Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.744
Filtrar
1.
Sci Rep ; 14(1): 8515, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609442

RESUMO

Ticks are obligatory voracious blood feeders infesting diverse vertebrate hosts, that have a crucial role in the transmission of diverse pathogens that threaten human and animal health. The continuous emergence of tick-borne diseases due to combined worldwide climatic changes, human activities, and acaricide-resistant tick strains, necessitates the development of novel ameliorative tick control strategies such as vaccines. The synchrotron-based Fourier transform infrared micro-spectroscopy (SR-FTIR) is a bioanalytical microprobe capable of exploring the molecular chemistry within microstructures at a cellular or subcellular level and is considered as a nondestructive analytical approach for biological specimens. In this study, SR-FTIR analysis was able to explore a qualitative and semi-quantitative biochemical composition of gut and salivary glands of Hyalomma dromedarii (H. dromedarii) tick detecting differences in the biochemical composition of both tissues. A notable observation regarding Amide I secondary structure protein profile was the higher ratio of aggregated strands in salivary gland and beta turns in gut tissues. Regarding the lipid profile, there was a higher intensity of lipid regions in gut tissue when compared to salivary glands. This detailed information on the biochemical compositions of tick tissues could assist in selecting vaccine and/or control candidates. Altogether, these findings confirmed SR-FTIR spectroscopy as a tool for detecting differences in the biochemical composition of H. dromedarii salivary glands and gut tissues. This approach could potentially be extended to the analysis of other ticks that are vectors of important diseases such as babesiosis and theileriosis.


Assuntos
Acaricidas , Ixodidae , Animais , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Glândulas Salivares , Sinapsinas , Lipídeos
2.
Sci Total Environ ; 926: 171907, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522548

RESUMO

Traditional risk assessments of chiral pesticides mainly depend on racemic form, which is often incomprehensive. This study conducted systemic investigations on the bioactivity, toxicity, and ecotoxicological effects of hexythiazox (HTZ) at the enantiomer level. The elution order and absolute configuration of HTZ enantiomers were determined. (4R, 5R)-(+)-HTZ exhibited 708 and 1719 times higher bioactivity against Tetranychus cinnabarinus and Tetranychus urticae eggs than (4S, 5S)-(-)-HTZ, respectively. Molecular docking indicated greater interactions between (4R, 5R)-(+)-HTZ and chitin synthase leading to higher bioactivity of (4R, 5R)-(+)-HTZ. However, (4S, 5S)-(-)-HTZ induced greater changes in protein and malondialdehyde content, and antioxidant and detoxification enzyme activities than (4R, 5R)-(+)-HTZ in earthworms. Furthermore, integrated biomarker response results indicated (4S, 5S)-(-)-HTZ exhibited higher toxic effects on earthworms than (4R, 5R)-(+)-HTZ. Finally, significant differentially expressed genes (DEGs) were observed in earthworms after exposure to (4R, 5R)-(+)-HTZ and (4S, 5S)-(-)-HTZ, respectively. These DEGs were mainly enriched in glycolysis/gluconeogenesis and purine metabolism pathways in earthworms. Additionally, six metabolism pathways were also enriched, including pyruvate metabolism, fatty acid biosynthesis, oxidative phosphorylation, citric acid cycle, fatty acid degradation, and ATP-binding cassette transporters. These findings suggest that earthworms exhibited enantiomer-specific responses to (4R, 5R)-(+)-HTZ and (4S, 5S)-(-)-HTZ. This study provides systemic insight into the toxicity mechanism of HTZ at the enantiomer level and the potential to develop (4R, 5R)-(+)-HTZ as a high-efficiency and low-risk pesticide.


Assuntos
Acaricidas , Praguicidas , Tiazolidinas , Acaricidas/toxicidade , Simulação de Acoplamento Molecular , Praguicidas/toxicidade , Comportamento de Redução do Risco , Ácidos Graxos , Estereoisomerismo
3.
Parasitol Res ; 123(3): 164, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502307

