Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.716
Filtrar
1.
Cell Mol Life Sci ; 81(1): 113, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436697

RESUMO

APE1 is an essential gene involved in DNA damage repair, the redox regulation of transcriptional factors (TFs) and RNA processing. APE1 overexpression is common in cancers and correlates with poor patient survival. Stress granules (SGs) are phase-separated cytoplasmic assemblies that cells form in response to environmental stresses. Precise regulation of SGs is pivotal to cell survival, whereas their dysregulation is increasingly linked to diseases. Whether APE1 engages in modulating SG dynamics is worthy of investigation. In this study, we demonstrate that APE1 colocalizes with SGs and promotes their formation. Through phosphoproteome profiling, we discover that APE1 significantly alters the phosphorylation landscape of ovarian cancer cells, particularly the phosphoprofile of SG proteins. Notably, APE1 promotes the phosphorylation of Y-Box binding protein 1 (YBX1) at S174 and S176, leading to enhanced SG formation and cell survival. Moreover, expression of the phosphomutant YBX1 S174/176E mimicking hyperphosphorylation in APE1-knockdown cells recovered the impaired SG formation. These findings shed light on the functional importance of APE1 in SG regulation and highlight the importance of YBX1 phosphorylation in SG dynamics.


Assuntos
Neoplasias Ovarianas , Grânulos de Estresse , Humanos , Feminino , Fosforilação , Neoplasias Ovarianas/genética , Endodesoxirribonucleases , Proteína 1 de Ligação a Y-Box/genética
2.
PLoS Genet ; 20(3): e1011140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427688

RESUMO

During meiosis, genetic recombination is initiated by the formation of many DNA double-strand breaks (DSBs) catalysed by the evolutionarily conserved topoisomerase-like enzyme, Spo11, in preferred genomic sites known as hotspots. DSB formation activates the Tel1/ATM DNA damage responsive (DDR) kinase, locally inhibiting Spo11 activity in adjacent hotspots via a process known as DSB interference. Intriguingly, in S. cerevisiae, over short genomic distances (<15 kb), Spo11 activity displays characteristics of concerted activity or clustering, wherein the frequency of DSB formation in adjacent hotspots is greater than expected by chance. We have proposed that clustering is caused by a limited number of sub-chromosomal domains becoming primed for DSB formation. Here, we provide evidence that DSB clustering is abolished when meiotic prophase timing is extended via deletion of the NDT80 transcription factor. We propose that extension of meiotic prophase enables most cells, and therefore most chromosomal domains within them, to reach an equilibrium state of similar Spo11-DSB potential, reducing the impact that priming has on estimates of coincident DSB formation. Consistent with this view, when Tel1 is absent but Ndt80 is present and thus cells are able to rapidly exit meiotic prophase, genome-wide maps of Spo11-DSB formation are skewed towards pericentromeric regions and regions that load pro-DSB factors early-revealing regions of preferential priming-but this effect is abolished when NDT80 is deleted. Our work highlights how the stochastic nature of Spo11-DSB formation in individual cells within the limited temporal window of meiotic prophase can cause localised DSB clustering-a phenomenon that is exacerbated in tel1Δ cells due to the dual roles that Tel1 has in DSB interference and meiotic prophase checkpoint control.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Saccharomyces cerevisiae , DNA , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Meiose/genética , Prófase/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Viruses ; 16(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399968

RESUMO

In all tailed phages, the packaging of the double-stranded genome into the head by a terminase motor complex is an essential step in virion formation. Despite extensive research, there are still major gaps in the understanding of this highly dynamic process and the mechanisms responsible for DNA translocation. Over the last fifteen years, single-molecule fluorescence technologies have been applied to study viral nucleic acid packaging using the robust and flexible T4 in vitro packaging system in conjunction with genetic, biochemical, and structural analyses. In this review, we discuss the novel findings from these studies, including that the T4 genome was determined to be packaged as an elongated loop via the colocalization of dye-labeled DNA termini above the portal structure. Packaging efficiency of the TerL motor was shown to be inherently linked to substrate structure, with packaging stalling at DNA branches. The latter led to the design of multiple experiments whose results all support a proposed torsional compression translocation model to explain substrate packaging. Evidence of substrate compression was derived from FRET and/or smFRET measurements of stalled versus resolvase released dye-labeled Y-DNAs and other dye-labeled substrates relative to motor components. Additionally, active in vivo T4 TerS fluorescent fusion proteins facilitated the application of advanced super-resolution optical microscopy toward the visualization of the initiation of packaging. The formation of twin TerS ring complexes, each expected to be ~15 nm in diameter, supports a double protein ring-DNA synapsis model for the control of packaging initiation, a model that may help explain the variety of ring structures reported among pac site phages. The examination of the dynamics of the T4 packaging motor at the single-molecule level in these studies demonstrates the value of state-of-the-art fluorescent tools for future studies of complex viral replication mechanisms.


