Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.498
Filtrar
1.
Mikrochim Acta ; 191(5): 268, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627271

RESUMO

Hybrid nanozyme graphene quantum dots (GQDs) deposited TiO2 nanotubes (NTs) on titanium foil (Ti/TiO2 NTs-GQDs) were manufactured by bestowing the hybrid with the advantageous porous morphology, surface valence states, high surface area, and copious active sites. The peroxidase-like activity was investigated through the catalytic oxidation of chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, which can be visualized by the eyes. TiO2 NTs and GQDs comprising oxygen-containing functional groups can oxidize TMB in the presence of H2O2 by mimicking peroxidase enzymes. The peroxidase-mimicking activity of hybrid nanozyme was significantly escalated by introducing light illumination due to the photosensitive features of the hybrid material. The peroxidase-like activity of Ti/TiO2 NTs-GQDs enabled H2O2 determination over the linear range of 7 to 250 µM, with a LOD of 2.1 µM. The satisfying peroxidase activity is possibly due to the unimpeded access of H2O2 to the catalyst's active sites. The porous morphology provides the easy channeling of reactants and products. The periodic structure of the material also gave rise to acceptable reproducibility. Without material functionalization, the Ti/TiO2 NTs-GQDs can be a promising substitute for peroxidases for H2O2 detection.


Assuntos
Benzidinas , Grafite , Nanotubos , Pontos Quânticos , Grafite/química , Peroxidase/química , Pontos Quânticos/química , Peróxido de Hidrogênio/química , Reprodutibilidade dos Testes , Nanotubos/química
2.
Anal Chem ; 96(15): 6072-6078, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577757

RESUMO

The urgent need for sensitive and accurate assays to monitor acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs) arises from the imperative to safeguard human health and protect the ecosystem. Due to its cost-effectiveness, ease of operation, and rapid response, nanozyme-based colorimetry has been widely utilized in the determination of AChE activity and OPs. However, the rational design of nanozymes with high activity and specificity remains a great challenge. Herein, trace amount of Bi-doped core-shell Pd@Pt mesoporous nanospheres (Pd@PtBi2) have been successfully synthesized, exhibiting good peroxidase-like activity and specificity. With the incorporation of trace bismuth, there is a more than 4-fold enhancement in the peroxidase-like performance of Pd@PtBi2 compared to that of Pd@Pt. Besides, no significant improvement of oxidase-like and catalase-like activities of Pd@PtBi2 was found, which prevents interference from O2 and undesirable consumption of substrate H2O2. Based on the blocking impact of thiocholine, a colorimetric detection platform utilizing Pd@PtBi2 was constructed to monitor AChE activity with sensitivity and selectivity. Given the inhibition of OPs on AChE activity, a biosensor was further developed by integrating Pd@PtBi2 with AChE to detect OPs, capitalizing on the cascade amplification strategy. The OP biosensor achieved a detection limit as low as 0.06 ng mL-1, exhibiting high sensitivity and anti-interference ability. This work is promising for the construction of nanozymes with high activity and specificity, as well as the development of nanozyme-based colorimetric biosensors.


Assuntos
Técnicas Biossensoriais , Nanosferas , Agentes Neurotóxicos , Praguicidas , Humanos , Acetilcolinesterase/metabolismo , Compostos Organofosforados , Praguicidas/análise , Peróxido de Hidrogênio , Ecossistema , Oxirredutases , Peroxidase , Colorimetria
3.
Biochemistry (Mosc) ; 89(Suppl 1): S90-S111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621746

RESUMO

Reactive halogen species (RHS) are highly reactive compounds that are normally required for regulation of immune response, inflammatory reactions, enzyme function, etc. At the same time, hyperproduction of highly reactive compounds leads to the development of various socially significant diseases - asthma, pulmonary hypertension, oncological and neurodegenerative diseases, retinopathy, and many others. The main sources of (pseudo)hypohalous acids are enzymes from the family of heme peroxidases - myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and thyroid peroxidase. Main targets of these compounds are proteins and peptides, primarily methionine and cysteine residues. Due to the short lifetime, detection of RHS can be difficult. The most common approach is detection of myeloperoxidase, which is thought to reflect the amount of RHS produced, but these methods are indirect, and the results are often contradictory. The most promising approaches seem to be those that provide direct registration of highly reactive compounds themselves or products of their interaction with components of living cells, such as fluorescent dyes. However, even such methods have a number of limitations and can often be applied mainly for in vitro studies with cell culture. Detection of reactive halogen species in living organisms in real time is a particularly acute issue. The present review is devoted to RHS, their characteristics, chemical properties, peculiarities of interaction with components of living cells, and methods of their detection in living systems. Special attention is paid to the genetically encoded tools, which have been introduced recently and allow avoiding a number of difficulties when working with living systems.


