Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.026
Filtrar
1.
Langmuir ; 40(10): 5214-5227, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469650

RESUMO

Amylose is a linear polysaccharide with a unique ability to form helical inclusion complexes with the appropriate guest components. Numerous studies have been conducted on encapsulation of bioactive compounds for various applications. In the biomedical field, biohybrid micro/nanomotors (MNMs) have emerged as innovative candidates due to their excellent biocompatible and biodegradable properties. This study was inspired by the biohybrid- and enzymatic-propelled MNMs and explored the potential of amylose inclusion complexes (ICs) in creating these MNMs. The study developed a new type of micromotor made from (PEG-co-PBA)-b-amylose. Nanoprecipitation, dimethyl sulfoxide (DMSO), and ultrasound-treated methods were employed to create spherical, thick crystalline, and rod-bacterial-like morphologies, respectively. Candida antarctica lipase B (CALB) was used as the catalytic fuel to induce the motion by the enzymatic degradation of ester linkages in the polymeric segment. Optical microscopy was utilized to observe the motion of the motors following incubation with enzyme concentrations of 5, 10, and 20% (w/w). The results demonstrated that the velocity of the motors increased proportionally with the percentage of added enzyme. Additionally, a comprehensive molecular docking evaluation with PyRx software provided insight into the interaction of the CALB enzyme with polymeric moieties and demonstrated a good affinity between the enzyme and polymer in the binding site. This study provides novel insight into the design and development of enzymatically driven polymeric micromotors and nanomotors.


Assuntos
Amilose , Polímeros , Amilose/química , Simulação de Acoplamento Molecular , Movimento (Física) , Catálise
2.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473945

RESUMO

A reversed-phase high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of the potential impurities of dexketoprofen, including the distomer R-ketoprofen. After screening the separation capability of four polysaccharide columns (Lux Amylose-1, Lux Amylose-2, Lux Cellulose-1 and Lux Cellulose-2) in polar organic and in reversed-phase modes, appropriate enantioseparation was observed only on the Lux Amylose-2 column in an acidified acetonitrile/water mixture. A detailed investigation of the mobile phase composition and temperature for enantio- and chemoselectivity showed many unexpected observations. It was observed that both the resolution and the enantiomer elution order can be fine-tuned by varying the temperature and mobile phase composition. Moreover, hysteresis of the retention times and enantioselectivity was also observed in reversed-phase mode using methanol/water mixtures on amylose-type columns. This could indicate that the three-dimensional structure of the amylose column can change by transitioning from a polar organic to a reversed-phase mode, which affects the enantioseparation process. Temperature-dependent enantiomer elution order and rare enthalpic/entropic controlled enantioseparation in the operative temperature range were also observed in reversed-phase mode. To find the best methodological conditions for the determination of dexketoprofen impurities, a full factorial optimization design was performed. Using the optimized parameters (Lux Amylose-2 column with water/acetonitrile/acetic acid 50/50/0.1 (v/v/v) at a 1 mL/min flow rate at 20 °C), baseline separations were achieved between all compounds within 15 min. Our newly developed HPLC method was validated according to the current guidelines, and its application was tested on commercially available pharmaceutical formulations. According to the authors' knowledge, this is the first study to report hysteretic behavior on polysaccharide columns in reversed-phase mode.


Assuntos
Amilose , Cromatografia de Fase Reversa , Cetoprofeno/análogos & derivados , Trometamina , Amilose/química , Temperatura , Polissacarídeos/química , Celulose/química , Cromatografia Líquida de Alta Pressão/métodos , Água , Acetonitrilas , Estereoisomerismo
3.
Nutrients ; 16(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474877