Assuntos
Bacteriófago T4 , DNA Viral , DNA Viral/metabolismo , Bacteriófago T4/genética , Fluorescência , Montagem de Vírus , Empacotamento do DNA , Endodesoxirribonucleases/metabolismo
4.
Genome Res ; 34(2): 189-200, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408788

RESUMO

Recent studies have revealed an unexplored population of long cell-free DNA (cfDNA) molecules in human plasma using long-read sequencing technologies. However, the biological properties of long cfDNA molecules (>500 bp) remain largely unknown. To this end, we have investigated the origins of long cfDNA molecules from different genomic elements. Analysis of plasma cfDNA using long-read sequencing reveals an uneven distribution of long molecules from across the genome. Long cfDNA molecules show overrepresentation in euchromatic regions of the genome, in sharp contrast to short DNA molecules. We observe a stronger relationship between the abundance of long molecules and mRNA gene expression levels, compared with short molecules (Pearson's r = 0.71 vs. -0.14). Moreover, long and short molecules show distinct fragmentation patterns surrounding CpG sites. Leveraging the cleavage preferences surrounding CpG sites, the combined cleavage ratios of long and short molecules can differentiate patients with hepatocellular carcinoma (HCC) from non-HCC subjects (AUC = 0.87). We also investigated knockout mice in which selected nuclease genes had been inactivated in comparison with wild-type mice. The proportion of long molecules originating from transcription start sites are lower in Dffb-deficient mice but higher in Dnase1l3-deficient mice compared with that of wild-type mice. This work thus provides new insights into the biological properties and potential clinical applications of long cfDNA molecules.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Ácidos Nucleicos Livres/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , DNA/genética , Genômica , Camundongos Knockout , Endodesoxirribonucleases/genética
5.
Biochem Biophys Res Commun ; 695: 149464, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38217957

RESUMO

DNA double strand breaks (DSBs) can be detrimental to the cell and need to be efficiently repaired. A first step in DSB repair is to bring the free ends in close proximity to enable ligation by non-homologous end-joining (NHEJ), while the more precise, but less available, repair by homologous recombination (HR) requires close proximity of a sister chromatid. The human MRE11-RAD50-NBS1 (MRN) complex, Mre11-Rad50-Xrs2 (MRX) in yeast, is involved in both repair pathways. Here we use nanofluidic channels to study, on the single DNA molecule level, how MRN, MRX and their constituents interact with long DNA and promote DNA bridging. Nanofluidics is a suitable method to study reactions on DNA ends since no anchoring of the DNA end(s) is required. We demonstrate that NBS1 and Xrs2 play important, but differing, roles in the DNA tethering by MRN and MRX. NBS1 promotes DNA bridging by MRN consistent with tethering of a repair template. MRX shows a "synapsis-like" DNA end-bridging, stimulated by the Xrs2 subunit. Our results highlight the different ways MRN and MRX bridge DNA, and the results are in agreement with their key roles in HR and NHEJ, respectively, and contribute to the understanding of the roles of NBS1 and Xrs2 in DSB repair.


