Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.096
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2402226121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621137

RESUMO

Since its discovery over three decades ago, signal transducer and activator of transcription 1 (STAT1) has been extensively studied as a central mediator for interferons (IFNs) signaling and antiviral defense. Here, using genetic and biochemical assays, we unveil Thr748 as a conserved IFN-independent phosphorylation switch in Stat1, which restricts IFN signaling and promotes innate inflammatory responses following the recognition of the bacterial-derived toxin lipopolysaccharide (LPS). Genetically engineered mice expressing phospho-deficient threonine748-to-alanine (T748A) mutant Stat1 are resistant to LPS-induced lethality. Of note, T748A mice exhibited undisturbed IFN signaling, as well as total expression of Stat1. Further, the T748A point mutation of Stat1 recapitulates the safeguard effect of the genetic ablation of Stat1 following LPS-induced lethality, indicating that the Thr748 phosphorylation contributes inflammatory functionalities of Stat1. Mechanistically, LPS-induced Toll-like receptor 4 endocytosis activates a cell-intrinsic IκB kinase-mediated Thr748 phosphorylation of Stat1, which promotes macrophage inflammatory response while restricting the IFN and anti-inflammatory responses. Depletion of macrophages restores the sensitivity of the T748A mice to LPS-induced lethality. Together, our study indicates a phosphorylation-dependent modular functionality of Stat1 in innate immune responses: IFN phospho-tyrosine dependent and inflammatory phospho-threonine dependent. Better understanding of the Thr748 phosphorylation of Stat1 may uncover advanced pharmacologically targetable molecules and offer better treatment modalities for sepsis, a disease that claims millions of lives annually.


Assuntos
Lipopolissacarídeos , Transdução de Sinais , Animais , Camundongos , Fosforilação , Lipopolissacarídeos/farmacologia , Interferons/metabolismo , Inflamação/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
2.
JAMA Netw Open ; 7(4): e244880, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587846

RESUMO

Importance: Interstitial cystitis (IC) is a debilitating condition. Although viral infection is a potential etiological cause, few studies have detected the effect of antiviral treatment. Objective: To determine the efficacy and safety of intravesical interferon instillation compared with hyaluronic acid in female patients with IC. Design, Setting, and Participants: This double-masked, randomized phase 2/3 clinical trial with parallel group design was implemented from October 2022 to April 2023 and had a 6-month follow-up period. The study was conducted at a single center. Eligible participants were female patients aged 18 to 70 years with a diagnosis of IC for more than 6 months. The last visit took place in October 2023. Data were analyzed between October and November 2023. Intervention: Patients were randomized 1:1 to receive either intravesical instillation of interferon or hyaluronic acid. Main Outcomes and Measures: The primary end point was change in visual analog scale pain score. Secondary end points included changes in voiding frequency, functional bladder capacity, symptom index, and global response assessment. Adverse events were closely monitored. Results: Among the 52 patients, the mean (SD) age was 50.0 (14.1) years and they were randomized to either the interferon group (26 [50%]) or hyaluronic acid (26 [50%]). The visual analog pain score showed the interferon group decreased more significantly than hyaluronic acid (-1.3; 95% CI, -2.3 to -0.3; P = .02) at month 6, with 20 patients (77%) exhibiting a 30% or higher reduction in pain compared with baseline. Secondary end points of voiding frequency, functional bladder capacity, and nocturia episodes showed no significant difference between 2 therapies. However, interferon showed a significantly higher reduction in the Interstitial Cystitis Symptom Index (-3.0; 95% CI, -5.3 to -0.7; P = .01) and the Problem Index (-2.5; 95% CI, -4.5 to -0.4; P = .02) at month 6, with 22 patients (85%) presenting as moderately or markedly improved. The frequencies of adverse events were similar between 2 groups. Only 1 patient discontinued hyaluronic acid because of poor effectiveness. Conclusions and Relevance: In this randomized clinical trial, female patients with IC could benefit from intravesical interferon therapy, without serious adverse events. These results offered hope for antiviral approaches in IC, but larger-scale, multicenter trials and long-term follow-up should be considered. Trial Registration: ClinicalTrials.gov Identifier: NCT05912946.