Assuntos
Halogênios , Peroxidases , Peroxidases/metabolismo , Halogênios/metabolismo , Peroxidase/metabolismo , Peroxidase de Eosinófilo , Antioxidantes
4.
J Am Chem Soc ; 146(15): 10478-10488, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578196

RESUMO

During biomedical applications, nanozymes, exhibiting enzyme-like characteristics, inevitably come into contact with biological fluids in living systems, leading to the formation of a protein corona on their surface. Although it is acknowledged that molecular adsorption can influence the catalytic activity of nanozymes, there is a dearth of understanding regarding the impact of the protein corona on nanozyme activity and its determinant factors. In order to address this gap, we employed the AuNR@Pt@PDDAC [PDDAC, poly(diallyldimethylammonium chloride)] nanorod (NR) as a model nanozyme with multiple activities, including peroxidase, oxidase, and catalase-mimetic activities, to investigate the inhibitory effects of the protein corona on the catalytic activity. After the identification of major components in the plasma protein corona on the NR, we observed that spherical proteins and fibrous proteins induced distinct inhibitory effects on the catalytic activity of nanozymes. To elucidate the underlying mechanism, we uncovered that the adsorbed proteins assembled on the surface of the nanozymes, forming protein networks (PNs). Notably, the PNs derived from fibrous proteins exhibited a screen mesh-like structure with smaller pore sizes compared to those formed by spherical proteins. This structural disparity resulted in a reduced efficiency for the permeation of substrate molecules, leading to a more robust inhibition in activity. These findings underscore the significance of the protein shape as a crucial factor influencing nanozyme activity. This revelation provides valuable insights for the rational design and application of nanozymes in the biomedical fields.


Assuntos
Nanoestruturas , Coroa de Proteína , Escleroproteínas , Peroxidase , Adsorção , Corantes , Catálise
5.
J Phys Chem B ; 128(14): 3383-3397, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38563384

RESUMO

Dehaloperoxidase (DHP) is a multifunctional hemeprotein with a functional switch generally regulated by the chemical class of the substrate. Its two isoforms, DHP-A and DHP-B, differ by only five amino acids and have an almost identical protein fold. However, the catalytic efficiency of DHP-B for oxidation by a peroxidase mechanism ranges from 2- to 6-fold greater than that of DHP-A depending on the conditions. X-ray crystallography has shown that many substrates and ligands have nearly identical binding in the two isoenzymes, suggesting that the difference in catalytic efficiency could be due to differences in the conformational dynamics. We compared the backbone dynamics of the DHP isoenzymes at pH 7 through heteronuclear relaxation dynamics at 11.75, 16.45, and 19.97 T in combination with four 300 ns MD simulations. While the overall dynamics of the isoenzymes are similar, there are specific local differences in functional regions of each protein. In DHP-A, Phe35 undergoes a slow chemical exchange between two conformational states likely coupled to a swinging motion of Tyr34. Moreover, Asn37 undergoes fast chemical exchange in DHP-A. Given that Phe35 and Asn37 are adjacent to Tyr34 and Tyr38, it is possible that their dynamics modulate the formation and migration of the active tyrosyl radicals in DHP-A at pH 7. Another significant difference is that both distal and proximal histidines have a 15-18% smaller S2 value in DHP-B, thus their greater flexibility could account for the higher catalytic activity. The distal histidine grants substrate access to the distal pocket. The greater flexibility of the proximal histidine could also accelerate H2O2 activation at the heme Fe by increased coupling of an amino acid charge relay to stabilize the ferryl Fe(IV) oxidation state in a Poulos-Kraut "push-pull"-type peroxidase mechanism.