Assuntos
Proteínas de Ligação a DNA , Endodesoxirribonucleases , Proteínas de Saccharomyces cerevisiae , Humanos , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 52(5): 2355-2371, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38180815

RESUMO

The yeast Rif2 protein is known to inhibit Mre11 nuclease and the activation of Tel1 kinase through a short motif termed MIN, which binds the Rad50 subunit and simulates its ATPase activity in vitro. The mechanism by which Rif2 restrains Tel1 activation and the consequences of this inhibition at DNA double-strand breaks (DSBs) are poorly understood. In this study, we employed AlphaFold-Multimer modelling to pinpoint and validate the interaction surface between Rif2 MIN and Rad50. We also engineered the rif2-S6E mutation that enhances the inhibitory effect of Rif2 by increasing Rif2-Rad50 interaction. Unlike rif2Δ, the rif2-S6E mutation impairs hairpin cleavage. Furthermore, it diminishes Tel1 activation by inhibiting Tel1 binding to DSBs while leaving MRX association unchanged, indicating that Rif2 can directly inhibit Tel1 recruitment to DSBs. Additionally, Rif2S6E reduces Tel1-MRX interaction and increases stimulation of ATPase by Rad50, indicating that Rif2 binding to Rad50 induces an ADP-bound MRX conformation that is not suitable for Tel1 binding. The decreased Tel1 recruitment to DSBs in rif2-S6E cells impairs DSB end-tethering and this bridging defect is suppressed by expressing a Tel1 mutant variant that increases Tel1 persistence at DSBs, suggesting a direct role for Tel1 in the bridging of DSB ends.


Assuntos
Proteínas de Ligação a DNA , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Proteínas de Ligação a Telômeros , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA/genética , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
7.
Nucleic Acids Res ; 52(D1): D590-D596, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889041

RESUMO

CRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and agricultural applications. However, the immense genetic and biochemical diversity of these proteins in the public domain poses a barrier for researchers seeking to leverage their activities. We present CasPEDIA (http://caspedia.org), the Cas Protein Effector Database of Information and Assessment, a curated encyclopedia that integrates enzymatic classification for hundreds of different Cas enzymes across 27 phylogenetic groups spanning the Cas9, Cas12 and Cas13 families, as well as evolutionarily related IscB and TnpB proteins. All enzymes in CasPEDIA were annotated with a standard workflow based on their primary nuclease activity, target requirements and guide-RNA design constraints. Our functional classification scheme, CasID, is described alongside current phylogenetic classification, allowing users to search related orthologs by enzymatic function and sequence similarity. CasPEDIA is a comprehensive data portal that summarizes and contextualizes enzymatic properties of widely used Cas enzymes, equipping users with valuable resources to foster biotechnological development. CasPEDIA complements phylogenetic Cas nomenclature and enables researchers to leverage the multi-faceted nucleic-acid targeting rules of diverse Class 2 Cas enzymes.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Bases de Dados Genéticas , Endodesoxirribonucleases , Sistemas CRISPR-Cas/genética , Filogenia , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/classificação , Proteínas Associadas a CRISPR/genética , Endodesoxirribonucleases/química , Endodesoxirribonucleases/classificação , Endodesoxirribonucleases/genética , Enciclopédias como Assunto
8.
Autophagy ; 20(2): 445-447, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37889084

RESUMO

ENDOG, a mitochondrial intermembrane space located endonuclease, participates in DNA fragmentation and apoptosis by translocating to the nucleus. ENDOG can also relocate to the mitochondrial matrix, where it regulates mitochondrial genome cleavage. However, the biological function of cytoplasm-translocated ENDOG remains unclear. Our previous study reported that starvation induces the release of ENDOG from mitochondria to the cytoplasm, promoting macroautophagy/autophagy in a process conserved across species. We demonstrate that ENDOG can be phosphorylated by GSK3B, which enhances ENDOG binding to YWHAG/14-3-3γ, and leads to the release of TSC2 and PIK3C3/VPS34 from YWHAG/14-3-3γ, followed by MTORC1 pathway suppression and autophagy initiation. Additionally, we recently reported that ENDOG can also activate the MTORC2-AKT-ACLY signaling axis by promoting the release of RICTOR and TSC2 from YWHAG/14-3-3γ, resulting in acetyl-CoA production. Furthermore, cytoplasmic ENDOG can translocate to the endoplasmic reticulum, where it binds with HSPA5/BIP to release ERN1/IRE1a-EIF2AK3/PERK to activate the endoplasmic reticulum stress response, eventually promoting lipid synthesis. Collectively, ENDOG will be released from the mitochondrial intermembrane space, and translocated to the mitochondrial matrix, cytoplasm, and nucleus during different stress stimulation, where it digests DNA or interacts with crucial proteins to regulate different biological functions, including apoptosis, autophagy, mitophagy, and lipid synthesis.