Assuntos
Cistite Intersticial , Ácido Hialurônico , Feminino , Humanos , Masculino , Antivirais/uso terapêutico , Cistite Intersticial/tratamento farmacológico , Ácido Hialurônico/uso terapêutico , Interferons/uso terapêutico , Dor , Adulto , Pessoa de Meia-Idade
3.
Sci Rep ; 14(1): 8196, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589444

RESUMO

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Interferons , Células Endoteliais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Aterosclerose/genética , Miócitos de Músculo Liso/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteína Viperina
4.
Sci Signal ; 17(831): eadg7867, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593156

RESUMO

Type I interferons (IFNs) are critical for the antiviral immune response, and fine-tuning type I IFN production is critical to effectively clearing viruses without causing harmful immunopathology. We showed that the transcription factor Miz1 epigenetically repressed the expression of genes encoding type I IFNs in mouse lung epithelial cells by recruiting histone deacetylase 1 (HDAC1) to the promoters of Ifna and Ifnb. Loss of function of Miz1 resulted in augmented production of these type I IFNs during influenza A virus (IAV) infection, leading to improved viral clearance in vitro and in vivo. IAV infection induced Miz1 accumulation by promoting the cullin-4B (CUL4B)-mediated ubiquitylation and degradation of the E3 ubiquitin ligase Mule (Mcl-1 ubiquitin ligase E3; also known as Huwe1 or Arf-BP1), which targets Miz1 for degradation. As a result, Miz1 accumulation limited type I IFN production and favored viral replication. This study reveals a previously unrecognized function of Miz1 in regulating antiviral defense and a potential mechanism for influenza viruses to evade host immune defense.


Assuntos
Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Camundongos , Animais , Humanos , Vírus da Influenza A/fisiologia , Ubiquitinação , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Replicação Viral , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Influenza Humana/genética , Interferons/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo
5.
Front Cell Infect Microbiol ; 14: 1358967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572318

RESUMO

Introduction: The aim of this study is to investigate changes in TNF-related apoptosis-inducing ligand (TRAIL) and gamma interferon-induced protein 10 (IP-10) after COVID-19 vaccination in pregnant women and to explore their association with neutralizing antibody (Nab) inhibition. Methods: The study evaluated 93 pregnant women who had previously received two (n=21), three (n=55) or four (n=17) doses of COVID-19 vaccine. Also we evaluated maternal blood samples that were collected during childbirth. The levels of TRAIL, IP-10 and Nab inhibition were measured using enzyme-linked immunosorbent assays (ELISA). Results and discussion: Our study revealed four-dose group resulted in lower TRAIL levels when compared to the two-dose and three-dose groups (4.78 vs. 16.07 vs. 21.61 pg/ml, p = 0.014). The two-dose group had reduced IP-10 levels than the three-dose cohort (111.49 vs. 147.89 pg/ml, p=0.013), with no significant variation compared to the four-dose group. In addition, the four-dose group showed stronger Nab inhibition against specific strains (BA.2 and BA.5) than the three-dose group. A positive correlation was observed between TRAIL and IP-10 in the two-dose group, while this relationship was not found in other dose groups or between TRAIL/IP-10 and Nab inhibition. As the doses of the COVID-19 vaccine increase, the levels of TRAIL and IP-10 generally increase, only by the fourth dose, the group previously vaccinated with AZD1222 showed lower TRAIL but higher IP-10. Despite these changes, more doses of the vaccine consistently reinforced Nab inhibition, apparently without any relation to TRAIL and IP-10 levels. The variation may indicate the induction of immunological memory in vaccinated mothers, which justifies further research in the future.


Assuntos
COVID-19 , Interferons , Gravidez , Humanos , Feminino , Vacinas contra COVID-19 , Quimiocina CXCL10 , Ligante Indutor de Apoptose Relacionado a TNF , Gestantes , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
6.
Arch Virol ; 169(5): 89, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565720

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality in neonatal suckling piglets, leading to significant economic losses to the swine industry. Panax notoginseng saponins (PNS) are bioactive extracts derived from the P. notoginseng plant. In this study, we investigated the anti-PEDV effect of PNS by employing various methodologies to assess their impact on PEDV in Vero cells. Using a CCK-8 (Cell Counting Kit-8) assay, we found that PNS had no significant cytotoxicity below the concentration of 128 µg/mL in Vero cells. Using immunofluorescence assays (IFAs), an enzyme-linked immunosorbent assay (ELISA), and plaque formation assays, we observed a dose-dependent inhibition of PEDV infection by PNS within 24-48 hours postinfection. PNS exerts its anti-PEDV activity specifically at the genome replication stage, and mRNA-seq analysis demonstrated that treatment with PNS resulted in increased expression of various genes, including IFIT1 (interferon-induced protein with tetratricopeptide repeats 1), IFIT3 (interferon-induced protein with tetratricopeptide repeats 3), CFH (complement factor H), IGSF10 (immunoglobulin superfamily member 10), ID2 (inhibitor of DNA binding 2), SPP1 (secreted phosphoprotein 1), PLCB4 (phospholipase C beta 4), and FABP4 (fatty acid binding protein 4), but it resulted in decreased expression of IL1A (interleukin 1 alpha), TNFRSF19 (TNF receptor superfamily member 19), CDH8 (cadherin 8), DDIT3 (DNA damage inducible transcript 3), GADD45A (growth arrest and DNA damage inducible alpha), PTPRG (protein tyrosine phosphatase receptor type G), PCK2 (phosphoenolpyruvate carboxykinase 2), and ADGRA2 (adhesion G protein-coupled receptor A2). This study provides insights into the potential mechanisms underlying the antiviral effects of PNS. Taken together, the results suggest that the PNS might effectively regulate the defense response to the virus and have potential to be used in antiviral therapies.