RESUMO

The cattle tick Rhipicephalus microplus is an ectoparasite of high importance in veterinary medicine and public health. Since synthetic chemicals used to control these ticks can select resistant strains and cause toxic effects in their hosts, there is a need to identify effective substances with fewer adverse effects. For this reason, we investigated the effects of alpha- and beta-pinene, known for their various biological effects, on the mortality and reproductive performance of R. microplus engorged female ticks. The products were diluted in a 2% Tween 80 aqueous solution. The ticks were first weighed and then immersed in the test solutions for five minutes. Then, they were dried with paper towels and fixed dorsoventrally in Petri dishes, totalling five treatment groups for each pinene and a control group treated with the solvent alone. The ticks were monitored daily for mortality, and their eggs were collected and weighed. The larval hatching rate was estimated, and the pre-oviposition and incubation periods were determined. From these data, the following parameters were calculated: egg production index, fertility rate, estimated reproduction rate, percentages of reduction in oviposition and hatching, and product efficacy. Alpha-pinene showed better results at higher concentrations, unlike beta-pinene, which was more effective at lower concentrations. The effectiveness of alpha-pinene was 74% at a concentration of 14.0 µL/mL, while beta-pinene showed 78% efficacy at 2.0 µL/mL. The results indicated for the first time different effects of two isomers in ticks, suggesting that these compounds act on R. microplus females in different ways.


Assuntos
Acaricidas , Monoterpenos Bicíclicos , Ixodidae , Rhipicephalus , Animais , Feminino , Oviposição , Acaricidas/farmacologia , Larva
4.
Open Vet J ; 14(2): 692-698, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38549575

RESUMO

Background: Ecto-parasite, varroa mite, (Varroa destructor), is the primary pest affecting the apiculture sector globally in various regions. Aim: This study examined the toxicity of nine essential oils to Apis mellifera L. and the acaricidal impact of those oils against V. destructor. Methods: The acaricidal effects of nine essential oils, extracted from plant materials were used. In the screening experiment, 10 mg of the active ingredients of the plant material extracts were prepared in an alcohol solution with concentrations of 5%, 10%, and 15%. For each type of plant extract, five female V. destructor were transferred to a Petri dish with five worker bees incubated at 70% humidity and 33°-34° for 2 days, for each treatment four replicates were used compared to the control. Forty-eight hours following treatment, the number of dead and live mites was counted to determine the mortality rate. In the second assay experiment, the best five essential oils of the previous experiment were selected to re-assess their effectiveness on varroa mites and honeybee workers by using a concentration of 15%. Five females of V. destructor were transferred to a Petri dish with 10 adult bees and treated with the solution of the selected oils. Five replicates and control treatments were taken for each sample simultaneously. Dead and live bees were counted for each replicate at 48 hours after treatment. Results: There were no significant differences between the concentrations used of each oil on the rate of death of mites, and its effectiveness ranged between 70.0% and 53.3% compared to the control groups. In addition, the best oil used was bitter melon, with a death rate of 80% at a concentration of 15%, while peppermint oil showed the lowest death rate of 45% at a concentration of (5%). However, all these treatments were statistically highly significant compared with the natural death rate in control (2%). In the second test, the results of the statistical analysis indicated that there were highly significant differences (P0.05 <0.0001) in the average numbers of dead varroa mites compared to the control when using a 15% concentration of five selected oils. On the other hand, there was no statistically significant difference in the honey bee workers' mortality rate between the treatment and control groups (P0.05 <0.3390), and it was relatively low for all treatments except the basil oil, where the bee mortality rate was 16% compared to the control (10%). Conclusion: It is clear from this experiment that bitter melon oil can be used to control varroa mites and it can be considered safe for honey bees as well as for the environment.


Assuntos
Acaricidas , Óleos Voláteis , Varroidae , Feminino , Abelhas , Animais , Óleos Voláteis/farmacologia , Acaricidas/farmacologia
5.
J Agric Food Chem ; 72(13): 6913-6920, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517181

RESUMO

To explore natural product-based pesticide candidates, a series of indole derivatives containing the isoxazoline skeleton at the N-1 position were synthesized by 1,3-dipolar [2 + 3] cycloaddition reaction. Their structures were characterized by melting points (mp), infrared (IR) spectra, proton nuclear magnetic resonance spectra (1H NMR), carbon-13 nuclear magnetic resonance spectra (13C NMR), and high resolution mass spectrometry (HRMS). The single-crystal structures of five compounds were presented. Against Tetranychus cinnabarinus Boisduval, compound 3b showed greater than 3.8-fold acaricidal activity of indole and good control effects under glasshouse conditions. Against Aphis citricola Van der Goot, compounds 3b and 3q exhibited 48.3- and 36.8-fold aphicidal activity of indole and 6-methylindole, respectively. Particularly, compound 3b showed good bioactivities against T. cinnabarinus and A. citricola. Against Eriosoma lanigerum Hausmann, compound 3h and 3i showed 2.1 and 1.9 times higher aphicidal activity compared to indole. Furthermore, the construction of the epidermal cuticle layer of 3b-treated carmine spider mites was distinctly damaged, which ultimately led to their death.