Assuntos
Autofagia , Endodesoxirribonucleases , Mitocôndrias , Mitocôndrias/metabolismo , Apoptose , Fatores de Transcrição/metabolismo , Lipídeos
9.
ACS Synth Biol ; 13(1): 195-205, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38061193

RESUMO

Homing endonucleases are used in a wide range of biotechnological applications including gene editing, in gene drive systems, and for the modification of DNA structures, arrays, and prodrugs. However, controlling nuclease activity and sequence specificity remain key challenges when developing new tools. Here a photoresponsive homing endonuclease was engineered for optical control of DNA cleavage by partitioning DNA binding and nuclease domains of the monomeric homing endonuclease I-TevI into independent polypeptide chains. Use of the Aureochrome1a light-oxygen-voltage domain delivered control of dimerization with light. Illumination reduced the concentration needed to achieve 50% cleavage of the homing target site by 6-fold when compared to the dark state, resulting in an up to 9-fold difference in final yields between cleavage products. I-TevI nucleases with and without a native I-TevI zinc finger motif displayed different nuclease activity and sequence preference impacting the promiscuity of the nuclease domain. By harnessing an alternative DNA binding domain, target preference was reprogrammed only when the nuclease lacked the I-TevI zinc finger motif. This work establishes a first-generation photoresponsive platform for spatiotemporal activation of DNA cleavage.


Assuntos
Endodesoxirribonucleases , Endonucleases , Endonucleases/genética , Endonucleases/metabolismo , Sequência de Bases , Endodesoxirribonucleases/genética , Clivagem do DNA , DNA/metabolismo
10.
Nucleic Acids Res ; 52(2): 831-843, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38084901

RESUMO

The large dsDNA viruses replicate their DNA as concatemers consisting of multiple covalently linked genomes. Genome packaging is catalyzed by a terminase enzyme that excises individual genomes from concatemers and packages them into preassembled procapsids. These disparate tasks are catalyzed by terminase alternating between two distinct states-a stable nuclease that excises individual genomes and a dynamic motor that translocates DNA into the procapsid. It was proposed that bacteriophage λ terminase assembles as an anti-parallel dimer-of-dimers nuclease complex at the packaging initiation site. In contrast, all characterized packaging motors are composed of five terminase subunits bound to the procapsid in a parallel orientation. Here, we describe biophysical and structural characterization of the λ holoenzyme complex assembled in solution. Analytical ultracentrifugation, small angle X-ray scattering, and native mass spectrometry indicate that 5 subunits assemble a cone-shaped terminase complex. Classification of cryoEM images reveals starfish-like rings with skewed pentameric symmetry and one special subunit. We propose a model wherein nuclease domains of two subunits alternate between a dimeric head-to-head arrangement for genome maturation and a fully parallel arrangement during genome packaging. Given that genome packaging is strongly conserved in both prokaryotic and eukaryotic viruses, the results have broad biological implications.


Assuntos
Empacotamento do Genoma Viral , Montagem de Vírus , Montagem de Vírus/genética , Bacteriófago lambda/genética , Endodesoxirribonucleases/metabolismo , DNA , DNA Viral/metabolismo , Empacotamento do DNA
12.
J Exp Clin Cancer Res ; 42(1): 301, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37957685