Assuntos
Infecções por Coronavirus , Panax notoginseng , Vírus da Diarreia Epidêmica Suína , Saponinas , Doenças dos Suínos , Chlorocebus aethiops , Animais , Suínos , Saponinas/farmacologia , Células Vero , Vírus da Diarreia Epidêmica Suína/genética , Interferons , Antivirais/farmacologia , Doenças dos Suínos/tratamento farmacológico
7.
Vet Res ; 55(1): 44, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589930

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV), an emerging Alpha-coronavirus, brings huge economic loss in swine industry. Interferons (IFNs) participate in a frontline antiviral defense mechanism triggering the activation of numerous downstream antiviral genes. Here, we demonstrated that TRIM25 overexpression significantly inhibited SADS-CoV replication, whereas TRIM25 deficiency markedly increased viral yield. We found that SADS-CoV N protein suppressed interferon-beta (IFN-ß) production induced by Sendai virus (SeV) or poly(I:C). Moreover, we determined that SADS-CoV N protein interacted with RIG-I N-terminal two caspase activation and recruitment domains (2CARDs) and TRIM25 coiled-coil dimerization (CCD) domain. The interaction of SADS-CoV N protein with RIG-I and TRIM25 caused TRIM25 multimerization inhibition, the RIG-I-TRIM25 interaction disruption, and consequent the IRF3 and TBK1 phosphorylation impediment. Overexpression of SADS-CoV N protein facilitated the replication of VSV-GFP by suppressing IFN-ß production. Our results demonstrate that SADS-CoV N suppresses the host IFN response, thus highlighting the significant involvement of TRIM25 in regulating antiviral immune defenses.


Assuntos
Alphacoronavirus , Proteínas do Nucleocapsídeo , Animais , Suínos , Alphacoronavirus/metabolismo , Interferons/genética , Proteína DEAD-box 58/metabolismo
8.
J Med Virol ; 96(4): e29600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591240

RESUMO

The lower respiratory system serves as the target and barrier for beta-coronavirus (beta-CoV) infections. In this study, we explored beta-CoV infection dynamics in human bronchial epithelial (HBE) organoids, focusing on HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2. Utilizing advanced organoid culture techniques, we observed robust replication for all beta-CoVs, particularly noting that SARS-CoV-2 reached peak viral RNA levels at 72 h postinfection. Through comprehensive transcriptomic analysis, we identified significant shifts in cell population dynamics, marked by an increase in goblet cells and a concurrent decrease in ciliated cells. Furthermore, our cell tropism analysis unveiled distinct preferences in viral targeting: HCoV-OC43 predominantly infected club cells, while SARS-CoV had a dual tropism for goblet and ciliated cells. In contrast, SARS-CoV-2 primarily infected ciliated cells, and MERS-CoV showed a marked affinity for goblet cells. Host factor analysis revealed the upregulation of genes encoding viral receptors and proteases. Notably, HCoV-OC43 induced the unfolded protein response pathway, which may facilitate viral replication. Our study also reveals a complex interplay between inflammatory pathways and the suppression of interferon responses during beta-CoV infections. These findings provide insights into host-virus interactions and antiviral defense mechanisms, contributing to our understanding of beta-CoV infections in the respiratory tract.


Assuntos
Coronavirus Humano OC43 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Linhagem Celular , Brônquios , SARS-CoV-2 , Interferons , Organoides
9.
Biomed Environ Sci ; 37(3): 303-314, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582994