Assuntos
Histidina , Poliquetos , Animais , Histidina/química , Isoenzimas/metabolismo , Peróxido de Hidrogênio/metabolismo , Hemoglobinas/química , Peroxidases/química , Peroxidase/química , Poliquetos/química , Poliquetos/metabolismo , Cristalografia por Raios X
6.
Biosens Bioelectron ; 255: 116259, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574559

RESUMO

Carbon-based nanozymes possessing peroxidase-like activity have attracted significant interest because of their potential to replace native peroxidases in biotechnology. Although various carbon-based nanozymes have been developed, their relatively low catalytic efficiency needs to be overcome to realize their practical utilization. Here, inspired by the elemental uniqueness of Cu and the doped elements N and S, as well as the active site structure of Cu-centered oxidoreductases, we developed a new carbon-based peroxidase-mimicking nanozyme, single-atom Cu-centered N- and S-codoped reduced graphene oxide (Cu-NS-rGO), which preserved many Cu-N4 and Cu-N4S active sites and showed dramatically high peroxidase-like activity without any oxidase-like activity, yielding up to 2500-fold higher catalytic efficiency (kcat/Km) than that of pristine rGO. The high catalytic activity of Cu-NS-rGO might be attributed to the acceleration of electron transfer from Cu single atom as well as synergistic effects from both Cu-N4 and Cu-N4S active sites, which was theoretically confirmed by Gibbs free energy calculations using density functional theory. The prepared Cu-NS-rGO was then used to construct an electrochemical bioassay system for detecting choline and acetylcholine by coupling with the corresponding oxidases. Using this system, both target molecules were selectively determined with high sensitivity that was sufficient to clinically determine their levels in physiological fluids. Overall, this study will facilitate the development of nanocarbon-based nanozymes and their electrochemical biosensing applications, which can be extended to the development of miniaturized devices in point-of-care testing environments.


Assuntos
Técnicas Biossensoriais , Grafite , Peroxidase , Peroxidase/química , Domínio Catalítico , Peroxidases/química , Oxirredutases , Carbono/química
7.
Biosens Bioelectron ; 255: 116271, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583355

RESUMO

The metal-organic frameworks (MOFs) nanozyme-mediated paper-based analytical devices (PADs) have shown great potential in portable visual determination of phenolic compounds in the environment. However, most MOF nanozymes suffer from poor dispersibility and block-like structure, which often prompts deposition and results in diminished enzymatic activity, severely hindering their environmental applications. Here, we proposed colorimetric PADs for the visual detection of dichlorophen (Dcp) based on its significant inhibitory effect on the two-dimensional (2D) MOF nanozyme activity. Specifically, we synthesized a 2D Cu TCPP (Fe) (defined as 2D-CTF) MOF nanozyme exhibiting excellent dispersibility and remarkable peroxidase-like (POD-like) activity, which could catalyze the oxidation and subsequent color change of 3,3',5,5'-tetramethylbenzidine even under neutral conditions. Notably, the POD-like activity of 2D-CTF demonstrated a unique response to Dcp because of the occupation of Fe-N4 active sites on the 2D-CTF. This property enables the use of 2D-CTF as a highly efficient catalyst to develop colorimetric PADs for naked-eye and portable detection of Dcp. We believe that the proposed colorimetric PADs offer an efficient method for Dcp assay and open fresh avenues for the advancement of colorimetric sensors for analyzing of phenolic toxic substances in real samples.


Assuntos
Técnicas Biossensoriais , Diclorofeno , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Peroxidases/química , Peroxidase , Colorimetria/métodos , Fenóis , Peróxido de Hidrogênio/química
8.
Physiol Plant ; 176(2): e14294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634335

