collected at cohort enrollment, plasma levels of α-, ß/γ-, δ-, and total-tocopherols were measured by high-performance liquid chromatography with photodiode array detection. Conditional logistic regression was used to estimate ORs and 95% confidence intervals (CI) for lung cancer risk after adjusting for potential confounders. Stratified analyses were also conducted. RESULTS: Plasma levels of total-tocopherols were inversely associated with lung cancer risk overall [OR (95% CI) for the highest vs. lowest tertile = 0.51 (0.30-0.90)]. The inverse association remained significant among EAs [0.20 (0.06-0.65)], men [0.43 (0.21-0.90)], current smokers [0.49 (0.26-0.93)], and cases diagnosed within 2 years of blood draw [0.36 (0.15-0.86)], though we did not find a significant risk reduction among AAs [0.75 (0.39-1.45)]. Notably, we found significant interactions between α-tocopherol and race after controlling the FDR to correct for multiple comparisons (Pinteraction = 0.02). CONCLUSIONS: Our results indicate that plasma total-tocopherols are inversely associated with lung cancer risk, but the association may differ across specific isomeric forms of tocopherols, race, or other individuals' characteristics. Further large-scale studies are warranted to confirm our findings. IMPACT: Recommendations on tocopherols for lung cancer prevention should take isomers, race, and smoking behaviors into consideration.


Assuntos
Neoplasias Pulmonares , Tocoferóis , Masculino , Humanos , Estudos de Coortes , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Estudos de Casos e Controles , Modelos Logísticos , Fatores de Risco
11.
J Agric Food Chem ; 72(2): 1146-1161, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181192

RESUMO

Tocotrienols and tocopherols (vitamin E) are potent antioxidants that are synthesized in green plants. Unlike ubiquitous tocopherols, tocotrienols predominantly accumulate in the endosperm of monocot grains, catalyzed by homogentiate geranylgeranyl transferase (HGGT). Previously, we generated a tocotrienol-deficient hvhggt mutant with shrunken barley grains. However, the relationship between tocotrienols and grain development remains unclear. Here, we found that the hvhggt lines displayed hollow endosperms with defective transfer cells and reduced aleurone layers. The carbohydrate and starch contents of the hvhggt endosperm decreased by approximately 20 and 23%, respectively. Weighted gene coexpression network analyses identified a critical gene module containing HvHGGT, which was strongly associated with the hvhggt mutation and enriched with gene functions in starch and sucrose metabolism. Metabolome measurements revealed an elevated soluble sugar content in the hvhggt endosperm, which was significantly associated with the identified gene modules. The hvhggt endosperm had significantly higher NAD(H) and NADP(H) contents and lower levels of ADPGlc (regulated by redox balance) than the wild-type, consistent with the absence of tocotrienols. Interestingly, exogenous α-tocotrienol spraying on developing hvhggt spikes partially rescued starch accumulation and endosperm defects. Our study supports a potential novel function of tocotrienols in grain starch accumulation and endosperm development in monocot crops.


Assuntos
Hordeum , Tocotrienóis , Tocotrienóis/metabolismo , Endosperma/química , Amido/metabolismo , Transcriptoma , Tocoferóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma
12.
Molecules ; 29(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276603

RESUMO

Extra virgin olive oil (EVOO) is a valuable product and is highly appreciated by consumers for its great nutritional value. However, to date, there has been a lack of uniform systems capable of ranking the nutritional value of EVOO based on its chemical composition in terms of macro- and micronutrients (including phenolic compounds and tocopherols). The aim of this study was to propose a scoring algorithm to rank the nutritional value of EVOO samples, considering their chemical composition in macro- and micronutrients and their sensitivity to oxidation phenomena. Data from more than 1000 EVOO samples were used to assess the variability of the data, considering the selected negative parameters (free acidity, peroxide value, spectrophotometric indices) and positive components (composition in tocopherols via HPLC-DAD, phenolic compounds via HPLC-DAD, and fatty acids via GC-MS) so as to ensure the universal validity of the scoring algorithm. The dataset included samples from the main producing countries worldwide, in addition to Australia, across several production years; data were selected to represent different production realities. A mathematical model was set up for each chemical component, resulting in six variable values. By combining these values with a dimensionless constant value, the algorithm for computing the nutritional value score (NVS) was defined. It allows the nutritional value of an oil to be ranked on a scale of 0 to 100 based on its chemical composition. The algorithm was then successfully tested using chemical data from about 300 EVOO samples obtained from laboratories from different Italian regions. The proposed NVS is a simple and objective tool for scoring the nutritional value of an EVOO, easy to understand for both producers and consumers.