RESUMO

Objective: This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to the frequency of dendritic cell subsets and expression of the costimulatory molecules CD40, CD80, CD83, and CD86. Method: This was a cross-sectional study in which patients were divided into a natural history group (namely NH group), a long-term oral nucleoside analogs treatment group (namely NA group), and a plateau-arriving group (namely P group). The percentage of plasmacytoid dendritic cell and myeloid dendritic cell subsets in peripheral blood lymphocytes and monocytes and the mean fluorescence intensity of their surface costimulatory molecules were detected using a flow cytometer. Results: In total, 143 patients were enrolled (NH group, n = 49; NA group, n = 47; P group, n = 47). The results demonstrated that CD141/CD1c double negative myeloid dendritic cell (DNmDC)/lymphocytes and monocytes (%) in P group (0.041 [0.024, 0.069]) was significantly lower than that in NH group (0.270 [0.135, 0.407]) and NA group (0.273 [0.150, 0.443]), and CD86 mean fluorescence intensity of DNmDCs in P group (1832.0 [1484.0, 2793.0]) was significantly lower than that in NH group (4316.0 [2958.0, 5169.0]) and NA group (3299.0 [2534.0, 4371.0]), Adjusted P all < 0.001. Conclusion: Reduced DNmDCs and impaired maturation may be associated with the onset of the plateau phase during intermittent interferon therapy in patients with chronic hepatitis B.


Assuntos
Hepatite B Crônica , Humanos , Hepatite B Crônica/tratamento farmacológico , Estudos Transversais , Citometria de Fluxo , Células Dendríticas , Interferons/metabolismo
10.
J Clin Immunol ; 44(4): 85, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578354

RESUMO

INTRODUCTION: The signal transducer and activator of transcription (STAT1) gain-of-function (GOF) syndrome accounts for most cases of chronic mucocutaneous candidiasis but is characterized by a broader clinical phenotype that may include bacterial, viral, or invasive fungal infections, autoimmunity, autoinflammatory manifestations, vascular complications, or malignancies. The severity of lymphopenia may vary and influence the infectious morbidity. METHODS: In our cohort of seven STAT1-GOF patients, we investigated the mechanisms that may determine T lymphopenia, we characterized the interferon gene signature (IGS) and analyzed the effect of ruxolitinib in reverting the immune dysregulation. RESULTS: STAT1-GOF patients exhibited increased T lymphocyte apoptosis that was significantly augmented in both resting conditions and following stimulation with mitogens and IFNα, as evaluated by flow cytometry by Annexin V/ Propidium iodide assay. The JAK inhibitor ruxolitinib significantly reduced the IFNα-induced hyperphosphorylation of STAT1 and reverted the stimulation-induced T-cell apoptosis, in vitro. In two adult STAT1-GOF patients, the JAKinib treatment ameliorated chronic mucocutaneous candidiasis and lymphopenia. Most STAT1-GOF patients, particularly those who had autoimmunity, presented increased IGS that significantly decreased in the two patients during ruxolitinib treatment. CONCLUSION: In STAT1-GOF patients, T lymphocyte apoptosis is increased, and T lymphopenia may determine higher risk of severe infections. The JAKinib target therapy should be evaluated to treat severe chronic candidiasis and lymphopenia, and to downregulate the IFNs in patients with autoinflammatory or autoimmune manifestations.


Assuntos
Candidíase Mucocutânea Crônica , Inibidores de Janus Quinases , Linfopenia , Nitrilas , Pirazóis , Pirimidinas , Trombocitopenia , Adulto , Humanos , Mutação com Ganho de Função , Inibidores de Janus Quinases/uso terapêutico , Candidíase Mucocutânea Crônica/tratamento farmacológico , Candidíase Mucocutânea Crônica/genética , Interferons , Fator de Transcrição STAT1/metabolismo
11.
Front Immunol ; 15: 1363278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601160

RESUMO

Purpose: A mouse model of irradiation (IR)-induced heart injury was established to investigate the early changes in cardiac function after radiation and the role of cardiac macrophages in this process. Methods: Cardiac function was evaluated by heart-to-tibia ratio, lung-to-heart ratio and echocardiography. Immunofluorescence staining and flow cytometry analysis were used to evaluate the changes of macrophages in the heart. Immune cells from heart tissues were sorted by magnetic beads for single-cell RNA sequencing, and the subsets of macrophages were identified and analyzed. Trajectory analysis was used to explore the differentiation relationship of each macrophage subset. The differentially expressed genes (DEGs) were compared, and the related enriched pathways were identified. Single-cell regulatory network inference and clustering (SCENIC) analysis was performed to identify the potential transcription factors (TFs) which participated in this process. Results: Cardiac function temporarily decreased on Day 7 and returned to normal level on Day 35, accompanied by macrophages decreased and increased respectively. Then, we identified 7 clusters of macrophages by single-cell RNA sequencing and found two kinds of stage specific macrophages: senescence-associated macrophage (Cdkn1ahighC5ar1high) on Day 7 and interferon-associated macrophage (Ccr2highIsg15high) on Day 35. Moreover, we observed cardiac macrophages polarized over these two-time points based on M1/M2 and CCR2/major histocompatibility complex II (MHCII) expression. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses suggested that macrophages on Day 7 were characterized by an inflammatory senescent phenotype with enhanced chemotaxis and inflammatory factors, while macrophages on Day 35 showed enhanced phagocytosis with reduced inflammation, which was associated with interferon-related pathways. SCENIC analysis showed AP-1 family members were associated with IR-induced macrophages changes. Conclusion: We are the first study to characterize the diversity, features, and evolution of macrophages during the early stages in an IR-induced cardiac injury animal model.