RESUMO

In our comprehensive meta-analysis, we initially collected 177 publications focusing on the impact of melatonin on wheat. After meticulous screening, 40 published studies were selected, encompassing 558 observations for antioxidant enzymes, 312 for reactive oxygen species (ROS), and 92 for soluble biomolecules (soluble sugar and protein). This analysis revealed significant heterogeneity across studies (I2 > 99% for enzymes, ROS, and soluble biomolecules) and notable publication bias, indicating the complexity and variability in the research field. Melatonin application generally increased antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] in wheat, particularly under stress conditions, such as high temperature and heavy-metal exposure. Compared to control, melatonin application increased SOD, POD, CAT, and APX activities by 29.5, 16.96, 35.98, and 171.64%, respectively. Moreover, oxidative stress markers like hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) decreased with melatonin by 23.73, 13.64, and 21.91%, respectively, suggesting a reduction in oxidative stress. The analysis also highlighted melatonin's role in improving carbohydrate metabolism and antioxidant defenses. Melatonin showed an overall increase of 12.77% in soluble sugar content, and 22.76% in glutathione peroxidase (GPX) activity compared to the control. However, the effects varied across different wheat varieties, environmental conditions, and application methods. Our study also uncovered complex relationships between antioxidant enzyme activities and H2O2 levels, indicating a nuanced regulatory role of melatonin in oxidative stress responses. Our meta-analysis demonstrates the significant role of melatonin in increasing wheat resilience to abiotic stressors, potentially through its regulatory impact on antioxidant defense systems and stress response.


Assuntos
Antioxidantes , Melatonina , Antioxidantes/metabolismo , Melatonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Triticum/metabolismo , Peróxido de Hidrogênio/metabolismo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Peroxidases/metabolismo , Peroxidase/metabolismo , Estresse Oxidativo , Açúcares/metabolismo , Malondialdeído/metabolismo
9.
Artigo em Chinês | MEDLINE | ID: mdl-38563171

RESUMO

Objective:To evaluate the expression of eosinophil cationic protein and myeloperoxidase in nasal secretions in different types of rhinitis, and to explore their values in the differential diagnosis of different types of rhinitis. Methods:Six hundred and eighty-four subjects were selected, including 62 subjects in the acute rhinitis group, 378 subjects in the allergic rhinitis group, 94 subjects in the vasomotor rhinitis group, 70 subjects in the eosinophilic non-allergic rhinitis group, and 80 subjects in the control group. Nasal secretion samples were collected from the five groups, and the percentages of inflammatory cells were counted by Rachel's staining, and the expression of ECP/MPO was detected by colloidal gold assay. The correlation between the clinical diagnosis, the inflammatory cells in the nasal secretions and the expression of ECP/MPO was analyzed. Results:Nasal cytological smears showed that compared with the control group, the percentage of eosinophils in the AR and NARES groups were significantly higher (P<0.05), while the percentage of neutrophils was not different (P>0.05); the percentage of neutrophils was significantly higher in the acute rhinitis group compared with the control group (P<0.05), while the percentage of eosinophils was not statistically different (P>0.05); in vasomotor rhinitis group, the eosinophils and neutrophils were not statistically different compared with the control group(P> 0.05). The colloidal gold results showed that there were differences in the expression of ECP/MPO in different types of rhinitis, among which 49 cases (79.0%) in the acute rhinitis group expressed ECP+/MPO+; 267 cases (70.6%) in the AR group and 56 cases (75.7%) in the NARES group expressed ECP+/MPO-; 80 cases (85.1%) in the vasomotor rhinitis group and 69 cases (86.3%) in the control group expressed ECP-/MPO-. Conclusion:The differences in ECP and MPO expression between different types of rhinitis have certain reference value for the differential diagnosis of different types of rhinitis and the selection of treatment programs.


Assuntos
Rinite Vasomotora , Rinite , Humanos , Eosinófilos/metabolismo , Coloide de Ouro/metabolismo , Mucosa Nasal/metabolismo , Peroxidase/metabolismo , Rinite/diagnóstico , Rinite/metabolismo , Rinite Vasomotora/metabolismo
10.
Clin Exp Med ; 24(1): 66, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564029

