Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.102
Filtrar
1.
Langmuir ; 40(15): 8126-8132, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38568020

RESUMO

The apolipoprotein E (ApoE) signal peptide is a short stretch of N-terminal amino acids that direct the ApoE protein to the endoplasmic reticulum after synthesis. Previous studies have shown that this peptide can bind to lipid membranes in a cholesterol-dependent manner; however, the mechanism of this interaction is yet to be clarified. In this study, we aimed to investigate how the composition of neighboring lipids affects the membrane-binding of the ApoE signal peptide. We found that a negatively charged lipid, such as phosphatidylglycerol, can act as a switch that reduces the binding efficiency of the peptide to cholesterol-rich membranes. Interestingly, phosphatidylethanolamine does not activate the cholesterol-dependent binding of the ApoE signal peptide yet acts synergistically to enhance the cholesterol sensitivity in phosphatidylglycerol-containing membranes. To the best of our knowledge, this is the first report of modulation of the affinity of a peptide for a membrane by a neighboring lipid rather than by the lipid-binding domain of the peptide. Our findings revealed a novel role of lipid diversity in modulating the membrane binding of the ApoE signal peptide and its potential implications in the unidirectional trafficking of a newly synthesized protein from the ribosomes to the endoplasmic reticulum.


Assuntos
Fosfatidilgliceróis , Sinais Direcionadores de Proteínas , Apolipoproteínas E/química , Apolipoproteínas E/metabolismo , Colesterol/química , Peptídeos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38512754

RESUMO

Eight colonies of live microbes were isolated from an extensively surface-sterilized halite sample which had been retrieved from a depth of 2000 m from a salt mine in the Qianjiang Depression, Hubei Province, PR China. The eight colonies, obtained after 4 weeks of incubation, were named JI20-1T-JI20-8 and JI20-1T was selected as the type strain. The strains have been previously described, including a genomic analysis based on the complete genome for strain JI20-1T and draft genomes for the other strains. In that study, the name Halobacterium hubeiense was suggested, based on the location of the drilling site. Previous phylogenomic analysis showed that strain JI20-1T is most closely related to the Permian isolate Halobacterium noricense from Alpine rock salt. The orthologous average nucleotide identity (orthoANI) and digital DNA-DNA hybridization (dDDH) percentages between the eight strains are 100-99.6 % and 99.8-96.4 %, respectively. The orthoANI and dDDH values of these strains with respect to the type strains of species of the genus Halobacterium are 89.9-78.2 % and 37.3-21.6 %, respectively, supporting their placement in a novel extremely halophilic archaeal species. The phylogenomic tree based on the comparison of sequences of 632 core-orthologous proteins confirmed the novel species status for these haloarchaea. The polar lipid profile includes phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, and sulfated galactosyl mannosyl galactosyl glucosyl diether, a profile compatible with that of Halobacterium noricense. Based on genomic, phenotypic, and chemotaxonomic characterization, we propose strain JI20-1T (=DSM 114402T = HAMBI 3616T) as the type strain of a novel species in the genus Halobacterium, with the name Halobacterium hubeiense sp. nov.


Assuntos
Halobacteriaceae , Halobacterium , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Cloreto de Sódio , China , Fosfatidilgliceróis , DNA Arqueal/genética
3.
J Bacteriol ; 206(3): e0036823, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38376203