Assuntos
Macrófagos , Fagocitose , Camundongos , Animais , Inflamação/metabolismo , Interferons/metabolismo , Análise de Sequência de RNA
12.
Zhonghua Nei Ke Za Zhi ; 63(4): 365-370, 2024 Apr 01.
Artigo em Chinês | MEDLINE | ID: mdl-38561281

RESUMO

Objective: To identify the characteristics of the bone marrow immune microenvironment associated with long-term survival in multiple myeloma (MM) patients. Methods: In the follow-up cohort of patients with newly diagnosed MM and who received "novel agent induction therapy and subsequent autologous stem cell transplantation and immunomodulator maintenance therapy" in the First Affiliated Hospital of Sun Yat-sen University, a cross-sectional study was carried out between August 2019 and May 2020. Using NanoString technology, the RNA expression of 770 bone marrow immune-related markers was compared between 16 patients who had progression-free survival ≥5 years and 5 patients with progressive disease. Among the 16 patients who achieved long-term survival, 9 achieved persistent minimal residual disease (MRD) negative while the other 7 had persistent positive MRD. The functional scores of each kind of immune cells were calculated based on the expression level of characteristic genes, so as to indirectly obtained the proportion of each immune cell subset. The Mann-Whitney U test and the Kruskal Wallis test were used for statistical analysis. Results: The proportion of neutrophils was significantly higher in long-surviving MM patients than in patients with progressive disease [functional scores, 13.61 (13.33, 14.25) vs. 12.93 (12.58, 13.38); Z=2.31, P=0.021]. Among long-surviving patients, those who were MRD-positive had a significantly greater number of mast cells compared with those who were MRD-negative [functional scores, 7.09 (6.49, 8.57) vs. 6.03 (5.18, 6.69); H=2.18, P=0.029]. Compared with patients with progressive disease, four genes (CTSG, IFIT2, S100B, and CHIT1) were significantly downregulated and six (C4B, TNFRSF17, CD70, IRF4, C2, and GAGE1) were upregulated in long-surviving patients. Among long-surviving patients, only gene CMA1 was significantly upgraded, 10 genes (ISG15, OAS3, MX1, IFIT2, DDX58, SIGLEC1, CXCL10, IL1RN, SERPING and TNFSF10) were significantly downregulated in the MRD-positive group compared with that in the MRD-negative group, the first 5 of which are related to the interferon response pathway. Conclusions: The increased neutrophil and mast cell numbers may be related to long-term survival in MM. Interferon signaling activation may be a key bone marrow immune profiling feature for MRD-negative, long-surviving patients with MM.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/diagnóstico , Resultado do Tratamento , Estudos Transversais , Transplante Autólogo , Interferons , Microambiente Tumoral
13.
Mol Biol Rep ; 51(1): 487, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578532

RESUMO

The stimulator of the interferon genes (STING) signaling pathway plays a crucial role in innate immunity by detecting cytoplasmic DNA and initiating antiviral host defense mechanisms. The STING cascade is triggered when the enzyme cyclic GMP-AMP synthase (cGAS) binds cytosolic DNA and synthesizes the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum adaptor STING, leading to the activation of kinases TBK1 and IRF3 that induce interferon production. Secreted interferons establish an antiviral state in infected and adjacent cells. Beyond infections, aberrant DNA in cancer cells can also activate the STING pathway. Preclinical studies have shown that pharmacological STING agonists like cyclic dinucleotides elicit antitumor immunity when administered intratumorally by provoking innate and adaptive immunity. Combining STING agonists with immune checkpoint inhibitors may improve outcomes by overcoming tumor immunosuppression. First-generation STING agonists encountered challenges like poor pharmacokinetics, limited tumor specificity, and systemic toxicity. The development of the next-generation STING-targeted drugs to realize the full potential of engaging this pathway for cancer treatment can be a solution to overcome the current challenges, but further studies are required to determine optimal applications and combination regimens for the clinic. Notably, the controlled activation of STING is needed to preclude adverse effects. This review explores the mechanisms and effects of STING activation, its role in cancer immunotherapy, and current challenges.