Assuntos
Acaricidas , Inseticidas , Praguicidas , Tetranychidae , Animais , Praguicidas/farmacologia , Praguicidas/química , Estrutura Molecular , Acaricidas/farmacologia , Acaricidas/química , Espectroscopia de Ressonância Magnética , Indóis/farmacologia , Inseticidas/farmacologia , Inseticidas/química , Relação Estrutura-Atividade
6.
J Agric Food Chem ; 72(13): 7010-7020, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529524

RESUMO

Cyetpyrafen is a recently developed acaricide. The citrus red mite, Panonychus citri (McGregor), has developed significant resistance to cyetpyrafen. However, the molecular mechanism underlying the cyetpyrafen resistance in P. citri remains unclear. Glutathione S-transferases (GSTs) play a critical role in arthropod pesticide resistance. This study showed that GSTs were potentially related to the resistance of P. citri to cyetpyrafen through synergistic experiments and enzyme activity analysis. An omega-family GST gene, PcGSTO1, was significantly up-regulated in the egg, nymph, and adult stages of the cyetpyrafen-resistant strain. Additionally, silencing of PcGSTO1 significantly increased the mortality of P. citri to cyetpyrafen and recombinant PcGSTO1 demonstrated the ability to metabolize cyetpyrafen. Our results indicated that the overexpression of PcGSTO1 is associated with cyetpyrafen resistance in P. citri, and they also provided valuable information for managing resistance in P. citri.


Assuntos
Acaricidas , Tetranychidae , Animais , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Tetranychidae/genética , Tetranychidae/metabolismo , Acaricidas/farmacologia , Acaricidas/metabolismo
7.
J Agric Food Chem ; 72(11): 5574-5584, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38468388

RESUMO

To explore the use of nonfood plant-derived secondary metabolites for plant protection, a series of ester derivatives for controlling the major migratory agricultural pests were obtained by structural modification of andrographolide, a labdane diterpenoid isolated from Andrographis paniculata. Compound Id showed good insecticidal activity against the fall armyworm Spodoptera frugiperda Smith. Compounds IIa (LC50: 0.382 mg/mL) and IIIc (LC50: 0.563 mg/mL), the acaricidal activities of which were, respectively, 13.1 and 8.9 times that of andrographolide (LC50: 4.996 mg/mL), exhibited strong acaricidal and control effects against Tetranychus cinnabarinus Boisduval. Against Aphis citricola Van der Goot, compounds IIIc and IVb displayed 3.9- and 3.7-fold pronounced aphicidal activity of andrographolide. Effects of compound Id on three protective enzymes (superoxide dismutase, peroxidase, and catalase) of S. frugiperda were also observed. The obvious differences of epidermal cuticle structures of mites treated with compound IIa were determined by scanning electron microscopy. Structure-activity relationships indicated that 14-ester derivatives of andrographolide showed potential insecticidal/acaricidal activities and can be further utilized as lead compounds.


Assuntos
Acaricidas , Produtos Biológicos , Diterpenos , Inseticidas , Praguicidas , Animais , Praguicidas/química , Estrutura Molecular , Produtos Biológicos/química , Ésteres/química , Inseticidas/química , Relação Estrutura-Atividade , Acaricidas/química , Diterpenos/farmacologia , Diterpenos/química
8.
Parasitol Res ; 123(3): 149, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433167

RESUMO

Scabies is an itchy skin disease caused by the burrowing mite Sarcoptes scabiei. During their lifespan, the female mites invade the stratum corneum and create tunnels, in which they reside, move, feed, deposit fecal pellets, and lay eggs. Recently, scabies was included in the World Health Organization roadmap for neglected tropical diseases 2021-2030. This review attempts to summarize our knowledge about the mite's biology and the disease pathogenesis, pathological changes, and complications. Generally, the host-parasite interaction in scabies is highly complex and involves different mechanisms, some of which are yet largely unknown. Elucidation of the nature of such interaction as well as the underlying mechanisms could allow a better understanding of the mite's biology and the development of novel diagnostic and therapeutic options for scabies control programs. Moreover, identification of the molecular basis of such interaction could unveil novel targets for acaricidal agents and vaccines.