RESUMO

Daptomycin is a cyclic lipopeptide antibiotic used to treat infections caused by some Gram-positive bacteria. Daptomycin disrupts synthesis of the peptidoglycan (PG) cell wall by inserting into the cytoplasmic membrane and binding multiple forms of the undecaprenyl carrier lipid required for PG synthesis. Membrane insertion requires phosphatidylglycerol, so studies of daptomycin can provide insight into assembly and maintenance of the cytoplasmic membrane. Here, we studied the effects of daptomycin on Clostridioides difficile, the leading cause of healthcare-associated diarrhea. We observed that growth of C. difficile strain R20291 in the presence of sub-MIC levels of daptomycin resulted in a chaining phenotype, minicell formation, and lysis-phenotypes broadly consistent with perturbation of membranes and PG synthesis. We also selected for and characterized eight mutants with elevated daptomycin resistance. The mutations in these mutants were mapped to four genes: cdsA (cdr20291_2041), ftsH2 (cdr20291_3396), esrR (cdr20291_1187), and draS (cdr20291_2456). Of these four genes, only draS has been characterized previously. Follow-up studies indicate these mutations confer daptomycin resistance by two general mechanisms: reducing the amount of phosphatidylglycerol in the cytoplasmic membrane (cdsA) or altering the regulation of membrane processes (ftsH2, esrR, and draS). Thus, the mutants described here provide insights into phospholipid synthesis and identify signal transduction systems involved in cell envelope biogenesis and stress response in C. difficile. IMPORTANCE: C. difficile is the leading cause of healthcare-associated diarrhea and is a threat to public health due to the risk of recurrent infections. Understanding biosynthesis of the atypical cell envelope of C. difficile may provide insight into novel drug targets to selectively inhibit C. difficile. Here, we identified mutations that increased daptomycin resistance and allowed us to better understand phospholipid synthesis, cell envelope biogenesis, and stress response in C. difficile.


Assuntos
Clostridioides difficile , Daptomicina , Humanos , Daptomicina/farmacologia , Daptomicina/química , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/química , Fosfatidilgliceróis , Diarreia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38197785

RESUMO

Two extremely halophilic archaeal strains, GSLN9T and XZYJT29T, were isolated from the saline soil in different regions of western China. Both strains GSLN9T and XZYJT29T have two 16S rRNA genes with similarities of 95.1 and 94.8 %, respectively. Strain GSLN9T was mostly related to the genus Halomicrococcus based on 16S rRNA (showing 91.0-96.0 % identities) and rpoB' genes (showing 92.0 % identity). Strain XZYJT29T showed 92.1-97.6 % (16S rRNA gene) and 91.4-93.1 % (rpoB' gene) sequence similarities to its relatives in the genus Halosimplex, respectively. The polar lipid profile of strain GSLN9T included phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulphate (PGS), sulphated mannosyl glucosyl diether (S-DGD-1) and sulphated galactosyl mannosyl glucosyl diether (S-TGD-1), mostly similar to that of Halomicrococcus hydrotolerans H22T. PA, PG, PGP-Me, S-DGD-1 (S-DGD-PA), S2-DGD, S-TGD-1 and an unidentified glycolipid were detected in strain XZYJT29T; this polar lipid composition is similar to those of members of the genus Halosimplex. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between these two strains and their relatives of the genera Halomicrococcus and Halosimplex were no more than 82, 27 and 80 %, respectively, much lower than the thresholds for species demarcation. Other phenotypic characterization results indicated that strains GSLN9T and XZYJT29T can be differentiated from the current species of the genera Halomicrococcus and Halosimplex, respectively. These results revealed that strains GSLN9T (=CGMCC 1.15215T=JCM 30842T) and XZYJT29T (=CGMCC 1.15828T=JCM 31853T) represent novel species of Halomicrococcus and Halosimplex, for which the names Halomicrococcus gelatinilyticus sp. nov. and Halosimplex aquaticum sp. nov. are proposed.


Assuntos
Halobacteriaceae , Halobacteriales , RNA Ribossômico 16S/genética , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Halobacteriaceae/genética , Fosfatidilgliceróis , Solo , Sulfatos
5.
BMC Cancer ; 24(1): 27, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166693