RESUMO

In this study, the roles of kiwifruit soluble/insoluble dietary fiber (SDF/IDF, respectively) in the pasting characteristics and in vitro digestibility of wheat starch were explored. According to RVA and rheological tests, the IDF enhanced the wheat starch viscosity, decreased the gelatinization degree of the starch granules, and exacerbated starch retrogradation. The addition of SDF in high quantities could reduce the starch gelatinization level, lower the system viscosity, and exacerbate starch retrogradation. Through determining the leached amylose content and conducing scanning electron microscopy, the IDF and SDF added in high quantities was combined with the leached amylose wrapped around the starch granules, which reduced the leached amylose content and decreased the gelatinization degree of the starch granules. The Fourier transform infrared results showed that the addition of both the IDF and SDF resulted in an enhancement in hydrogen bonding formed by the hydroxyl groups of the system. The in vitro digestion results strongly suggested that both the IDF and SDF reduced the wheat starch digestibility. The above findings are instructive for the application of both IDF and SDF in starchy functional foods.


Assuntos
Amilose , Amido , Triticum , Fibras na Dieta , Viscosidade
4.
Chirality ; 36(3): e23659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445305

RESUMO

Due to a great demand for amylose and cellulose polymeric chromatographic chiral columns, the enantiomeric separation of thiourea derivatives of naringenin was achieved on the different amylose (Chiralpak-IB) and cellulose chiral (Chiralcel-OJ and Chiralcel-OD-3R) columns with varied chromatographic conditions. The isocratic mobile phases used were ethanol and methanol, where ethanol/hexane and methanol/hexane were used as gradient mode and were prepared in volume/volume relation. The separation and resolution factors for all the enantiomers were in the range of 1.25 to 3.47 and 0.48 to 1.75, respectively. The enantiomeric resolution was obtained within 12 min making fast separation. The docking studies confirmed the chiral recognition mechanisms with binding affinities in the range of -4.7 to -5.7 kcal/mol. The reported compounds have good anticoagulant activities and may be used as anticoagulants in the future. Besides, chiral separation is fast and is useful for enantiomeric separation in any laboratory in the world.


Assuntos
Amilose , Flavanonas , Hexanos , Metanol , Estereoisomerismo , Celulose , Polímeros , Etanol , Tioureia
5.
Sci Rep ; 14(1): 6743, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509120

RESUMO

In rice, grain filling is a crucial stage where asynchronous filling of the pollinated spikelet's of the panicle occurs. It can influence both grain quality and yield. In rice grain, starch is the dominant component and contains amylose and amylopectin. Amylose content is the chief cooking quality parameter, however, rice varieties having similar amylose content varied in other parameters. Hence, in this study, a set of varieties varying in yield (04) and another set (12) of varieties that are similar in amylose content with variation in gel consistency and alkali spreading value were used. Panicles were collected at various intervals and analysed for individual grain weight and quantities of amylose and amylopectin. Gas exchange parameters were measured in varieties varying in yield. Upper branches of the panicles were collected from rice varieties having similar amylose content and were subjected to gene expression analysis with fourteen gene specific primers of starch synthesis. Results indicate that grain filling was initiated simultaneously in multiple branches. Amylose and amylopectin quantities increased with the increase in individual grain weight. However, the pattern of regression lines of amylose and amylopectin percentages with increase in individual grain weight varied among the varieties. Gas exchange parameters like photosynthetic rate, stomatal conductance, intercellular CO2 and transpiration rate decreased with the increase in grain filling period in both good and poor yielding varieties. However, they decreased more in poor yielders. Expression of fourteen genes varied among the varieties and absence of SBE2b can be responsible for medium or soft gel consistency.


Assuntos
Amilose , Oryza , Amilose/metabolismo , Amilopectina/metabolismo , Amido/metabolismo , Grão Comestível/metabolismo , Oryza/genética , Oryza/metabolismo , Expressão Gênica
6.
Braz J Biol ; 83: e280919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422279