Assuntos
Acaricidas , Escabiose , Feminino , Animais , Sarcoptes scabiei , Ovos , Epiderme
9.
J Hazard Mater ; 469: 133892, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461662

RESUMO

Managed bees commonly suffer from cross-contamination with acaricides and neonicotinoids, posing robust threats to bee population health. However, their residual characteristics and spatial distribution in beehives and surrounding environments are poorly understood. This study detected two common acaricides and five neonicotinoids in 240 beehive samples and 44 surrounding environmental samples collected from 25 Chinese provinces. The results showed that 40.0% of the honey samples contained acaricides and 83.1% contained neonicotinoids. Neonicotinoid concentrations in honey were geographically distinguished by the "Hu Huanyong line", and concentrations of neonicotinoids in honey from eastern areas were 2.65-fold higher than those in honey from western areas. Compared to the approved acaricide amitraz, the banned acaricide coumaphos was detected more frequently in honey and was positively correlated with that quantified in the paired pollen samples. Although coumaphos was identified in only three soil samples, lower coumaphos residues in honey might be associated with persistent pollution in the surrounding environment. Conversely, neonicotinoids were detected at higher levels in honey than in the pollen and soil, demonstrating that the neonicotinoid residues in honey have a cumulative effect. This study contributes to a better understanding of the pesticide contamination scenarios that underlie the exposure risks of bees.


Assuntos
Acaricidas , Inseticidas , Praguicidas , Abelhas , Animais , Acaricidas/toxicidade , Neonicotinoides , Cumafos , Solo , Inseticidas/análise
10.
Parasit Vectors ; 17(1): 51, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308372

RESUMO

BACKGROUND: Babesia canis is a clinically relevant vector-borne pathogen in dogs, and its presence is expanding. The efficacy of Simparica Trio® (Zoetis) in the prevention of B. canis transmission was evaluated at the minimum recommended label dose of 1.2 mg/kg sarolaner, 24 µg/kg moxidectin and 5 mg/kg pyrantel per kg bodyweight. METHODS: Twenty-four (24) dogs were randomly allocated to either a placebo-treated group or one of two treatment groups with Simparica Trio. Dogs were infested with B. canis-infected Dermacentor reticulatus ticks 21 or 28 days after treatment administration. Blood samples for antibody and DNA detection were collected from each dog prior to tick infestation until 28 days after infestation. A dog was defined as being B. canis positive if it tested positive by both an indirect immunofluorescence assay (IFA) and PCR at any time during the study. RESULTS: No treatment-related adverse reactions were recorded during the study. All placebo-treated animals displayed clinical signs due to babesiosis and tested positive on both IFA and PCR. None of the Simparica Trio-treated animals displayed any clinical symptoms or tested positive, resulting in a 100% efficacy in the prevention of canine babesiosis (P < 0.0001). CONCLUSIONS: A single treatment with Simparica Trio at the minimum recommended label dose of 1.2 mg/kg sarolaner, 24 µg/kg moxidectin and 5 mg/kg pyrantel per kg bodyweight prevents the transmission of B. canis by infected D. reticulatus to dogs for at least 28 days.


Assuntos
Acaricidas , Babesia , Babesiose , Doenças do Cão , Animais , Cães , Acaricidas/uso terapêutico , Administração Oral , Azetidinas , Babesia/genética , Babesiose/prevenção & controle , Dermacentor , Doenças do Cão/tratamento farmacológico , Doenças do Cão/prevenção & controle , Macrolídeos , Pirantel/uso terapêutico , Compostos de Espiro , Infestações por Carrapato/tratamento farmacológico , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária
11.
Parasite ; 31: 3, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315066