RESUMO

OBJECTIVE: (1) This study aims to identify distinct serum metabolites in gastric cancer patients compared to healthy individuals, providing valuable insights into postoperative efficacy evaluation and monitoring of gastric cancer recurrence; (2) Methods: Serum samples were collected from 15 healthy individuals, 16 gastric cancer patients before surgery, 3 months after surgery, 6 months after surgery, and 15 gastric cancer recurrence patients. T-test and analysis of variance (ANOVA) were performed to screen 489 differential metabolites between the preoperative group and the healthy control group. Based on the level of the above metabolites in the recurrence, preoperative, three-month postoperative, and six-month postoperative groups, we further selected 18 significant differential metabolites by ANOVA and partial least squares discriminant analysis (PLS-DA). The result of hierarchical clustering analysis about the above metabolites showed that the samples were regrouped into the tumor-bearing group (comprising the original recurrence and preoperative groups) and the tumor-free group (comprising the original three-month postoperative and six-month postoperative groups). Based on the results of PLS-DA, 7 differential metabolites (VIP > 1.0) were further selected to distinguish the tumor-bearing group and the tumor-free group. Finally, the results of hierarchical clustering analysis showed that these 7 metabolites could well identify gastric cancer recurrence; (3) Results: Lysophosphatidic acids, triglycerides, lysine, and sphingosine-1-phosphate were significantly elevated in the three-month postoperative, six-month postoperative, and healthy control groups, compared to the preoperative and recurrence groups. Conversely, phosphatidylcholine, oxidized ceramide, and phosphatidylglycerol were significantly reduced in the three-month postoperative, six-month postoperative, and healthy control groups compared to the preoperative and recurrence groups. However, these substances did not show significant differences between the preoperative and recurrence groups, nor between the three-month postoperative, six-month postoperative, and healthy control groups; (4) Conclusions: Our findings demonstrate the presence of distinct metabolites in the serum of gastric cancer patients compared to healthy individuals. Lysophosphatidic acid, triglycerides, lysine, sphingosine-1-phosphate, phosphatidylcholine, oxidized ceramide, and phosphatidylglycerol hold potential as biomarkers for evaluating postoperative efficacy and monitoring recurrence in gastric cancer patients. These metabolites exhibit varying concentrations across different sample categories.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/cirurgia , Lisina , Recidiva Local de Neoplasia , Metabolômica/métodos , Triglicerídeos , Ceramidas , Fosfatidilcolinas , Fosfatidilgliceróis
6.
Artigo em Inglês | MEDLINE | ID: mdl-38194256

RESUMO

Two novel halophilic archaeal strains (XZGYJ-43T and ZJ1T) were isolated from Mangkang ancient solar saltern (Tibet, PR China) and Zhujiang river inlet (Guangdong, PR China), respectively. The comparison of the 16S rRNA gene sequences revealed that strain XZGYJ-43T is related to the current species of the family Halobacteriaceae (89.2-91.7% similarity) and strain ZJ1T showed 94.7-98.3% similarity to the current species of the genus Haladaptatus. Phylogenetic analyses based on 16S rRNA genes, rpoB' genes and genomes indicated that strain XZGYJ-43T is separate from the related genera, Halocalculus, Salarchaeum and Halarchaeum of the family Halobacteriaceae, and strain ZJ1T tightly clusters with the current species of the genus Haladaptatus. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between strain XZGYJ-43T and the current species of the family Halobacteriaceae were 71-75, 20-25 and 59-68 %, and these values between strain ZJ1T and the current species of the genus Haladaptatus were 77-81, 27-32 and 76-82 %, respectively, clearly below the thresholds for prokaryotic species demarcation. These two strains could be distinguished from their relatives according to differential phenotypic characteristics. The major polar lipids of strain XZGYJ-43T were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), mannosyl glucosyl diether (DGD-1; DGD-PA) and sulphated mannosyl glucosyl diether (S-DGD-1; S-DGD-PA), and those of strain ZJ1T were PA, PG, PGP-Me, DGD-PA, S-DGD-1 (S-DGD-PA) and sulphated galactosyl mannosyl glucosyl diether. Based on phenotypic, phylogenetic and genomic data, strain XZGYJ-43T (=CGMCC 1.13890T=JCM 33735T) represents a novel species of a new genus within the family Halobacteriaceae, and strain ZJ1T (=CGMCC 1.18785T=JCM 34917T) represents a novel species of the genus Haladaptatus, for which the names Halospeciosus flavus gen. nov., sp. nov. and Haladaptatus caseinilyticus sp. nov. are proposed, respectively.


Assuntos
Halobacteriaceae , Halobacteriales , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Halobacteriaceae/genética , Fosfatidilgliceróis
7.
Curr Microbiol ; 81(3): 71, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253911