Assuntos
Olea , Azeite de Oliva/química , Olea/química , Fenóis/química , Tocoferóis/análise , Valor Nutritivo , Micronutrientes
13.
J Oleo Sci ; 73(1): 45-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171730

RESUMO

Hot-pressed rapeseed oils with pleasant flavor, i.e., fragrant rapeseed oils, are favored by consumers, especially people from the southwest provinces of China. Although degumming is an important section in producing edible rapeseed oils, conventional degumming techniques are generally suffered from disadvantages such as moisture control, and large losses of micronutrients and flavors. In the present paper, hot-pressed rapeseed oils were treated with silica hydrogel to remove their gums, and changes in phospholipids, acid values, peroxide values, tocopherols, total phenols, and flavor compounds were analyzed to compare the silica hydrogel-degumming with conventional methods. The optimized conditions were suggested to be carried out at 45°C for 15 min, and the silica hydrogel dosage was 1.10%. More than 97.00% of phospholipids were removed after the degumming, and more than 85.00% of micronutrients, were retained in the treated oils. The degumming efficiency was therefore significantly higher than those operated by conventional acid degumming and soft degumming techniques. It was found that the dosage of the silica hydrogel significantly affected the removal rate of phospholipids compared with degumming time and temperature. There were nearly typical volatile compounds found in the rapeseed oils, while most of them kept almost stable after the silica hydrogel-degumming. In this regard, silica hydrogel adsorption exhibited little effect on volatile compounds, making it more suitable for the production of fragrant rapeseed oils.


Assuntos
Hidrogéis , Tocoferóis , Humanos , Óleo de Brassica napus , Temperatura , Micronutrientes , Óleos de Plantas
14.
Sci China Life Sci ; 67(3): 435-448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38289421

RESUMO

Tocopherol is an important lipid-soluble antioxidant beneficial for both human health and plant growth. Here, we fine mapped a major QTL-qVE1 affecting γ-tocopherol content in maize kernel, positionally cloned and confirmed the underlying gene ZmPORB1 (por1), as a protochlorophyllide oxidoreductase. A 13.7 kb insertion reduced the tocopherol and chlorophyll content, and the photosynthetic activity by repressing ZmPORB1 expression in embryos of NIL-K22, but did not affect the levels of the tocopherol precursors HGA (homogentisic acid) and PMP (phytyl monophosphate). Furthermore, ZmPORB1 is inducible by low oxygen and light, thereby involved in the hypoxia response in developing embryos. Concurrent with natural hypoxia in embryos, the redox state has been changed with NO increasing and H2O2 decreasing, which lowered γ-tocopherol content via scavenging reactive nitrogen species. In conclusion, we proposed that the lower light-harvesting chlorophyll content weakened embryo photosynthesis, leading to fewer oxygen supplies and consequently diverse hypoxic responses including an elevated γ-tocopherol consumption. Our findings shed light on the mechanism for fine-tuning endogenous oxygen concentration in the maize embryo through a novel feedback pathway involving the light and low oxygen regulation of ZmPORB1 expression and chlorophyll content.


Assuntos
Tocoferóis , Zea mays , Humanos , Tocoferóis/metabolismo , Zea mays/genética , Zea mays/metabolismo , gama-Tocoferol/metabolismo , Peróxido de Hidrogênio/metabolismo , Fotossíntese/genética , Clorofila/metabolismo , Hipóxia , Oxigênio/metabolismo
15.
Fitoterapia ; 172: 105707, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866421

RESUMO

Dittrichia viscosa belongs to the Dittrichia genus, it grows abundantly in the east and northeast of Morocco, and traditionally its fresh leaves are crushed and given for topical application after burns, wounds, and infections. In this study, we examine the wound-healing activity of Dittrichia viscosa lipidic extract in vivo, assess its anti-microbial effect, and explore the specific compounds that contribute to these effects. To assess the effectiveness of wound healing, a burn-induced wound model was employed in Wistar rats, and the levels of hydroxyproline as well as histopathological changes in the skin tissues were evaluated. Furthermore, the antimicrobial potential against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Candida glabrata, and Malassezia furfur was investigated using the agar disc diffusion method. Gas Chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) techniques were employed to analyze the composition of fatty acids, phytosterols, and tocopherols. Topical application of Dittrichia viscosa lipidic fraction ointment exhibited significant improvements in wound contraction, achieving an impressive rate of 82% within 21 days. Additionally, the lipidic extract of Dittrichia viscosa displayed notable efficacy against various microbial strains, including Candida albicans (25.07 ± 0.2), Candida glabrata (24 ± 0.6), and Malassezia furfur (22 ± 0.7). The primary fatty acids identified in the sample were linolenic acid (58.95% ± 0), oleic acid (16.75% ±0.04), and linoleic acid (11.97% ± 0.1). Notably, the sample contained significant amounts of γ-Tocopherols (732.08 ± 21mg/kg), while the sterol fraction primarily consisted of 7-Campesterol (1937 ± 0 mg/kg), 7-ß-Sitosterol (1621 ± 0 mg/kg), and Stigmasterol (1439 ± 26 mg/kg). By its richness in active compound content, Dittrichia viscosa effectively accelerates wound healing while safeguarding against microbial infections.