RESUMO

In this study, we aimed to develop a comprehensive methodology for identifying amino acid polymorphisms in acetylcholinesterase transcript 2 (AChE2) in acaricide-resistant Rhipicephalus microplus ticks. This included assessing AChE2 expression levels through qPCR and conducting 3D modeling to evaluate the interaction between acaricides and AChE2 using docking techniques. The study produced significant results, demonstrating that acaricide-resistant R. microplus ticks exhibit significantly higher levels of AChE expression than susceptible reference ticks. In terms of amino acid sequence, we identified 9 radical amino acid substitutions in AChE2 from acaricide-resistant ticks, when compared to the gene sequence of the susceptible reference strain. To further understand the implications of these substitutions, we utilized 3D acaricide-AChE2 docking modeling to examine the interaction between the acaricide and the AChE2 catalytic site. Our models suggest that these amino acid polymorphisms alter the configuration of the binding pocket, thereby contributing to differences in acaricide interactions and ultimately providing insights into the acaricide-resistance phenomenon in R. microplus.


Title: Relations entre la résistance aux acaricides et les polymorphismes du gène de l'acétylcholinestérase chez la tique du bétail Rhipicephalus microplus. Abstract: Notre étude vise à développer une méthodologie complète pour identifier les polymorphismes d'acides aminés dans le transcrit 2 de l'acétylcholinestérase (AChE2) chez les tiques Rhipicephalus microplus résistantes aux acaricides. Cela comprend l'évaluation des niveaux d'expression d'AChE2 via qPCR et la réalisation d'une modélisation 3D pour évaluer l'interaction entre les acaricides et l'AChE2 à l'aide de techniques d'amarrage moléculaire. L'étude a produit des résultats significatifs, démontrant que les tiques R. microplus résistantes aux acaricides présentent des niveaux d'expression d'AChE significativement plus élevés que les tiques sensibles de référence. En termes de séquence d'acides aminés, nous avons identifié 9 substitutions d'acides aminés dans AChE2 provenant de tiques résistantes aux acaricides par rapport à la séquence génétique de la souche sensible de référence. Pour mieux comprendre les implications de ces substitutions, nous avons utilisé la modélisation de l'amarrage acaricide-AChE2 pour examiner l'interaction entre l'acaricide et le site catalytique AChE2. Nos modèles suggèrent que ces polymorphismes d'acides aminés modifient la configuration de la poche de liaison, contribuant ainsi aux différences dans les interactions acaricides et fournissant finalement un aperçu du phénomène de résistance aux acaricides chez R. microplus.


Assuntos
Acaricidas , Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Acaricidas/farmacologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Rhipicephalus/genética , Rhipicephalus/metabolismo , Resistência a Medicamentos/genética , Polimorfismo Genético , Aminoácidos/genética , Infestações por Carrapato/veterinária
12.
Exp Appl Acarol ; 92(2): 263-273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351234

RESUMO

The aim of this research was to investigate the larvicidal and repellent effects of essential oils (EOs) obtained from two Lamiaceae plant species, Origanum minutiflorum O. Schwarz & P.H. Davis and Dorystoechas hastata Boiss. & Heldr. ex Bentham, both endemic to Turkey, on Rhipicephalus sanguineus s.l. Latreille (Acari: Ixodidae). The study also introduces a new test method that can be used to assess the repellent effects against ticks. Both plant EOs exhibited the highest larvicidal activity against brown dog tick larvae after 24 h and LC50 and LC90 values were determined as 0.101% and 0.125% for O. minutiflorum essential oil and 0.937% and 2.1% for D. hastata essential oil, respectively. In this study, we have described a detailed protocol for a novel larval repellent activity test (LRAT) for essential oils and extracts, using simple equipment. The advantages and limitations of LRAT, when compared to other tests commonly used to determine repellent effect against ticks, are also included in this study. The LRAT was developed with modifications of the larval immersion test (LIT) and proves to be a highly efficient and easily observable method. It can be used to test any active substance that may be toxic to humans and animals. According to the LRAT, at the end of 3 h, O. minutiflorum essential oil showed a high repellent effect, varying between 84.14% and 100% at 1% concentration. This result was not statistically different from the DEET, the positive control. When comparing the larvicidal and repellent activities, O. minutiflorum essential oil was found to be more effective than D. hastata essential oil.