RESUMO

An extremely halophilic archaeon strain named FL173T was isolated from a salt mine (Anhui Province, China). Colonies on agar plate are orange-red, moist, and opaque. Cells are motile, Gram-stain-negative, polymorphic, and lyse in distilled water. Cells are able to grow at temperatures, NaCl concentrations, and pH ranging from 20 to 50 °C (optimum 42 °C), 2.6 to 5.1 M NaCl concentration (optimum 3.4 M), and 5.5 to 9.5 pH (optimum 7.0), respectively. Mg2+ is not necessary for growth. The major polar lipids of strain FL173T were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfonate (PGS), sulfonated mannosyl glycolipid (S-DGD-1). It has two copies of the 16S rRNA gene, which share the highest sequence similarity (93.04-99.02% sequence similarity) to the 16S rRNA genes of Halomicroarcula salinisoli F24AT, respectively. The rpoB' gene of strain FL173T showed the highest sequence similarity (93.76%) to that of H. salinisoli F24AT. The genome-based analysis showed that the average amino-acid identity (AAI), orthologous average nucleotide identity (ANI) and in silico DNA-DNA hybridization values between strains FL173T and H. salinisoli F24AT were 84.80%, 85.29%, and 29.70%, respectively, which are far below the threshold for the delineation of a prokaryotic new species. The DNA G+C content of strain FL173T is 64.9%. Genomic, physiological, biochemical, and phenotypic evidences showed that strain FL173T (CGMCC 1.18851=NBRC 114260) represents a new species of the genus Halomicroarcula, for which the name Halomicroarcula salaria sp. nov. is proposed.


Assuntos
Perciformes , Cloreto de Sódio , Animais , RNA Ribossômico 16S/genética , Genômica , Alcanossulfonatos , Fosfatidilgliceróis , DNA
8.
Biochim Biophys Acta Biomembr ; 1866(3): 184288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286247

RESUMO

Staphylococcus aureus is an opportunistic pathogen that is considered a global health threat. This microorganism can adapt to hostile conditions by regulating membrane lipid composition in response to external stress factors such as changes in pH and ionic strength. S. aureus synthesizes and incorporates in its membrane staphyloxanthin, a carotenoid providing protection against oxidative damage and antimicrobial agents. Staphyloxanthin is known to modulate the physical properties of the bacterial membranes due to the rigid diaponeurosporenoic group it contains. In this work, preparative thin layer chromatography and liquid chromatography mass spectrometry were used to purify staphyloxanthin from S. aureus and characterize its structure, identifying C15, C17 and C19 as the main fatty acids in this carotenoid. Changes in the biophysical properties of models of S. aureus membranes containing phosphatidylglycerol, cardiolipin, and staphyloxanthin were evaluated. Infrared spectroscopy shows that staphyloxanthin reduces the liquid-crystalline to gel phase transition temperature in the evaluated model systems. Interestingly, these shifts are not accompanied by strong changes in trans/gauche isomerization, indicating that chain conformation in the liquid-crystalline phase is not altered by staphyloxanthin. In contrast, headgroup spacing, measured by Laurdan GP fluorescence spectroscopy, and lipid core dynamics, measured by DPH fluorescence anisotropy, show significant shifts in the presence of staphyloxanthin. The combined results show that staphyloxanthin reduces lipid core dynamics and headgroup spacing without altering acyl chain conformations, therefore decoupling these normally correlated effects. We propose that the rigid diaponeurosporenoic group in staphyloxanthin and its positioning in the membrane is likely responsible for the results observed.


Assuntos
Staphylococcus aureus , Xantofilas , Staphylococcus aureus/fisiologia , Xantofilas/química , Carotenoides , Fosfatidilgliceróis
9.
Nanomedicine (Lond) ; 19(5): 383-396, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38293893

RESUMO

Aim: To develop nanoemulsions (NEs) loading amphotericin B (AmB) and to evaluate the influence of different excipients on the stability and the supramolecular organization, retention and toxicity of AmB. Materials & methods: The NEs were developed from different oils, surfactants, external media and anionic lipids (disteaoryl phosphatidylglycerol [DSPG] and dioleoyl phosphatidylglycerol [DOPG]). Their impact on the size, pH, zeta potential, AmB encapsulation efficiency, AmB retention and hemolytic potential of the NEs was evaluated. Results & conclusion: The use of soybean oil (lipid matrix), Span 80 (surfactant), phosphate buffer (external phase) and DSPG or DOPG (hydrophobic ion pair) provided better NE stability, higher AmB retention within the NEs and a safer formulation profile in hemolysis tests.