Assuntos
Imunoterapia , Neoplasias , Nucleotidiltransferases , Humanos , Antivirais , DNA/genética , Imunidade Inata , Interferons , Neoplasias/terapia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
14.
J Virol ; 98(4): e0015924, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38499512

RESUMO

Equine herpesvirus type 8 (EHV-8) causes abortion and respiratory disease in horses and donkeys, leading to serious economic losses in the global equine industry. Currently, there is no effective vaccine or drug against EHV-8 infection, underscoring the need for a novel antiviral drug to prevent EHV-8-induced latent infection and decrease the pathogenicity of this virus. The present study demonstrated that hyperoside can exert antiviral effects against EHV-8 infection in RK-13 (rabbit kidney cells), MDBK (Madin-Darby bovine kidney), and NBL-6 cells (E. Derm cells). Mechanistic investigations revealed that hyperoside induces heme oxygenase-1 expression by activating the c-Jun N-terminal kinase/nuclear factor erythroid-2-related factor 2/Kelch-like ECH-associated protein 1 axis, alleviating oxidative stress and triggering a downstream antiviral interferon response. Accordingly, hyperoside inhibits EHV-8 infection. Meanwhile, hyperoside can also mitigate EHV-8-induced injury in the lungs of infected mice. These results indicate that hyperoside may serve as a novel antiviral agent against EHV-8 infection.IMPORTANCEHyperoside has been reported to suppress viral infections, including herpesvirus, hepatitis B virus, infectious bronchitis virus, and severe acute respiratory syndrome coronavirus 2 infection. However, its mechanism of action against equine herpesvirus type 8 (EHV-8) is currently unknown. Here, we demonstrated that hyperoside significantly inhibits EHV-8 adsorption and internalization in susceptible cells. This process induces HO-1 expression via c-Jun N-terminal kinase/nuclear factor erythroid-2-related factor 2/Kelch-like ECH-associated protein 1 axis activation, alleviating oxidative stress and triggering an antiviral interferon response. These findings indicate that hyperoside could be very effective as a drug against EHV-8.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Quercetina/análogos & derivados , Animais , Cavalos , Bovinos , Camundongos , Coelhos , Sistema de Sinalização das MAP Quinases , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Interferons/metabolismo , Antivirais/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
15.
J Virol ; 98(4): e0184423, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38436247

RESUMO

Porcine Mx1 is a type of interferon-induced GTPase that inhibits the replication of certain RNA viruses. However, the antiviral effects and the underlying mechanism of porcine Mx1 for porcine reproductive and respiratory syndrome virus (PRRSV) remain unknown. In this study, we demonstrated that porcine Mx1 could significantly inhibit PRRSV replication in MARC-145 cells. By Mx1 segment analysis, it was indicated that the GTPase domain (68-341aa) was the functional area to inhibit PRRSV replication and that Mx1 interacted with the PRRSV-N protein through the GTPase domain (68-341aa) in the cytoplasm. Amino acid residues K295 and K299 in the G domain of Mx1 were the key sites for Mx1-N interaction while mutant proteins Mx1(K295A) and Mx1(K299A) still partially inhibited PRRSV replication. Furthermore, we found that the GTPase activity of Mx1 was dominant for Mx1 to inhibit PRRSV replication but was not essential for Mx1-N interaction. Finally, mechanistic studies demonstrated that the GTPase activity of Mx1 played a dominant role in inhibiting the N-Nsp9 interaction and that the interaction between Mx1 and N partially inhibited the N-Nsp9 interaction. We propose that the complete anti-PRRSV mechanism of porcine Mx1 contains a two-step process: Mx1 binds to the PRRSV-N protein and subsequently disrupts the N-Nsp9 interaction by a process requiring the GTPase activity of Mx1. Taken together, the results of our experiments describe for the first time a novel mechanism by which porcine Mx1 evolves to inhibit PRRSV replication. IMPORTANCE: Mx1 protein is a key mediator of the interferon-induced antiviral response against a wide range of viruses. How porcine Mx1 affects the replication of porcine reproductive and respiratory syndrome virus (PRRSV) and its biological function has not been studied. Here, we show that Mx1 protein inhibits PRRSV replication by interfering with N-Nsp9 interaction. Furthermore, the GTPase activity of porcine Mx1 plays a dominant role and the Mx1-N interaction plays an assistant role in this interference process. This study uncovers a novel mechanism evolved by porcine Mx1 to exert anti-PRRSV activities.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Linhagem Celular , Ligação Proteica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Interferons/metabolismo , Antivirais
16.
mSystems ; 9(4): e0104823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38446104