RESUMO

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) patients with dual positivity for proteinase 3-ANCA (PR3-ANCA) and myeloperoxidase-ANCA (MPO-ANCA) are uncommon. We aimed to investigate these idiopathic double-positive AAV patients' clinical features, histological characteristics, and prognosis. We reviewed all the electronic medical records of patients diagnosed with AAV to obtain clinical data and renal histological information from January 2010 to December 2020 in a large center in China. Patients were assigned to the MPO-AAV group or PR3-AAV group or idiopathic double-positive AAV group by ANCA specificity. We explored features of idiopathic double-positive AAV. Of the 340 patients who fulfilled the study inclusion criteria, 159 (46.76%) were female, with a mean age of 58.41 years at the time of AAV diagnosis. Similar to MPO-AAV, idiopathic double-positive AAV patients were older and had more severe anemia, lower Birmingham Vasculitis Activity Score (BVAS) and C-reactive protein (CRP) levels, less ear, nose, and throat (ENT) involvement, higher initial serum creatinine and a lower estimated glomerular filtration rate (eGFR) when compared with PR3-AAV (P < 0.05). The proportion of normal glomeruli of idiopathic double-positive AAV was the lowest among the three groups (P < 0.05). The idiopathic double-positive AAV patients had the worst remission rate (58.8%) among the three groups (P < 0.05). The relapse rate of double-positive AAV (40.0%) was comparable with PR3-AAV (44.8%) (P > 0.05). Although there was a trend toward a higher relapse rate of idiopathic double-positive AAV (40.0%) compared with MPO-AAV (23.5%), this did not reach statistical significance (P > 0.05). The proportion of patients who progressed to ESRD was 47.1% and 44.4% in the idiopathic double-positive AAV group and MPO-AAV group respectively, without statistical significance. Long-term patient survival also varied among the three groups (P < 0.05). Idiopathic double-positive AAV is a rare clinical entity with hybrid features of MPO-AAV and PR3-AAV. MPO-AAV is the "dominant" phenotype in idiopathic double-positive AAV.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Mieloblastina , Prognóstico , Peroxidase , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/terapia , Recidiva
11.
Mediators Inflamm ; 2024: 6626706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576857

RESUMO

Background: Observational researches reported the underlying correlation of plasma myeloperoxidase (MPO) concentration with respiratory tract infections (RTIs), but their causality remained unclear. Here, we examined the cause-effect relation between plasma MPO levels and RTIs. Materials and Methods: Datasets of plasma MPO levels were from the Folkersen et al. study (n = 21,758) and INTERVAL study (n = 3,301). Summarized data for upper respiratory tract infection (URTI) (2,795 cases and 483,689 controls) and lower respiratory tract infection (LRTI) in the intensive care unit (ICU) (585 cases and 430,780 controls) were from the UK Biobank database. The primary method for Mendelian randomization (MR) analysis was the inverse variance weighted approach, with MR-Egger and weighted median methods as supplements. Cochrane's Q test, MR-Egger intercept test, MR pleiotropy residual sum and outliers global test, funnel plots, and leave-one-out analysis were used for sensitivity analysis. Results: We found that plasma MPO levels were positively associated with URTI (odds ratio (OR) = 1.135; 95% confidence interval (CI) = 1.011-1.274; P=0.032) and LRTI (ICU) (OR = 1.323; 95% CI = 1.006-1.739; P=0.045). The consistent impact direction is shown when additional plasma MPO level genome-wide association study datasets are used (URTI: OR = 1.158; 95% CI = 1.072-1.251; P < 0.001; LRTI (ICU): OR = 1.216; 95% CI = 1.020-1.450; P=0.030). There was no evidence of a causal effect of URTI and LRTI (ICU) on plasma MPO concentration in the reverse analysis (P > 0.050). The sensitivity analysis revealed no violations of MR presumptions. Conclusions: Plasma MPO levels may causally affect the risks of URTI and LRTI (ICU). In contrast, the causal role of URTI and LRTI (ICU) on plasma MPO concentration was not supported in our MR analysis. Further studies are needed to identify the relationship between RTIs and plasma MPO levels.


Assuntos
Estudo de Associação Genômica Ampla , Infecções Respiratórias , Humanos , Análise da Randomização Mendeliana , Bases de Dados Factuais , Peroxidase
12.
BMC Cardiovasc Disord ; 24(1): 169, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509468

RESUMO

Inflammation plays a key role in pathogenesis and rupture of aneurysms. Non-invasively and dynamically monitoring aneurysm inflammation is critical. This study evaluated myeloperoxidase (MPO) as an imaging biomarker and therapeutic target for aneurysm inflammation using an elastase-induced rabbit model treated with or without 4-aminobenzoic acid hydrazide (ABAH), an irreversible inhibitor of MPO. Myeloperoxidase-sensitive magnetic resonance imaging (MRI) using Mn-TyrEDTA, a peroxidase activity-dependent contrast agent, revealed weak contrast enhancement in contralateral arteries and decreased contrast enhancement in aneurysm walls with ABAH treatment, indicating MPO activity decreased and inflammation mitigated. This was supported by reduced immune cell infiltration, matrix metalloproteinases (MMP-2 and - 9) activity, ROS production and arterial wall destruction on histology. Finally, the aneurysm expansion rate remained < 50% throughout the study in the ABAH(+) group, but increased gradually in the ABAH(-) group. Our results suggest that inhibition of MPO attenuated inflammation and expansion of experimental aneurysm and MPO-sensitive MRI showed promise as a noninvasive tool for monitoring aneurysm inflammation.