RESUMO

Improving grain quality in rice breeding is one of the main tasks. This concerns the creation of rice varieties with colored pericarp uncommon in the Republic of Kazakhstan, and the assessment of its quality is an important stage of breeding. Rice with colored pericarp is an important dietary crop, more useful for the human body than white rice. Regardless of the type of rice, the amount of amylose in rice grain is a crucial indicator that determines the quality of rice. The paper presents the results of electrophoretic separation of spare grain proteins of rice hybrids and dihaploids with colored pericarp and their parent forms obtained as a result of the hybridization of varieties with colored pericarp (Black Rice (China), Mavr (Russia), and Yir 5815 (Ukraine)) with white rice varieties zoned in Kazakhstan. The hybridization of the rice varieties with colored pericarp with white rice varieties was carried out to obtain rice varieties with colored pericarp oriented to the soil and climate of Kazakhstan. Analyzing the results of electrophoresis and the amount of amylose, it was found that hybrid lines differed in amylose content. One of the studied hybrids was high in amylose, four had a medium amylose content, ten had a low amylose content, three had a very low amylose content, and six were glutinous. According to the results of electrophoretic separation of spare rice grain proteins, the spectrum of the enzyme determining amylose was detected in five hybrids, which corresponds to the results of spectrophotometric determination of amylose: high amylose in one hybrid and medium amylose content in four. The results show that the hybrids obtained as a result of hybridization are true hybrids and as a result of long-term selection, the amylose content in the F7-F8 hybrids stabilized. The hybrids can be used in further breeding of rice with colored pericarp.


Assuntos
Proteínas de Grãos , Oryza , Humanos , Oryza/genética , Amilose , Melhoramento Vegetal , Hibridização Genética , Grão Comestível
7.
Food Res Int ; 178: 113931, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309903

RESUMO

The comprehensive understanding of multi-scale structure of starch and how the structure regulates the pasting/digestion properties remain unclear. This work investigated the effects of γ-ray irradiation with different doses on multi-scale structure and pasting/digestion properties of potato starch. Results indicated that γ-ray at lower doses (<20 kGy) had little effect on micromorphology of starch, increased mainly the amylose content and the thickness of amorphous region while decreased crystallinity, double helix content and lamellar ordering. With the increase of dose, the internal structure of large granules was destroyed, resulting in the depolymerization of starch to form more short-chains and to reduce molecular weight. Meanwhile, amylose content decreased due to the depolymerization of amylose. The enhanced double helix content, crystallinity, lamellar ordering and structural compactness manifested the formation of the thicker and denser starch structure. These structure changes resulted in the decreased viscosity, the increased stability and anti- digestibility of paste.


Assuntos
Amilose , Solanum tuberosum , Amilose/química , Amido/química , Viscosidade , Digestão
8.
J Chromatogr A ; 1718: 464710, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330727

RESUMO

The separation of vitamin A acetate isomers is essential for quality assurance of e.g. nutrition supplements, cosmetics, and pharmaceutical ingredients. High performance liquid chromatography (HPLC) is currently the most suitable analytical method for tackling this challenging separation task. However, the existing methods based on normal phase chromatography (NPC) are poorly reproducible due to the typical disadvantages of NPC, such as long equilibration times and fluctuation in retention factors. A new reversed phase method developed in our labs allows the separation of the isomers applying a chiral stationary phase (CSP). This phase consists of an immobilized polysaccharide which can be used in every chromatographic mode. However, they are not typically used in reversed phase mode. Through the screening of various stationary phases with different polysaccharide based chiral selectors, the choice of the ideal stationary phase could be confirmed, allowing to draw conclusions about the retention mechanism. The CSP Chiralpak IG-3 was found to be the most suitable among the examined. Regarding the separation mechanism, the spatial helical structure of the polysaccharide derivatives was confirmed to be of particular significance. In addition to the stationary phase, the mobile phase was tested for optimization regarding composition, gradient parameters as well as temperature using chromatographic method optimization software for the sake of method robustness.