Assuntos
Anti-Infecciosos , Extratos Vegetais , Ratos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ratos Wistar , Antioxidantes/farmacologia , Estrutura Molecular , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Cicatrização , Candida albicans , Tocoferóis/farmacologia , Ácidos Graxos
16.
J Sci Food Agric ; 104(4): 1953-1961, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37897493

RESUMO

BACKGROUND: A new enzymatic hydrolysis-based process inspired by the Maillard reaction can produce strong flavored, high-value rapeseed oil that meets safety requirements. In the present study, the effect of reaction time (10-30 min) and temperature (130-160 °C) on the physicochemical properties, nutritional status, fatty acids composition and key aroma compounds of fragrant rapeseed oil (FRO) was investigated. RESULTS: An increasing reaction time and temperature substantially decreased the total tocopherol, polyphenol and sterol contents of FRO, but increased benzo[a]pyrene content, as well as the acid and peroxide values, which did not exceed the European Union legislation limit. Among the volatile components, 2,5-dimethyl was the main substance contributing to the barbecue flavor of FRO. The 150 °C for 30 min reaction conditions produced a FRO with a strong, fragrant flavor, with high total tocopherol (560.15 mg kg-1 ), polyphenol (6.82 mg kg-1 ) and sterol (790.65 mg kg-1 ) contents; acceptable acid (1.60 mg g-1 ) and peroxide values (4.78 mg g-1 ); and low benzo[a]pyrene (1.39 mg g-1 ) content. These were the optimal conditions for the enzymatic Maillard reaction, according to the principal component analysis. Furthermore, hierarchical cluster analysis showed that reaction temperature had a stronger effect on FRO than reaction time. CONCLUSION: The optimal enzymatic Maillard reaction conditions for the production of FRO are heating at 150 °C for 30 min. These findings provide new foundations for better understanding the composition and flavor profile of FRO, toward guiding its industrial production. © 2023 Society of Chemical Industry.


Assuntos
Reação de Maillard , Compostos Orgânicos Voláteis , Óleo de Brassica napus/química , Ácidos Graxos , Odorantes/análise , Estado Nutricional , Benzo(a)pireno , Compostos Orgânicos Voláteis/química , Polifenóis/análise , Peróxidos , Esteróis , Tocoferóis
17.
Environ Sci Pollut Res Int ; 31(2): 2156-2166, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38055172

RESUMO

This study was planned to detect the adverse pathological consequences of aflatoxin B1 in White Leghorn (WLH) layer breeder males. Eight-week-old male layer cockerels were separated into six experimental categories: A group was kept as negative control, offered with normal feed only; group B was fed with 400 ppb amount of aflatoxin, while groups F and D fed with normal feed and supplemented with vitamin E 100 ppm and 1% Moringa oleifera, respectively, whereas groups E and C were fed with 400 ppb aflatoxin containing feed and ameliorated with vitamin E 100 ppm and 1% Moringa oleifera, respectively. This study was continued for 2 months and immunologic disorders and reproductive parameters were observed during the trial. To find out immunological status lymphoproliferative response to phytohemagglutinin-P (PHA-P), antibody titers against sheep red blood cells (SRBCs) and carbon clear assay were performed by collecting samples from five birds from each group. The whole data was measured by ANOVA test, and group means were compared by DMR test by using M-Stat C software. Regarding the reproductive status, spermatogenesis, blood testosterone level, testes weight, testes histology, sperm motility, and morphology were negatively affected by aflatoxins, but these deviations positively ameliorated by vitamin E and Moringa. Vitamin E and Moringa found advantageous in boosting the immune status of affected bird. All the immunological parameters including antibody titers against sheed red blood cells, lymphoproliferative response to avian tuberculin and phagocytic potential of macrophages were suppressed by AFB1 however in control, Moringa and vitamin E groups these immunological responses were significantly higher.