Assuntos
Aneurisma , Inflamação , Animais , Coelhos , Inflamação/patologia , Imageamento por Ressonância Magnética , Peroxidase , Artérias
13.
J Neuroinflammation ; 21(1): 70, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515139

RESUMO

Myeloperoxidase (MPO) plays critical role in the pathology of cerebral ischemia-reperfusion (I/R) injury via producing hypochlorous acid (HOCl) and inducing oxidative modification of proteins. High-mobility group box 1 (HMGB1) oxidation, particularly disulfide HMGB1 formation, facilitates the secretion and release of HMGB1 and activates neuroinflammation, aggravating cerebral I/R injury. However, the cellular sources of MPO/HOCl in ischemic brain injury are unclear yet. Whether HOCl could promote HMGB1 secretion and release remains unknown. In the present study, we investigated the roles of microglia-derived MPO/HOCl in mediating HMGB1 translocation and secretion, and aggravating the brain damage and blood-brain barrier (BBB) disruption in cerebral I/R injury. In vitro, under the co-culture conditions with microglia BV cells but not the single culture conditions, oxygen-glucose deprivation/reoxygenation (OGD/R) significantly increased MPO/HOCl expression in PC12 cells. After the cells were exposed to OGD/R, MPO-containing exosomes derived from BV2 cells were released and transferred to PC12 cells, increasing MPO/HOCl in the PC12 cells. The HOCl promoted disulfide HMGB1 translocation and secretion and aggravated OGD/R-induced apoptosis. In vivo, SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus different periods of reperfusion. Increased MPO/HOCl production was observed at the reperfusion stage, accomplished with enlarged infarct volume, aggravated BBB disruption and neurological dysfunctions. Treatment of MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH) and HOCl scavenger taurine reversed those changes. HOCl was colocalized with cytoplasm transferred HMGB1, which was blocked by taurine in rat I/R-injured brain. We finally performed a clinical investigation and found that plasma HOCl concentration was positively correlated with infarct volume and neurological deficit scores in ischemic stroke patients. Taken together, we conclude that ischemia/hypoxia could activate microglia to release MPO-containing exosomes that transfer MPO to adjacent cells for HOCl production; Subsequently, the production of HOCl could mediate the translocation and secretion of disulfide HMGB1 that aggravates cerebral I/R injury. Furthermore, plasma HOCl level could be a novel biomarker for indexing brain damage in ischemic stroke patients.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Proteína HMGB1 , AVC Isquêmico , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Ácido Hipocloroso , Microglia/metabolismo , Proteína HMGB1/metabolismo , Ratos Sprague-Dawley , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Barreira Hematoencefálica/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo , Peroxidase/metabolismo , Taurina , Dissulfetos
14.
Environ Geochem Health ; 46(3): 102, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433158

RESUMO

Explosives are perilous and noxious to aquatic biota disrupting their endocrinal systems. Supplementarily, they exhibit carcinogenic, teratogenic and mutagenic effects on humans and animals. Henceforth, the current study has been targeted to biotransform the explosive, 2, 4, 6 trinitrophenol (TNP) by wetland peroxidase from Streptomyces coelicolor. A total peroxidase yield of 20,779 mg/l with 51.6 folds of purification was observed. In silico molecular docking cum in vitro appraisals were accomplished to assess binding energy and interacting binding site residues of peroxidase and TNP complex. TNP required a minimal binding energy of-6.91 kJ/mol and was subjected to biodeterioration (89.73%) by peroxidase in purified form, with 45 kDa and a similarity score of 34 by MASCOT protein analysis. Moreover, the peroxidase activity was confirmed with Zymogram analysis. Characterization of peroxidase revealed that optimum values of pH and temperature as 6 and 40 °C, respectively, with their corresponding stability varying from 3.5 to 7. Interestingly, the kinetic parameters such as Km and Vmax on 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 were 19.27 µm and 0.41 µm/min; 21.4 µm and 0.1 µm/min, respectively. Among the diverse substrates, chemicals and trace elements, ABTS (40 mM), citric acid (5 mM) and Fe2+ (5 mM) displayed the highest peroxidase activity. Computational docking and in vitro results were corroborative and UV-Vis spectroscopy, HPLC, FTIR and GC-MS indicated the presence of simple metabolites of TNP such as nitrophenols and benzoquinone, showcasing the efficacy of S. coelicolor peroxidase to biotransform TNP. Henceforth, the current study offers a promising channel for biological treatment of explosive munitions, establishing a sustainable green earth.