Assuntos
Amilose , Diterpenos , Polissacarídeos , Ésteres de Retinil , Amilose/química , Estereoisomerismo , Polissacarídeos/química , Cromatografia Líquida de Alta Pressão/métodos
9.
Int J Biol Macromol ; 261(Pt 2): 129869, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302031

RESUMO

The digestibility of starch-based foods is receiving increased attention. To date, the full understanding of how including L-theanine (THE) can modify the structural and digestive properties of starch has not been fully achieved. Here, we investigated the multi-scale structure and digestibility of maize starch (MS) regulated by THE in ultrasound field and the molecular interactions. Ultrasound disrupted the structure of starch granules and opened the molecular chains of starch, promoting increased THE binding and producing more low-order or disordered crystal structures. In this case, the aggregation of starch molecules, especially amylose, was reduced, leading to increased mobility of the systems. As a result, the apparent viscosity, G', and G" were significantly decreased, which retarded the starch regeneration. Density functional theory calculations indicated that there were mainly non-covalent interactions between THE and MS, such as hydrogen bonding and van der Waals forces. These interactions were the main factors contributing to the decrease in the short-range ordering, the helical structure, and the enthalpy change (ΔH) of MS. Interestingly, the rapidly digestible starch (RDS) content of THE modified MS (MS-THE-30) decreased by 17.89 %, while the resistant starch increased to 26.65 %. These results provide new strategies for the safe production of resistant starch.


Assuntos
Glutamatos , Amido Resistente , Zea mays , Zea mays/química , Amido Resistente/metabolismo , Ultrassom , Amido/química , Amilose/química , Digestão
10.
Int J Biol Macromol ; 261(Pt 2): 129918, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309388

RESUMO

This study examined four types of japonica rice from Yangtze River Delta, categorized based on amylose content (AC) and protein content (PC): high AC with high PC, high AC with low PC, low AC with high PC, and low AC with low PC. It systematically explored the effect of starch, protein and their interactions on eating quality of japonica rice. Rheological analysis revealed that increased amylose, long chains amylopectin or protein levels during cooking strengthen starch-protein interactions (hydrogen bonding), forming a firm gel network. Scanning electron microscopy showed that increased amylose, long chains amylopectin or protein levels made protein and starch more stable in combination during cooking, limiting starch structure cleavage. Therefore, the eating quality of high AC in similar PC japonica rice and high PC in similar AC japonica rice were poor. Further, correlation and random-forest analysis (RFA) identified amylose as the most influential factor in starch-protein interactions affecting rice eating quality, followed by amylopectin and protein. RFA also revealed that in high AC japonica rice, the interactions of Fb3 and albumin with amylose were more conducive to forming good eating quality. In low AC japonica rice, the interactions of Fb2 and prolamin with amylose were more beneficial.


Assuntos
Oryza , Amido , Amido/química , Amilopectina/química , Amilose/química , Oryza/química , Rios
11.
Int J Biol Macromol ; 261(Pt 2): 129919, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309404

RESUMO

The effect of high-pressure processing (HPP) modification (200, 400, and 600 MPa for 10 min) on the physico-chemical, functional, structural, and rheological properties of white finger millet starch (WFMS) was studied. Measured amylose content, water, and oil absorption capacity, alkaline water retention, and pasting temperature increased significantly with the intensity of pressure. All color parameters (L, a, b values, and ΔC) were affected by HPP treatment, and paste clarity of modified starch decreased significantly with an increase in storage time. The samples' least gelation concentration (LGC) is in the range of 8-14 %. An increasing solubility and swelling power are noted, further intensifying at the elevated temperature (90 °C). The structural changes of WFMS were characterized by XRD, SEM, and FTIR spectroscopy. Starch modified at 600 MPa showed a similar pattern as 'B'-type crystalline, and the surfaces of starch deformed because of the gelatinization. Applied pressure of 600 MPa affected the FTIR characteristic bands at 3330, 2358, and 997 cm-1, indicating a lower crystallinity of the HPP-600 modified sample. According to DSC analysis, even at 600 MPa, WFMS is only partially gelatinized. This work provides insights for producing modified WFM starches by a novel physical modification method.