RESUMO

BACKGROUND: Inherited defects in the base-excision repair gene MBD4 predispose individuals to adenomatous polyposis and colorectal cancer, which is characterized by an accumulation of C > T transitions resulting from spontaneous deamination of 5'-methylcytosine. METHODS: Here, we have investigated the potential role of MBD4 in regulating DNA methylation levels using genome-wide transcriptome and methylome analyses. Additionally, we have elucidated its function through a series of in vitro experiments. RESULTS: Here we show that the protein MBD4 is required for DNA methylation maintenance and G/T mismatch repair. Transcriptome and methylome analyses reveal a genome-wide hypomethylation of promoters, gene bodies and repetitive elements in the absence of MBD4 in vivo. Methylation mark loss is accompanied by a broad transcriptional derepression phenotype affecting promoters and retroelements with low methylated CpG density. MBD4 in vivo forms a complex with the mismatch repair proteins (MMR), which exhibits high bi-functional glycosylase/AP-lyase endonuclease specific activity towards methylated DNA substrates containing a G/T mismatch. Experiments using recombinant proteins reveal that the association of MBD4 with the MMR protein MLH1 is required for this activity. CONCLUSIONS: Our data identify MBD4 as an enzyme specifically designed to repair deaminated 5-methylcytosines and underscores its critical role in safeguarding against methylation damage. Furthermore, it illustrates how MBD4 functions in normal and pathological conditions.


Assuntos
Reparo do DNA , Retroelementos , Humanos , Reparo de Erro de Pareamento de DNA , Proteínas Recombinantes/genética , Metilação de DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo
13.
Biochem Biophys Res Commun ; 689: 149188, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37976838

RESUMO

This study focused on exploring the mechanism of the EMT mediated by endonuclease/exonuclease/phosphatase family domain-containing 1 (EEPD1) in gastric cancer metastasis. Through bioinformatics analysis, EEPD1 was found to be a target gene of super enhancers (SEs) in gastric cancer tissues. EEPD1 exhibited higher expression levels in tumor tissues and was associated with poor prognosis. In vitro and in vivo studies have demonstrated that silencing EEPD1 significantly suppressed the proliferation, metastasis, and invasion of gastric cancer cells. Furthermore, EEPD1 knockdown was involved in the regulation of the EMT and suppressed expression of AKT, a downstream component of the PI3K pathway, leading to a reduction in the phosphorylation levels of AKT and its downstream molecule, mTOR. These results showed the potential of EEPD1 as a prognostic indicator and therapeutic target in gastric cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Endodesoxirribonucleases/genética , Endonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/metabolismo
14.
J Leukoc Biol ; 114(6): 547-556, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37804110

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease caused by environmental factors and loss of key proteins, including the endonuclease Dnase1L3. Dnase1L3 absence causes pediatric-onset lupus in humans, while reduced activity occurs in adult-onset SLE. The amount of Dnase1L3 that prevents lupus remains unknown. To genetically reduce Dnase1L3 levels, we developed a mouse model lacking Dnase1L3 in macrophages (conditional knockout [cKO]). Serum Dnase1L3 levels were reduced 67%, though Dnase1 activity remained constant. Homogeneous and peripheral antinuclear antibodies were detected in the sera by immunofluorescence, consistent with anti-double-stranded DNA (anti-dsDNA) antibodies. Total immunoglobulin M, total immunoglobulin G, and anti-dsDNA antibody levels increased in cKO mice with age. The cKO mice developed anti-Dnase1L3 antibodies. In contrast to global Dnase1L3-/- mice, anti-dsDNA antibodies were not elevated early in life. The cKO mice had minimal kidney pathology. Therefore, we conclude that an intermediate reduction in serum Dnase1L3 causes mild lupus phenotypes, and macrophage-derived DnaselL3 helps limit lupus.


Assuntos
DNA , Lúpus Eritematoso Sistêmico , Humanos , Adulto , Criança , Camundongos , Animais , DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Rim/patologia , Macrófagos/metabolismo
15.
Anal Biochem ; 682: 115347, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821038

RESUMO

DNA molecules that contain single Holliday junctions have served as model substrates to investigate the pathway in which homologous recombination intermediates are processed. However, the preparation of DNA containing Holliday junctions in high yield remains a challenge. In this work, we used a nicking endonuclease to generate gapped DNA, from which α-structured DNA or figure-8 DNA were created via RecA-mediated reactions. The resulting DNA molecules were found to serve as good substrates for Holliday junction resolvases. The simplified method negates the requirement for radioactive labelling of DNA, making the generation of Holliday junction DNA more accessible to non-experts.