Assuntos
Anfotericina B , Fosfatidilgliceróis , Anfotericina B/toxicidade , Tensoativos , Antifúngicos/química
10.
Prog Lipid Res ; 93: 101266, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040200

RESUMO

Phosphatidylglycerol (PG) is a unique phospholipid class with its indispensable role in photosynthesis and growth in land plants, algae, and cyanobacteria. PG is the only major phospholipid in the thylakoid membrane of cyanobacteria and plant chloroplasts and a main lipid component in photosynthetic protein-cofactor complexes such as photosystem I and photosystem II. In plants and algae, PG is also essential as a substrate for the biosynthesis of cardiolipin, which is a unique lipid present only in mitochondrial membranes and crucial for the functions of mitochondria. PG biosynthesis pathways in plants include three membranous organelles, plastids, mitochondria, and the endoplasmic reticulum in a complex manner. While the molecular biology underlying the role of PG in photosynthetic functions is well established, many enzymes responsible for the PG biosynthesis are only recently cloned and functionally characterized in the model plant species including Arabidopsis thaliana and Chlamydomonas reinhardtii and cyanobacteria such as Synechocystis sp. PCC 6803. The characterization of those enzymes helps understand not only the metabolic flow for PG production but also the crosstalk of biosynthesis pathways between PG and other lipids. This review aims to summarize recent advances in the understanding of the PG biosynthesis pathway and functions of involved enzymes.


Assuntos
Arabidopsis , Fosfatidilgliceróis , Fosfatidilgliceróis/metabolismo , Fotossíntese , Cloroplastos/metabolismo , Tilacoides/metabolismo , Plantas/metabolismo
11.
Plant Physiol ; 194(3): 1692-1704, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37962588

RESUMO

Dark-germinated angiosperm seedlings develop chloroplast precursors called etioplasts in cotyledon cells. Etioplasts develop lattice membrane structures called prolamellar bodies (PLBs), where the chlorophyll intermediate protochlorophyllide (Pchlide) forms a ternary complex with NADPH and light-dependent NADPH:Pchlide oxidoreductase (LPOR). The lipid bilayers of etioplast membranes are mainly composed of galactolipids, which play important roles in membrane-associated processes in etioplasts. Although etioplast membranes also contain 2 anionic lipids, phosphatidylglycerol (PG) and sulfoquinovosyldiacylglycerol (SQDG), their roles are unknown. To determine the roles of PG and SQDG in etioplast development, we characterized etiolated Arabidopsis (Arabidopsis thaliana) mutants deficient in PG and SQDG biosynthesis. A partial deficiency in PG biosynthesis loosened the lattice structure of PLBs and impaired the insertion of Mg2+ into protoporphyrin IX, leading to a substantial decrease in Pchlide content. Although a complete lack of SQDG biosynthesis did not notably affect PLB formation and Pchlide biosynthesis, lack of SQDG in addition to partial PG deficiency strongly impaired these processes. These results suggested that PG is required for PLB formation and Pchlide biosynthesis, whereas SQDG plays an auxiliary role in these processes. Notably, PG deficiency and lack of SQDG oppositely affected the dynamics of LPOR complexes after photoconversion, suggesting different involvements of PG and SQDG in LPOR complex organization. Our data demonstrate pleiotropic roles of anionic lipids in etioplast development.


Assuntos
Arabidopsis , Protoclorifilida , NADP , Membranas , Arabidopsis/genética , Cloroplastos , Galactolipídeos , Fosfatidilgliceróis
12.
Biochim Biophys Acta Biomembr ; 1866(3): 184267, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159877

RESUMO

NK-2 is an antimicrobial peptide derived from helices 3 and 4 of the pore-forming protein of natural killer cells, NK-lysin. It has potent activities against Gram-negative and Gram-positive bacteria, fungi and protozoan parasites without being toxic to healthy human cells. In biophysical assays its membrane activities were found to require phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), lipids which dominate the composition of bacterial membranes. Here the structure and activities of NK-2 in binary mixtures of different PE/PG composition were investigated. CD spectroscopy reveals that a threshold concentration of 50 % PG is needed for efficient membrane association of NK-2 concomitant with a random coil - helix transition. Association with PE occurs but is qualitatively different when compared to PG membranes. Oriented solid-state NMR spectroscopy of NK-2 specifically labelled with 15N indicates that the NK-2 helices are oriented parallel to the PG bilayer surface. Upon reduction of the PG content to 20 mol% interactions are weaker and/or an in average more tilted orientation is observed. Fluorescence spectroscopy of differently labelled lipids is in agreement of an interfacial localisation of both helices where the C-terminal end is in a less hydrophobic environment. By inserting into the membrane interface and interacting differently with PE and PG the peptides probably induce high curvature strain which result in membrane openings and rupture.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Bicamadas Lipídicas , Fosfatidiletanolaminas , Proteolipídeos , Humanos , Bicamadas Lipídicas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Peptídeos/química
13.
Front Cell Infect Microbiol ; 13: 997245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089812