Assuntos
Eleusine , Amido , Amido/química , Amilose/química , Fenômenos Químicos , Solubilidade , Água/química
12.
Int J Biol Macromol ; 261(Pt 2): 129920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311128

RESUMO

A novel chestnut porous starch nanoparticle (PSNP) was successfully synthesized, combining the properties of starch nanoparticle (SNP) and porous starch. The SNP obtained through ultrasonic and acid hydrolysis, exhibited a smaller particle size (173.9 nm) and a higher specific surface area (SSA) compared to native starch. After the synergistic hydrolysis by α-amylase and glucoamylase, the porous structure appeared on the surface of SNP. The prepared PSNP had a size of 286.3 nm and the highest SSA. In the adsorption experiments, PSNP showed higher capacities for adsorbing water, oil and methylene blue (MB) compared to other samples. The acid and enzymatic treatments resulted in a decrease in the levels of total starch content and amylose ratio. Furthermore, the treatments increased the levels of relative crystallinity (RC) and solubility, while decreasing the short-range ordered structure and swelling ratio at high temperatures. It was observed that the SSA of starch granules positively correlated with the MB and water adsorption capacity (WAC), solubility, and RC. These findings highlight the potential of the novel PSNP as an efficient adsorbent for bioactive substances and dyes.


Assuntos
Nanopartículas , Amido , Amido/química , Porosidade , Amilose/química , Hidrólise , Água/química
13.
Int J Biol Macromol ; 261(Pt 2): 129886, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325252

RESUMO

Starch-based Pickering emulsions exhibit high interfacial stability in a certain range of mild pH environments. On the contrary, many studies have reported that when the pH value is <4, it often leads to different degrees of emulsion instability. In this paper, the microscopic state of starch granules in the emulsion and its effect on the stability of the emulsion were observed and analyzed by atomic force microscope (AFM) in tapping mode. At the same time, Pickering emulsions in acidic environment were prepared by using the gel properties of methyl cellulose (MC) in synergy with esterified high amylose maize starch (M-HAMS) granules. The results show that in the emulsion with pH 3, the excessive H + ion inhibits the swelling of M-HAMS granules and prevents it from forming a stable gel structure, which is the main cause of emulsion instability. The polarity of MC with water contact angle (WCA) of 81.8° is similar to that of M-HAMS granules with WCA of 80.1°, and a uniform and ordered micro-nanostructure is formed in the aqueous phase. The prepared acidic (pH 3-4) emulsion has good stability during the observation period of 30 days.


Assuntos
Nanopartículas , Amido , Emulsões/química , Amido/química , Amilose , Nanopartículas/química , Água/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula
14.
Carbohydr Polym ; 330: 121792, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368081

RESUMO

The carbohydrate binding module 21 (CBM21) from Rhizopus oryzae is a dual-site CBM proposed to disrupt polysaccharide structures. Additionally, it serves as a purification tag in industry. CBM21 crystal structure features a Glc residue in an unusual 1S3 conformation, whose relevance for the CBM mechanism of action is unclear. In this context, we seek to contribute for the understanding of CBM21 mechanism of action by: i) investigating the role of the 1S3 conformation on carbohydrate recognition, and ii) characterize the protein-carbohydrate binding dynamics using molecular dynamics and metadynamics simulations at MM and QM/MM levels. Results indicate the 1S3 Glc conformation is unlikely to occur under biological conditions, being originated from the crystallographic environment. CBM21 binding to small ligands appears transient and unstable, while protein dimerization and polysaccharide chain size influence complex stability. In interactions with amylose, CBM21 exhibits a repeated unbinding followed by re-binding, while simultaneously alternating between binding sites I and II. These results suggest that CBM21 acts through transient interactions, directing carbohydrates to the catalytic center rather than forming strong and long-lasting bonds with carbohydrates. Accordingly, we expect such atomistic depiction of CBM21 mechanism could aid in CBM design targeting biotechnological applications.