Assuntos
DNA Cruciforme , Proteínas de Escherichia coli , DNA Cruciforme/metabolismo , Proteínas de Escherichia coli/química , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Escherichia coli/genética , DNA/química
16.
Cells ; 12(18)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759541

RESUMO

Karyomegalic interstitial nephritis (KIN) is a genetic kidney disease caused by mutations in the FANCD2/FANCI-Associated Nuclease 1 (FAN1) gene on 15q13.3, which results in karyomegaly and fibrosis of kidney cells through the incomplete repair of DNA damage. The aim of this study was to explore the possibility of using a human induced pluripotent stem cell (hiPSC)-derived kidney organoid system for modeling FAN1-deficient kidney disease, also known as KIN. We generated kidney organoids using WTC-11 (wild-type) hiPSCs and FAN1-mutant hiPSCs which include KIN patient-derived hiPSCs and FAN1-edited hiPSCs (WTC-11 FAN1+/-), created using the CRISPR/Cas9 system in WTC-11-hiPSCs. Kidney organoids from each group were treated with 20 nM of mitomycin C (MMC) for 24 or 48 h, and the expression levels of Ki67 and H2A histone family member X (H2A.X) were analyzed to detect DNA damage and assess the viability of cells within the kidney organoids. Both WTC-11-hiPSCs and FAN1-mutant hiPSCs were successfully differentiated into kidney organoids without structural deformities. MMC treatment for 48 h significantly increased the expression of DNA damage markers, while cell viability in both FAN1-mutant kidney organoids was decreased. However, these findings were observed in WTC-11-kidney organoids. These results suggest that FAN1-mutant kidney organoids can recapitulate the phenotype of FAN1-deficient kidney disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nefrite Intersticial , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Rim/metabolismo , Endonucleases , Organoides/metabolismo , Enzimas Multifuncionais
17.
Nucleic Acids Res ; 51(19): 10519-10535, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37739427

RESUMO

Homologous recombination (HR) requires bidirectional end resection initiated by a nick formed close to a DNA double-strand break (DSB), dysregulation favoring error-prone DNA end-joining pathways. Here we investigate the role of the ATAD5, a PCNA unloading protein, in short-range end resection, long-range resection not being affected by ATAD5 deficiency. Rapid PCNA loading onto DNA at DSB sites depends on the RFC PCNA loader complex and MRE11-RAD50-NBS1 nuclease complexes bound to CtIP. Based on our cytological analyses and on an in vitro system for short-range end resection, we propose that PCNA unloading by ATAD5 is required for the completion of short-range resection. Hampering PCNA unloading also leads to failure to remove the KU70/80 complex from the termini of DSBs hindering DNA repair synthesis and the completion of HR. In line with this model, ATAD5-depleted cells are defective for HR, show increased sensitivity to camptothecin, a drug forming protein-DNA adducts, and an augmented dependency on end-joining pathways. Our study highlights the importance of PCNA regulation at DSB for proper end resection and HR.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Endodesoxirribonucleases/metabolismo , Recombinação Homóloga/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Humanos
18.
J Med Virol ; 95(9): e29090, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37695079

RESUMO

The widespread dissemination of coronavirus 2019 imposes a significant burden on society. Therefore, rapid detection facilitates the reduction of transmission risk. In this study, we proposed a multiplex diagnostic platform for the rapid, ultrasensitive, visual, and simultaneous detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) open reading frame 1ab (ORF1ab) and N genes. A visual diagnostic method was developed using a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a/Cas13a dual-enzyme digestion system integrated with multiplex reverse transcriptase-recombinase polymerase amplification (RT-RPA). Two CRISPR-Cas proteins (Cas12a and Cas13a) were introduced into the system to recognize and cleave the N gene and ORF1ab gene, respectively. We used fluorescent or CRISPR double digestion test strips to detect the digested products, with the N gene corresponding to the FAM channel in the PCR instrument or the T1 line on the test strip, and the ORF1ab gene corresponding to the ROX channel in the PCR instrument or the T2 line on the test strip. The analysis can be completed in less than 20 min. Meanwhile, we assessed the application of the platform and determined a sensitivity of up to 200 copies/mL. Additionally, dual gene validation in 105 clinical nasopharyngeal swab samples showed a 100% positive predictive value agreement and a 95.7% negative predictive value agreement between our method and quantitative reverse transcription-polymerase chain reaction. Overall, our method offered a novel insight into the rapid diagnosis of SARS-CoV-2.