RESUMO

Plasmodium falciparum is an Apicomplexa responsible for human malaria, a major disease causing more than ½ million deaths every year, against which there is no fully efficient vaccine. The current rapid emergence of drug resistances emphasizes the need to identify novel drug targets. Increasing evidences show that lipid synthesis and trafficking are essential for parasite survival and pathogenesis, and that these pathways represent potential points of attack. Large amounts of phospholipids are needed for the generation of membrane compartments for newly divided parasites in the host cell. Parasite membrane homeostasis is achieved by an essential combination of parasite de novo lipid synthesis/recycling and massive host lipid scavenging. Latest data suggest that the mobilization and channeling of lipid resources is key for asexual parasite survival within the host red blood cell, but the molecular actors allowing lipid acquisition are poorly characterized. Enzymes remodeling lipids such as phospholipases are likely involved in these mechanisms. P. falciparum possesses an unusually large set of phospholipases, whose functions are largely unknown. Here we focused on the putative patatin-like phospholipase PfPNPLA2, for which we generated an glmS-inducible knockdown line and investigated its role during blood stages malaria. Disruption of the mitochondrial PfPNPLA2 in the asexual blood stages affected mitochondrial morphology and further induced a significant defect in parasite replication and survival, in particular under low host lipid availability. Lipidomic analyses revealed that PfPNPLA2 specifically degrades the parasite membrane lipid phosphatidylglycerol to generate lysobisphosphatidic acid. PfPNPLA2 knockdown further resulted in an increased host lipid scavenging accumulating in the form of storage lipids and free fatty acids. These results suggest that PfPNPLA2 is involved in the recycling of parasite phosphatidylglycerol to sustain optimal intraerythrocytic development when the host resources are scarce. This work strengthens our understanding of the complex lipid homeostasis pathways to acquire lipids and allow asexual parasite survival.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Fosfolipases/metabolismo , Mitofagia , Fosfatidilgliceróis/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/metabolismo , Parasitos/metabolismo , Eritrócitos/parasitologia , Malária/metabolismo
14.
Curr Microbiol ; 81(1): 44, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117411

RESUMO

A novel Gram-stain-negative, aerobic, rod-shaped bacterium named T808T was isolated from an alpine soil in Qamdo, Tibet, PR China. Strain T808T grew at 5-30℃, pH 5.0-9.0 (optimum, 25℃ and pH 7.0-8.0) with 0-2% (w/v) NaCl (optimum, 0%). The 16S rRNA gene sequences of strain T808T showed the highest similarity with Pararhizobium herbae CCBAU83011T (98.8%), followed by Pararhizobium polonicum F5.1T (98.7%), Pararhizobium giardinii H152T (98.5%), Rhizobium gei ZFJT-2 T (98.4%), and Pararhizobium antarcticum NAQVI59T (97.5%). The highest digital DNA-DNA hybridization (dDDH), core-proteome average amino acid identity (cpAAI) and average nucleotide identity (ANI) values between strain T808T and related strains were estimated as 28.0%, 92.1% and 84.4%, respectively. Phylogenetic analysis based on 16S rRNA, core-proteome and whole-genome indicated that strain T808T belonged to the genus Pararhizobium. The genome size was 6.24 Mbp with genomic DNA G + C content of 60.1%. The major cellular fatty acids were Summed feature 8 (C18:1 ω7c or C18:1 ω6c), C16:0 and C19:0 cyclo ω8c. The polar lipids were diphosphatidyl glycerol, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl choline and unidentified aminophospholipid. The isoprenoid quinone were ubiquinone-10 and ubiquinone-9. Based on phenotypic, phylogenetic, and genotypic data, strain T808T is considered to represent a novel species of the genus Pararhizobium, for which the name Pararhizobium qamdonense sp. nov. is proposed. The type strain is T808T (= JCM 36247 T = CICC 25216 T). According to phylogenetic coherence based on 16S rRNA, core-proteome and whole-genome, it is also proposed that the type strain Rhizobium gei Shi et al. 2016 should be reclassified as Pararhizobium gei comb. nov., the type strain is ZFJT-2 T (= CCTCC AB 2013015 T = KCTC 32301 T = LMG 27603 T).