Assuntos
Amilose , Módulos de Ligação de Carboidratos , Carboidratos/química , Polissacarídeos/química , Sítios de Ligação , Ligação Proteica
15.
Carbohydr Polym ; 330: 121785, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368080

RESUMO

The relationship between the fine structure of starch and its gelatinization properties is not well studied, particularly in relation to the influence of sugar or sugar alcohol. In this study, seven starches with distinct molecular structures were investigated to determine how different sugars and sugar alcohols affect their gelatinization properties. The inclusion of sugars and sugar alcohols resulted in a significant elevation of starch gelatinization temperatures (∼ 8 °C), especially with sucrose, isomaltose and isomalt. Nevertheless, the influence of these sugars/ sugar alcohols on the gelatinization temperature range and enthalpy change varied depending on the particular starch varieties. According to the correlation analysis, sugars and sugar alcohols mainly exert their impact on the starch gelatinization temperature range and enthalpy change by possibly interacting with amylose chains possessing a degree of polymerization ranging from 100 to 1000 (p < 0.05) and inhibiting the amylose leaching during gelatinization. These findings help a better understanding of the complex relationship between starch fine structure and gelatinization properties under the influence of sugars and sugar alcohols.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Estrutura Molecular , Álcoois Açúcares , Açúcares , Amilopectina/química
16.
Carbohydr Polym ; 330: 121791, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368094

RESUMO

This work aimed to evaluate the structure and functional characteristics of starch from ten hulled oat cultivars grown in different locations in China. The protein, phosphorus, amylose, and starch contents were 0.2-0.4 %, 475.7-691.8 ppm, 16.2-23.0 %, and 93.6-96.7 %, respectively. All the starches showed irregular polygonal shapes and A-type crystallization with molecular weights ranging from 7.2 × 107 to 4.5 × 108 g/mol. The amounts of amylopectin A (DP 6-12), B1 (DP 13-24), B2 (DP 25-36), and B3 (DP > 36) chains were in the ranges of 10.3-16.0 %, 54.5-64.8 %, 16.5-21.1 %, and 4.9-13.1 %, respectively. The starches differed significantly in gelatinization temperatures, pasting viscosity, solubility, swelling power, rheological properties, and digestion parameters. The results revealed that the larger particle size could increase the peak viscosity of the starch paste. The presence of phosphorus increased the gelatinization temperature and enhanced the resistant starch content. The starch granules with higher crystallinity contained a higher proportion of phosphate, which increased final viscosity and setback viscosity but decreased rapidly digestible starch. Overall, oat starch with a high phosphorus content could be used to prepare low-glycemic-index food for diabetes patients.


Assuntos
Avena , Amido , Humanos , Amido/química , Avena/metabolismo , Amilopectina/química , Amilose/química , Viscosidade , Grão Comestível/metabolismo , Fósforo
17.
Carbohydr Polym ; 331: 121860, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388056

RESUMO

Potato starch with mutations in starch branching enzyme genes (SBEI, SBEII) and granule-bound starch synthase gene (GBSS) was characterized for molecular and thermal properties. Mutations in GBSS were here stacked to a previously developed SBEI and SBEII mutation line. Additionally, mutations in the GBSS gene alone were induced in the wild-type variety for comparison. The parental line with mutations in the SBE genes showed a âˆ¼ 40 % increase in amylose content compared with the wild-type. Mutations in GBSS-SBEI-SBEII produced non-waxy, low-amylose lines compared with the wild-type. An exception was a line with one remaining GBSS wild-type allele, which displayed ∼80 % higher amylose content than wild-type. Stacked mutations in GBSS in the SBEI-SBEII parental line caused alterations in amylopectin chain length distribution and building block size categories of whole starch. Correlations between size categories of building blocks and unit chains of amylopectin were observed. Starch in GBSS-SBEI-SBEII mutational lines had elevated peak temperature of gelatinization, which was positively correlated with large building blocks.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Solanum tuberosum , Sintase do Amido , Amilopectina/química , Sintase do Amido/genética , Sintase do Amido/metabolismo , Amilose , Solanum tuberosum/metabolismo , Estrutura Molecular , Amido/química , Mutação , Enzima Ramificadora de 1,4-alfa-Glucana/química
18.
Carbohydr Polym ; 331: 121891, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388064