Assuntos
Benzotiazóis , Peróxido de Hidrogênio , Peroxidase , Picratos , Ácidos Sulfônicos , Animais , Humanos , Simulação de Acoplamento Molecular , Peroxidases , Corantes
15.
Analyst ; 149(8): 2223-2226, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38506234

RESUMO

Nanozymes have been widely used as enzyme substitutes. Based on a comprehensive literature survey of 261 publications, we report the significant differences in the Michaelis-Menten constants (Km) between peroxidase-mimicking nanozymes and horseradish peroxidase (HRP). Further, these differences were not considered in more than 60% of the publications for analytical developments. As a result, nanozymes' catalytic activity is limited, resulting in a potentially higher limit of detection (LOD). We used a peroxidase-mimicking Au@Pt nanozyme, which has Km for TMB comparable with HRP and three orders of magnitude higher Km for H2O2. Using the Au@Pt nanozyme as a label for immunoassays, non-optimized nanozyme substrate concentrations led to 30 times higher LOD compared to optimized conditions. The results confirm the necessity of measuring nanozymes' kinetic parameters and the corresponding adjustment of substrate concentrations for highly sensitive detection.


Assuntos
Peróxido de Hidrogênio , Peroxidases , Peróxido de Hidrogênio/química , Catálise , Peroxidase/química , Peroxidase do Rábano Silvestre/química , Colorimetria/métodos
16.
Front Immunol ; 15: 1363962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515758

RESUMO

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. Methods: In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Mice harboring Panc02 or KPC subcutaneous tumors injected with three different M-type GAS strains. Tumors and spleens were harvested at the endpoint of the experiments to assess bacterial colonization and systemic spread, while sera were analyzed for humoral responses toward the streptococcal antigens, especially the M1 and Scl1 proteins. Role of the streptococcal collagen-like protein 1 (Scl1) in anti-PDAC activity was assessed in vivo after intratumoral injection with M1 GAS wild-type, an isogenic mutant strain devoid of Scl1, or a complemented mutant strain with restored scl1 expression. In addition, recombinant Scl1 proteins were tested for NET inhibition using in vitro and ex vivo assays assessing NET production and myeloperoxidase activity. Results: Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on Scl1, as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were weakly immunogenic toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Discussion: Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.


Assuntos
Adenocarcinoma , Armadilhas Extracelulares , Neoplasias Pancreáticas , Animais , Camundongos , Proteínas de Bactérias , Armadilhas Extracelulares/metabolismo , Colágeno/metabolismo , Antígenos de Bactérias/metabolismo , Colágeno Tipo I/metabolismo , Streptococcus pyogenes , Peroxidase/metabolismo
17.
Nat Commun ; 15(1): 2558, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519509

RESUMO

Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP and TP-binding site mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.


Assuntos
Proteínas de Bactérias , Peroxidase , Proteínas de Bactérias/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Microscopia Crioeletrônica , Peroxidases/metabolismo
18.
Tuberculosis (Edinb) ; 146: 102498, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461765