Assuntos
DNA , Proteoma , Tibet , RNA Ribossômico 16S/genética , Filogenia , Fosfatidilgliceróis
15.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37917544

RESUMO

Two halophilic archaeal strains, ZS-10T and GSL13T, were isolated from the Zhoushan marine saltern in Zhejiang, and an inland saline soil from the Tarim Basin, Xinjiang, PR China, respectively. The cells of strain ZS-10T were pleomorphic while those of strain GSL13T were rod-shaped. Both of them stained Gram-negative and formed red-pigmented colonies on agar plates and their cells lysed in distilled water. The optimum growth of strain ZS-10T was observed at 40 °C, 3.4 M NaCl, 0.03 M MgCl2 and pH 7.5, while that of strain GSL13T was at 37 °C, 3.1 M NaCl, 0.5 M MgCl2 and pH 7.5. Phylogenetic and phylogenomic analyses indicated that these two strains were related to Salinigranum and Halohasta, respectively. Strains ZS-10T and GSL13T could be differentiated from the current members of Salinigranum and Halohasta based on the comparison of diverse phenotypic characteristics. The average amino acid identity, average nucleotide identity and digital DNA-DNA hybridization values among strain ZS-10T and current species of Salinigranum were 75.8-78.6 %, 80.6-81.9 % and 24.3-26.1 %, respectively. These values between strain GSL13T and current species of Halohasta were 78.4-80.8 %, 79.8-82.8% and 22.7-25.7 %, respectively, clearly below the threshold values for species demarcation. The polar lipids of strain ZS-10T were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me) and sulphated mannosyl glucosyl diether (S-DGD-1), while those of strain GSL13T were phosphatidic acid, PG, PGP-Me, phosphatidylglycerol sulphate and S-DGD-1. The polar lipid profile of strain GSL13T was identical to those of Halohasta, whereas strain ZS-10T did not contain the minor glycolipids detected in the current Salinigranum species. The phenotypic, phylogenetic and genome-based results suggested that strains ZS-10T (=CGMCC 1.12868T=JCM 30241T) and GSL13T (=CGMCC 1.15214T=JCM 30841T) represent two novel species, for which the names Salinigranum marinum sp. nov. and Halohasta salina sp. nov. are proposed.


Assuntos
Euryarchaeota , Halobacteriaceae , Halobacteriales , Cloreto de Sódio/análise , Filogenia , Ácidos Graxos/química , DNA Arqueal/genética , RNA Ribossômico 16S/genética , Composição de Bases , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , China , Glicolipídeos/química , Fosfatidilgliceróis/análise
16.
Cell Rep ; 42(11): 113214, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917582

RESUMO

Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Erros Inatos do Metabolismo , Humanos , Animais , Camundongos , Fosfatidilgliceróis , Perda Auditiva Neurossensorial/genética , Erros Inatos do Metabolismo/genética , Surdez/genética , Cardiolipinas
17.
Cell Rep ; 42(11): 113376, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917588

RESUMO

Dysregulation of mitochondrial lipidome is associated with several human pathologies. Sun et al.1 show that LPGAT1 cooperates with TIMM14 to regulate phosphatidylglycerol transport from the endoplasmic reticulum to the mitochondria, and uncover the involvement of LPGAT1 deficiency in MEGDEL syndrome.