Assuntos
Proteínas de Bactérias , COVID-19 , Proteínas Associadas a CRISPR , Proteínas do Nucleocapsídeo de Coronavírus , Endodesoxirribonucleases , Fosfoproteínas , Poliproteínas , SARS-CoV-2 , Proteínas Virais , Clivagem do RNA , Clivagem do DNA , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , Proteínas Virais/genética , Poliproteínas/genética , Proteínas Associadas a CRISPR/química , Proteínas de Bactérias/química , Endodesoxirribonucleases/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Fosfoproteínas/genética , Humanos
19.
Cell Mol Life Sci ; 80(10): 279, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682311

RESUMO

XY chromosome missegregation is relatively common in humans and can lead to sterility or the generation of aneuploid spermatozoa. A leading cause of XY missegregation in mammals is the lack of formation of double-strand breaks (DSBs) in the pseudoautosomal region (PAR), a defect that may occur in mice due to faulty expression of Spo11 splice isoforms. Using a knock-in (ki) mouse that expresses only the single Spo11ß splice isoform, here we demonstrate that by varying the genetic background of mice, the length of chromatin loops extending from the PAR axis and the XY recombination proficiency varies. In spermatocytes of C57Spo11ßki/- mice, in which loops are relatively short, recombination/synapsis between XY is fairly normal. In contrast, in cells of C57/129Spo11ßki/- males where PAR loops are relatively long, formation of DSBs in the PAR (more frequently the Y-PAR) and XY synapsis fails at a high rate, and mice produce sperm with sex-chromosomal aneuploidy. However, if the entire set of Spo11 splicing isoforms is expressed by a wild type allele in the C57/129 background, XY recombination and synapsis is recovered. By generating a Spo11αki mouse model, we prove that concomitant expression of SPO11ß and SPO11α isoforms, boosts DSB formation in the PAR. Based on these findings, we propose that SPO11 splice isoforms cooperate functionally in promoting recombination in the PAR, constraining XY asynapsis defects that may arise due to differences in the conformation of the PAR between mouse strains.


Assuntos
Endodesoxirribonucleases , Regiões Pseudoautossômicas , Animais , Humanos , Masculino , Camundongos , Alelos , Isoformas de Proteínas/genética , Recombinação Genética/genética , Sêmen , Endodesoxirribonucleases/genética
20.
Biochemistry (Mosc) ; 88(7): 995-1007, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751869

RESUMO

Currently, a significant increase in the levels of circulating cell-free DNA (cfDNA) in the blood of patients is considered as a generally recognized marker of the development of oncological diseases. Although the tumor-associated cfDNA has been well studied, its biological functions remain unclear. In this work, we investigated the effect of cfDNA isolated from the blood serum of the mice with B16-F10 metastatic melanoma on the properties of the B16-F10 melanoma cells in vitro. It was found that the profile of cfDNA isolated from the blood serum of mice with melanoma differs significantly from the cfDNA isolated from the blood serum of healthy mice, and is similar to the genomic DNA of B16 cells with regards to abundance of oncogenes and mobile genetic elements (MGE). It was shown that the cfDNA of mice with melanoma penetrated into B16 cells, resulting in the increase in abundance of oncogenes and MGE fragments, and caused 5-fold increase of the mRNA level of the secreted DNase Dnase1l3 and a slight increase of the mRNA level of the Jun, Fos, Ras, and Myc oncogenes. cfDNA of the healthy mice caused increase of the mRNA level of intracellular regulatory DNase EndoG and 4-fold increase of the mRNA level of Fos and Ras oncogenes, which are well-known triggers of a large number of signal cascades, from apoptosis inhibition to increased tumor cell proliferation. Thus, it is obvious that the circulating cfDNA of tumor origin is able to penetrate into the cells and, despite the fact that no changes were found in the level of viability and migration activity of the tumor cells, cfDNA, even with a single exposure, can cause changes at the cellular level that increase oncogenicity of the recipient cells.


Assuntos
Ácidos Nucleicos Livres , Melanoma , Humanos , Animais , Camundongos , Soro , Desoxirribonucleases , RNA Mensageiro , Endodesoxirribonucleases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...