RESUMO

This study investigated the properties of 3D-printed high internal phase emulsion (HIPE)-rice starch gels, specially tailored for personalized nutrition by co-encapsulating resveratrol and ß-carotene. We examined the influence of amylose content on various parameters, including functional groups, linear and nonlinear rheology, printed precision and microstructural stability. Additionally, we assessed the protective efficacy and release in vitro digestion of these gels on the encapsulated bioactive components. Compared to HIPE, HIPE-starch gels differently impacted by amylose content in starches. Low-level amylose weakened the network structure, attributed to amylose mainly responsible for gel formation and weak hydrogen bond interaction between the surface-active molecules and amylose due to gelatinized starch granules rupturing the protein network. Oppositely, high-level amylose led to denser, more gel-like structures with enhanced mechanical strength and reversible deformation resistance, making them suitable for 3D printing. Furthermore, 3D-printed gels with high-level amylose demonstrated well-defined structures, smooth surfaces, stable printing and less dimension deviation. They were also regarded as effective entrapping and delivery systems for resveratrol and ß-carotene, protecting them against degradation from environment and damage under the erosion of digestive fluid. Overall, this research offers a straightforward strategy for creating reduced-fat HIPE gels that serve as the carrier for personalized nutraceutical foods.


Assuntos
Amilose , Oryza , Amilose/química , Oryza/química , Emulsões , beta Caroteno , Resveratrol , Amido/química , Géis/química , Reologia
19.
Carbohydr Polym ; 329: 121779, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286529

RESUMO

While cooked rice is widely consumed as a whole food, the specific characteristics and impact of its resistant starch (RS) on gut microbiota are largely unexplored. In this study, three rice varieties with distinct starch molecular structures were used to prepare RS from cooked rice. All three types of RS had a crystalline structure characterized as B + V type, with the V type being the predominant crystalline polymorph. Distinct differences in chain-length distributions were observed among different RSs, with rapidly fermentable starch fractions comprising short amylopectin and long amylose chains, while the degrees of polymerization (DPs) âˆ¼ 10, 37, 65, and 105 fractions comprised the slowly fermentable starch. Jasmine rice RS showed the highest proportion of this slowly fermentable starch fraction, which appeared to be specifically utilized by Megasphaera_elsdenii_DSM_20460 OTU198. The fermentation of Jasmine RS resulted in the highest production of butyrate after 24 h, which was positively correlated with the relative abundance of Megasphaera_elsdenii_DSM_20460 OTU198. These findings collectively indicate that RS in cooked rice with a higher V type crystallinity and DPs âˆ¼ 10, 37, 65, and 105 fractions promote butyrate production and stimulate the growth of butyrate-producing bacteria in the human gut, thereby conferring beneficial effects on gut health.


Assuntos
Microbioma Gastrointestinal , Oryza , Humanos , Amido Resistente , Oryza/química , Amido/química , Amilose/química , Butiratos
20.
Carbohydr Polym ; 329: 121770, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286545

RESUMO

The complete dissolution of starch without degradation are necessary prerequisites for starch fractionation to obtain amylose or amylopectin (AP). With the recent, continuous progress in finding efficient and eco-friendly starch-dissolving solutions, applying new solvents for starch fractionation is important. In this study, the effects of dimethyl sulfoxide (DMSO), NaOH, and CaCl2 solutions on starch structure and AP product parameters during starch fractionation were compared with respect to the starch deconstruction effect. This study proved that the CaCl2 solution could effectively dissolve corn starch (50 °C, solubility of 98.96 %), and promote the regeneration of starch into uniform and fine particles. Furthermore, the three solvents (DMSO, NaOH, and CaCl2) changed the crystal structure of corn starch, but they were all non-derivatizing solvents. The effect of the CaCl2 solution on the molecular structure of corn starch was the least significant of the three solvents. Finally, the extraction rate of AP from the CaCl2 solution reached 69.45 %. In conclusion, this study presents a novel and effective method for AP extraction.


Assuntos
Amilopectina , Amido , Amido/química , Amilopectina/química , Zea mays/química , Dimetil Sulfóxido/química , Cloreto de Cálcio , Hidróxido de Sódio , Amilose/química , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...