RESUMO

Secondary bacterial challenges during influenza virus infection "superinfection") cause excessive mortality and hospitalization. Here, we present a longitudinal study of bulk gene expression changes in murine lungs during superinfection, with an initial influenza A virus infection and a subsequent Streptococcus pneumoniae infection. In addition to the well-characterized impairment of the host response, we identified superinfection-specific alterations in the global transcriptional program that are linked to the host's ability to resist the pathogens. Particularly, whereas superinfected mice manifested an excessive rapid induction of the resistance-to-infection program, there was a substantial tissue-level rewiring of this program: upon superinfection, interferon-regulated genes were switched from positive to negative correlations with the host's resistance state, whereas genes of fatty acid metabolism switched from negative to positive correlations with resistance states. Thus, the transcriptional resistance state in superinfection is reprogrammed toward repressed interferon signaling and induced fatty acid metabolism. Our findings suggest new insights into a tissue-level remodeling of the host defense upon superinfection, providing promising targets for future therapeutic interventions. IMPORTANCE: Secondary bacterial infections are the most frequent complications during influenza A virus (IAV) pandemic outbreaks, contributing to excessive morbidity and mortality in the human population. Most IAV-related deaths are attributed to Streptococcus pneumoniae (SP) infections, which usually begin within the first week of IAV infection in the respiratory tracts. Here, we focused on longitudinal transcriptional responses during a superinfection model consisting of an SP infection that follows an initial IAV infection, comparing superinfection to an IAV-only infection, an SP-only infection, and control treatments. Our longitudinal data allowed a fine analysis of gene expression changes during superinfection. For instance, we found that superinfected mice exhibited rapid gene expression induction or reduction within the first 12 h after encountering the second pathogen. Cell proliferation and immune response activation processes were upregulated, while endothelial processes, vasculogenesis, and angiogenesis were downregulated, providing promising targets for future therapeutic interventions. We further analyzed the longitudinal transcriptional responses in the context of a previously defined spectrum of the host's resistance state, revealing superinfection-specific reprogramming of resistance states, such as reprogramming of fatty acid metabolism and interferon signaling. The reprogrammed functions are compelling new targets for switching the pathogenic superinfection state into a single-infection state.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções Pneumocócicas , Superinfecção , Camundongos , Humanos , Animais , Streptococcus pneumoniae , Superinfecção/complicações , Estudos Longitudinais , Influenza Humana/genética , Infecções Pneumocócicas/genética , Imunidade Inata/genética , Interferons , Ácidos Graxos
18.
BMC Genomics ; 25(1): 271, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475718

RESUMO

BACKGROUND: Acute cardiac injury caused by coronavirus disease 2019 (COVID-19) increases mortality. Acute cardiac injury caused by COVID-19 requires understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly infects cardiomyocytes. This study provides a solid foundation for related studies by using a model of SARS-CoV-2 infection in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) at the transcriptome level, highlighting the relevance of this study to related studies. SARS-CoV-2 infection in hiPSC-CMs has previously been studied by bioinformatics without presenting the full molecular biological process. We present a unique bioinformatics view of the complete molecular biological process of SARS-CoV-2 infection in hiPSC-CMs. METHODS: To validate the RNA-seq datasets, we used GSE184715 and GSE150392 for the analytical studies, GSE193722 for validation at the cellular level, and GSE169241 for validation in heart tissue samples. GeneCards and MsigDB databases were used to find genes associated with the phenotype. In addition to differential expression analysis and principal component analysis (PCA), we also performed protein-protein interaction (PPI) analysis, functional enrichment analysis, hub gene analysis, upstream transcription factor prediction, and drug prediction. RESULTS: Differentially expressed genes (DEGs) were classified into four categories: cardiomyocyte cytoskeletal protein inhibition, proto-oncogene activation and inflammation, mitochondrial dysfunction, and intracellular cytoplasmic physiological function. Each of the hub genes showed good diagnostic prediction, which was well validated in other datasets. Inhibited biological functions included cardiomyocyte cytoskeletal proteins, adenosine triphosphate (ATP) synthesis and electron transport chain (ETC), glucose metabolism, amino acid metabolism, fatty acid metabolism, pyruvate metabolism, citric acid cycle, nucleic acid metabolism, replication, transcription, translation, ubiquitination, autophagy, and cellular transport. Proto-oncogenes, inflammation, nuclear factor-kappaB (NF-κB) pathways, and interferon signaling were activated, as well as inflammatory factors. Viral infection activates multiple pathways, including the interferon pathway, proto-oncogenes and mitochondrial oxidative stress, while inhibiting cardiomyocyte backbone proteins and energy metabolism. Infection limits intracellular synthesis and metabolism, as well as the raw materials for mitochondrial energy synthesis. Mitochondrial dysfunction and energy abnormalities are ultimately caused by proto-oncogene activation and SARS-CoV-2 infection. Activation of the interferon pathway, proto-oncogene up-regulation, and mitochondrial oxidative stress cause the inflammatory response and lead to diminished cardiomyocyte contraction. Replication, transcription, translation, ubiquitination, autophagy, and cellular transport are among the functions that decline physiologically. CONCLUSION: SARS-CoV-2 infection in hiPSC-CMs is fundamentally mediated via mitochondrial dysfunction. Therapeutic interventions targeting mitochondrial dysfunction may alleviate the cardiovascular complications associated with SARS-CoV-2 infection.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Humanos , SARS-CoV-2 , Miócitos Cardíacos/metabolismo , Interferons/metabolismo , Inflamação/metabolismo
19.
Lupus Sci Med ; 11(1)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453421