Assuntos
Aflatoxinas , Moringa oleifera , Animais , Masculino , Ração Animal/análise , Galinhas , Motilidade dos Espermatozoides , Tocoferóis , Vitamina E/farmacologia
18.
Mult Scler Relat Disord ; 81: 105143, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039941

RESUMO

BACKGROUND: Retinol, tocopherols, and carotenoids (RTC) have physiological roles as vitamins, pro-vitamins, and antioxidants, and provide biomarkers of dietary vegetable and fruit intake. The goal was to investigate RTC in multiple sclerosis (MS). METHODS: This exploratory study included 106 people with MS (71 relapsing-remitting MS or RR-MS; and 35 progressive MS or PMS) and 31 healthy controls (HC) at baseline and 5-year follow-up (5YFU). Serum retinol, α-carotene, ß-carotene, α-tocopherol, δ-tocopherol, γ-tocopherol, ß-cryptoxanthin, lutein/zeaxanthin, and lycopene were measured using high performance liquid chromatography. Serum neurofilament light chain (sNfL) levels were measured using the single molecule array method. Expanded Disability Status Scale (EDSS) and low contrast letter acuity (LCLA) were used as disability measures. RESULTS: Retinol in MS was positively correlated with α-carotene, ß-carotene, ß-cryptoxanthin, lutein/zeaxanthin, and α-tocopherol but negatively correlated with δ-tocopherol. EDSS was associated with α-tocopherol, δ-tocopherol, and lycopene. Greater retinol levels were associated with greater LCLA in RR-MS and PMS; high contrast visual acuity was not associated. Greater γ-tocopherol levels were associated with lower LCLA and high contrast visual acuity in PMS. CONCLUSIONS: RTC exhibit distinctive associations with LCLA and EDSS in MS.


Assuntos
Esclerose Múltipla , Vitamina A , Humanos , Tocoferóis , Seguimentos , beta Caroteno , Licopeno , gama-Tocoferol , alfa-Tocoferol , Luteína , Zeaxantinas , beta-Criptoxantina , Carotenoides , Vitaminas
19.
Food Funct ; 15(1): 183-195, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38019686

RESUMO

Anticancer effects of vitamin E (tocopherols) have been studied extensively. While in vitro and animal studies showed promising results regarding anticancer effects of tocopherols, human intervention studies failed to reproduce these results. In vivo, α-tocopherol (α-TOH) is metabolized to the long-chain metabolites (LCM) 13'-hydroxychromanol (α-13'-OH) and 13'-carboxychromanol (α-13'-COOH), which likely reach the large intestine. The LCM showed antiproliferative effects in different colon cancer cell lines, but the exact mechanism of action remains unclear. To further clarify the chemopreventive action of the LCM, premalignant LT97 colon adenoma cells were treated with α-TOH, α-13'-OH and α-13'-COOH to study their impact on growth, apoptosis, antigenotoxicity, and ROS-scavenging capacity as well as expression of selected genes involved in detoxification and the cell cycle. Growth inhibitory potential was observed for α-13'-OH (IC50: 37.4 µM) and α-13'-COOH (IC50: 5.8 µM) but not for α-TOH in the tested concentrations. Levels of caspase-3 activity and expression of genes regulating the cell cycle and detoxification remained unchanged. However, α-TOH, α-13'-OH and α-13'-COOH exhibited antigenotoxic and partly ROS-scavenging capacity. The results indicate that the LCM exert chemopreventive effects via ROS-scavenging capacity, the protection against DNA damage and the induction of cell death via caspase-independent mechanisms in premalignant colon cells.


Assuntos
Adenoma , Neoplasias do Colo , Animais , Humanos , alfa-Tocoferol/farmacologia , alfa-Tocoferol/metabolismo , Espécies Reativas de Oxigênio , Tocoferóis , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/prevenção & controle , Adenoma/tratamento farmacológico , Adenoma/prevenção & controle
20.
Food Chem ; 438: 138052, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38006698

RESUMO

Walnut oils were obtained by supercritical carbon dioxide extraction (SCB), cold-pressing (CP), hexane extraction (HE), and subcritical butane extraction (SBE), and walnut protein isolates (WPI) from the walnut cakes were performed. The results indicate that SCB has the highest oil yield for walnut oil, which was 62.72%, and the total content of trace nutrients (total tocopherols, total phytosterols, and total phenolic compounds) in SCB-walnut oil was also the highest at 2186.75 mg/kg, approximately 1.05 times higher than CP-walnut oil and 1.21 times higher than SBE-walnut oil. Meanwhile, the treatment of WPI with SCB results in a decrease in ß-Sheet and α-Helix structures and an increase in ß-Turn and Random coil structures. Thereby increasing its oil-holding capacity (OHC) and solubility by approximately 1.16 times and 1.27 times compared to CP, respectively. Interestingly, SCB as a green oil production technology, also has good prospects for retaining WPI functionality characteristics.


Assuntos
Juglans , Juglans/química , Óleos de Plantas/química , Tocoferóis , Antioxidantes/química , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...