Assuntos
Mitocôndrias , Fosfatidilgliceróis , Humanos , Fosfatidilgliceróis/metabolismo , Mitocôndrias/patologia , Retículo Endoplasmático/metabolismo
18.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37990990

RESUMO

An extremely halophilic archaeon, strain S1AR25-5AT, was isolated from a hypersaline soil sampled in Odiel Saltmarshes Natural Area (Huelva, Spain). The cells were Gram-stain-negative, motile, pleomorphic rods. Cell growth was observed in the presence of 15-30 % (w/v) NaCl [optimum, 25 % (w/v) NaCl], at pH 6.0-9.0 (optimum, pH 6.5-7.5) and at 25-50 °C (optimum, 37 °C). Based on the 16S rRNA and rpoB' gene sequence comparisons, strain S1AR25-5AT was affiliated to the genus Haloarcula. Taxogenomic analysis, including comparison of the genomes and the phylogenomic tree based on the core-orthologous proteins, together with the genomic indices, i.e., orthologous average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity, confirmed that strain S1AR25-5AT (=CCM 9249T=CECT 30619T) represents a new species of the genus Haloarcula, for which we propose the name Haloarcula terrestris sp. nov. The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulphate and an unidentified glycolipid, which correlated with the lipid profile of species of the genus Haloarcula. In addition, based on the modern approach in description of species in taxonomy of prokaryotes, the above mentioned genomic indexes indicated that the species Haloarcula tradensis should be considered as a heterotypic synonym of Haloarcula argentinensis.


Assuntos
Haloarcula , RNA Ribossômico 16S/genética , Cloreto de Sódio , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , Composição de Bases , DNA Arqueal/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química , Fosfatidilgliceróis
19.
Nucl Med Biol ; 126-127: 108388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37804560

RESUMO

Macrophage infiltration is a characteristic feature of atherosclerotic plaque progression. Since liposomes containing 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) are efficiently phagocytosed by macrophages, we deduced that radiolabeled liposomes containing DSPG could potentially be used for nuclear imaging of vulnerable atherosclerotic plaques. Indium-111 (111In)-labeled liposomes containing different ratios of DSPG were developed with a high labeling efficiency. 111In-labeled liposomes with higher DSPG content showed higher uptake by macrophage-like RAW264 cells. A biodistribution study demonstrated rapid blood clearance and selective accumulation in the liver and spleen, especially in normal mice injected with 111In-labeled liposomes with higher DSPG content. Accumulation in atherosclerotic plaques was evaluated using 111In-labeled DSPG liposomes, which had the highest DSPG content among the studied liposomes. 111In-labeled DSPG liposomes accumulated in the plaques and the radioactive regions were mostly consistent with the distribution of macrophages. The target-to-non-target ratio of 111In-labeled DSPG liposomes was higher than that of 111In-labeled control liposomes without DSPG. These results suggest that 111In-labeled liposomes containing DSPG are useful for nuclear medical diagnosis of atherosclerotic plaques.


Assuntos
Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/diagnóstico por imagem , Lipossomos , Fosfatidilgliceróis , Distribuição Tecidual , Macrófagos
20.
J Phys Chem B ; 127(42): 9095-9101, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37843472

RESUMO

PAP248-286 is a fusogenic peptide derived from prostatic acid phosphatase, commonly found in human semen, and is known to mediate HIV fusion with cell membranes. In this study, we performed 120 independent coarse-grained molecular dynamics simulations to investigate the spontaneous binding of PAP248-286 monomers, considering both charged and neutral histidine (His) residues, to membrane bilayers composed of different lipid compositions: 100% POPC, 70% POPC-30% POPG, and 50% POPC-50% POPG. Our simulations revealed that PAP248-286 displayed spontaneous binding to the membrane, with increased binding observed in the presence of anionic lipid POPG. Specifically, in systems containing 30% and 50% POPG lipids, monomer residues, particularly in the systems containing charged histidine (His) residues, exhibited prolonged binding with the membrane. Furthermore, our simulations indicated that PAP248-286 adopted a parallel orientation with the membrane, exposing its positively charged residues to the lipid bilayer. Interestingly, systems containing charged His residues showed a higher lipid occupancy around the peptide. These findings are consistent with previous experimental data, suggesting that PAP248-286 binding is enhanced in membranes with charged His residues, resembling the conditions found in the acidic vaginal pH environment. The results of our study provide further insights into the molecular mechanisms underlying the membrane binding of PAP248-286, contributing to our understanding of its potential role in HIV fusion and infection.


Assuntos
Infecções por HIV , Bicamadas Lipídicas , Humanos , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Histidina , Peptídeos/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...