RESUMO

Drug resistance to tuberculosis (TB) has become an obstacle in eliminating tuberculosis. The transmission of drug-resistant TB from patients increases the incidence of primary drug-resistant (DR) TB in individuals who are in close contact. Therefore, it is necessary to incorporate an immunological approach into preventive therapy. This study focuses on the activity of lysosomal enzymes, oxygen bursts, and the attachment ability of macrophages among individuals diagnosed with active drug-resistant TB compared with close contacts with latent TB or healthy cases. We measured macrophage oxygen burst ability (Water-soluble tetrazolium salt (WST) test, Nitric Oxide production, and myeloperoxidase activity) and the degradative ability of lysosomes (activity of the ß-glucuronidase and acid phosphatase enzymes). Six active DR-TB patients and 18 close-contact cases (8 Latent Tuberculosis Infection (LTBI); 10 healthy) were recruited at Universitas Indonesia Hospital. The macrophage attachment of the LTBI group was higher than in the other groups. NO production, myeloperoxidase activity, ß-glucuronidase, and acid phosphatase were higher in the active DR-TB group. A negative correlation was uncovered between phagocytosis and NO production, myeloperoxidase activity, and lysosomal enzymes. The difference in macrophage function is expected to be a further reference in active DR-TB treatment or preventive therapy.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Tuberculose/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Macrófagos , Glucuronidase , Óxido Nítrico , Fosfatase Ácida , Peroxidase
19.
Biosens Bioelectron ; 254: 116201, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38507928

RESUMO

Developing highly sensitive and selective methods that incorporate specific recognition elements is crucial for detecting small molecules because of the limited availability of small molecule antibodies and the challenges in obtaining sensitive signals. In this study, a generalizable photoelectrochemical-colorimetric dual-mode sensing platform was constructed based on the synergistic effects of a molecularly imprinted polymer (MIP)-aptamer sandwich structure and nanoenzymes. The MIP functionalized peroxidase-like Fe3O4 (Fe3O4@MIPs) and alkaline phosphatase mimic Zr-MOF labeled aptamer (Zr-mof@Apt) were used as the recognition elements. By selectively accumulating dibutyl phthalate (DBP), a small molecule target model, on Fe3O4@MIPs, the formation of Zr-MOF@Apt-DBP- Fe3O4@MIPs sandwich structure was triggered. Fe3O4@MIPs oxidized TMB to form blue-colored oxTMB. However, upon selective accumulation of DBP, the catalytic activity of Fe3O4@MIPs was inhibited, resulting in a lighter color that was detectable by the colorimetric method. Additionally, Zr-mof@Apt effectively catalyzed the hydrolysis of L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS), generating ascorbic acid (AA) that could neutralize the photogenerated holes to decrease the photocurrent signals for PEC sensing and reduce oxTMB for colorimetric testing. The dual-mode platform showed strong linearity for different concentrations of DBP from 1.0 pM to 10 µM (PEC) and 0.1 nM to 0.5 µM (colorimetry). The detection limits were 0.263 nM (PEC) and 30.1 nM (colorimetry) (S/N = 3), respectively. The integration of dual-signal measurement mode and sandwich recognition strategy provided a sensitive and accurate platform for the detection of small molecules.


Assuntos
Técnicas Biossensoriais , Polímeros Molecularmente Impressos , Colorimetria/métodos , Peroxidase/química , Peroxidases
20.
ACS Appl Bio Mater ; 7(3): 1778-1789, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38437514

RESUMO

Inspired by the two kinds of naturally occurring peroxidases (POD) with vanadium or heme (iron)-based active catalytic centers, we have developed a dual metal-based nanozyme with dual V and Fe-based active catalytic centers. Co-doping of graphene with heteroatoms has a synergistic effect on the catalytic properties of the nanomaterial as the distances of migration of the substrates drastically reduce. However, a few studies have reported the codoping of heterometallic elements in the graphene structure due to the complexity of the synthesis procedures. Herein, we report the synthesis of in situ doped bimetallic VNFe@C mesoporous graphitic spheroids nanozyme via pyrolysis without the assistance of any template assisted method. The Prussian-blue analog-based precursor material was synthesized by a facile one-step low-temperature synthesis procedure. The bimetallic spheroids showed an excellent affinity toward H2O2, with a Km value of 0.26 mM when compared to 0.436 for the natural POD, which is much better than the natural POD, which was utilized to detect tumor cells in vitro through the intracellular H2O2 produced by these cells under high oxidative stress. The VNFe@C mesoporous spheroids generate dual reactive oxygen species, including the •OH and •O2H- radicals, in the presence of H2O2, which are responsible for the POD-like activity of these nanozymes, while the bimetallic V/Fe doping plays a synergistic role in the enhancement of the activity of codoped graphitic spheroids.


Assuntos
Grafite , Peroxidase , Peróxido de Hidrogênio , Peroxidases , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...