RESUMO

OBJECTIVE: To evaluate safety and mechanism of action of mezagitamab (TAK-079), an anti-CD38 monoclonal antibody, in patients with moderate to severe systemic lupus erythematosus (SLE). METHODS: A phase 1b double-blind, placebo-controlled, multicentre study was conducted in patients with SLE receiving standard background therapy. Eligible patients were adults who met the 2012 SLICC or ACR criteria for diagnosis, had a baseline SLE Disease Activity Index 2000 (SLEDAI-2K) score of ≥6 and were positive for anti-double-stranded DNA antibodies and/or anti-extractable nuclear antigens antibodies. Patients received 45 mg, 90 mg or 135 mg of mezagitamab or placebo every 3 weeks over 12 weeks. Primary endpoints were safety and tolerability. Secondary endpoints included pharmacokinetics and pharmacodynamics. Exploratory assessments included disease activity scales, deep immune profiling and interferon pathway analysis. RESULTS: 22 patients received at least one dose of either mezagitamab or placebo. In patients exposed to mezagitamab (n=17), drug was well tolerated. Adverse event (AEs) were balanced across treatment groups, with no treatment emergent AEs exceeding grade 2. Responder analyses for Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI) and SLEDAI-2K did not reveal any observable differences across treatment groups. However, there was a trend for more profound skin responses among patients with higher CLASI scores (>10) at baseline. Pharmacodynamic analysis showed median CD38 receptor occupancy up to 88.4% on CD38+ natural killer cells with concurrent depletion of these cells up to 90% in the 135 mg group. Mean reductions in IgG and autoantibodies were less than 20% in all dose groups. Cytometry by time of flight and type 1 interferon gene analysis revealed unique fingerprints that are indicative of a broad immune landscape shift following CD38 targeting. CONCLUSIONS: Mezagitamab had a favourable safety profile in patients with moderate to severe SLE and elicited a pharmacodynamic effect consistent with CD38+ cell depletion. These findings reveal novel insights into the drug's mechanism of action and support the continued investigation of mezagitamab in autoimmune diseases.


Assuntos
Anticorpos Monoclonais , Lúpus Eritematoso Sistêmico , Adulto , Humanos , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacologia , Interferons , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Resultado do Tratamento
20.
World J Gastroenterol ; 30(8): 799-805, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38516234

RESUMO

Approximately 12-72 million people worldwide are co-infected with hepatitis B virus (HBV) and hepatitis delta virus (HDV). This concurrent infection can lead to several severe outcomes with hepatic disease, such as cirrhosis, fulminant hepatitis, and hepatocellular carcinoma, being the most common. Over the past few decades, a correlation between viral hepatitis and autoimmune diseases has been reported. Furthermore, autoantibodies have been detected in the serum of patients co-infected with HBV/HDV, and autoimmune features have been reported. However, to date, very few cases of clinically significant autoimmune hepatitis (AIH) have been reported in patients with HDV infection, mainly in those who have received treatment with pegylated interferon. Interestingly, there are some patients with HBV infection and AIH in whom HDV infection is unearthed after receiving treatment with immunosuppressants. Consequently, several questions remain unanswered with the challenge to distinguish whether it is autoimmune or "autoimmune-like" hepatitis being the most crucial. Second, it remains uncertain whether autoimmunity is induced by HBV or delta virus. Finally, we investigated whether the cause of AIH lies in the previous treatment of HDV with pegylated interferon. These pressing issues should be elucidated to clarify whether new antiviral treatments for HDV, such as Bulevirtide or immu-nosuppressive drugs, are more appropriate for the management of patients with HDV and AIH.


Assuntos
Hepatite B , Hepatite Autoimune , Neoplasias Hepáticas , Humanos , Vírus Delta da Hepatite , Hepatite Autoimune/diagnóstico , Hepatite Autoimune/tratamento farmacológico , Vírus da Hepatite B , Interferons , Neoplasias Hepáticas/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Antivirais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...