Assuntos
Acaricidas , Repelentes de Insetos , Ixodidae , Óleos Voláteis , Rhipicephalus sanguineus , Rhipicephalus , Cães , Humanos , Animais , Óleos Voláteis/farmacologia , Larva , Repelentes de Insetos/farmacologia , Acaricidas/farmacologia
13.
Vet Parasitol ; 327: 110149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412588

RESUMO

The tick Rhipicephalus microplus is a parasite of great importance in cattle breeding. It is responsible for huge economic losses. The application of synthetic acaricides is used as a form of control. However, resistant strains have been selected over the years, making it necessary to search for new alternative formulations. The present study aimed to formulate biodegradable films impregnated with the terpenes carvacrol and thymol and evaluate their efficacy on larvae and adults of R. microplus through in vitro tests. The following formulations were prepared: Film 1 (starch based); Film 2 (based on starch and glycerol); Film 1 + Carvarcol or Thymol; Film 2 + Carvarcol or Thymol. Terpenes had a final concentration of 5.0 mg/mL. To evaluate the formulations on larvae, the immersion test was performed by dividing into six groups according to the concentration of terpenes: 5.0, 2.5, 1.25, 0.625, 0.313, 0.156 mg/mL and the control groups: 1% ethanol solution; 10% ethanol solution; Film 1; and Film 2. For the evaluations on adult ticks, ten experimental groups (n = 10) were used: 1) Carvacrol; 2) Film 1 + Carvacrol; 3) Film 2 + Carvacrol; 4) Thymol; 5) Film 1 + Thymol; 6) Film 2 + Thymol; 7) Distilled water; 8) 10% ethanol solution; 9) Film 1; and 10) Film 2. In experimental groups 1-6, carvacrol and thymol (free or incorporated in two different biodegradable film formulations) were evaluated at the same concentration (5.0 mg/mL). Each group of ticks was immersed in their respective solutions for five minutes. The results of the tests on larvae showed that the Film 1 + thymol and Film 2 + carvacrol formulations had the lowest lethal concentrations (0.076 and 0.255 mg/mL, respectively), values up to 9.0-fold lower than the monoterpenes tested outside the formulation. Carvacrol and thymol at the concentrations tested were effective in controlling engorged females with a percentage of 32.2% and 63.8%, respectively. When incorporated into biodegradable film formulations, these monoterpenes showed much greater efficacy. Film 1 + carvacrol and Film 2 + carvacrol with control percentages of 71.6% and 97.2%, respectively, while the formulations Film 1 + thymol and Film 2 + thymol showed values of 96.9% and 100.0%. The tick control activity of the biopolymer formulations with thymol and carvacrol was demonstrated through the high mortality rates of larvae and engorged females of the tick R. microplus. Therefore, the results obtained indicate that these formulations have great potential for tick control mainly because of the percentage of control up to 100% in engorged females in in vitro tests.


Assuntos
Acaricidas , Cimenos , Rhipicephalus , Feminino , Animais , Bovinos , Timol/farmacologia , Terpenos/farmacologia , Zea mays , Amido/farmacologia , Melhoramento Vegetal , Monoterpenos/farmacologia , Acaricidas/farmacologia , Etanol/farmacologia , Larva
14.
Biomarkers ; 29(2): 68-77, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299991

RESUMO

BACKGROUND: Fenpyroximate (FEN) is an acaricide that inhibits the complex I of the mitochondrial respiratory chain in mites. Data concerning mammalian toxicity of this acaricide are limited; thus the aim of this work was to explore FEN toxicity on Wistar rats, particularly on cardiac, pulmonary, and splenic tissues and in bone marrow cells. METHODS: rats were treated orally with FEN at 1, 2, 4, and 8 mg/Kg bw for 28 days. After treatment, we analyzed lipid profile, oxidative stress and DNA damage in rat tissues. RESULTS: FEN exposure increased creatinine phosphokinase (CPK) and lactate dehydrogenase (LDH) activities, elevated total cholesterol (T-CHOL), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) concentrations, while decreasing high-density lipoprotein cholesterol (HDL-C). It inhibited acetylcholinesterase (AChE) activity, enhanced lipid peroxidation, protein oxidation, and modulated antioxidant enzymes activities (superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase). Comet assay indicated that FEN induced a dose-dependent DNA damage, contrasting with the micronucleus test showing no micronuclei formation. Nonetheless, FEN exhibited cytotoxicity to bone marrow cells, as evidenced by a reduction in the number of immature erythrocytes among total cells. CONCLUSION: FEN appears to carry out its genotoxic and cytotoxic activities most likely through an indirect pathway that involves oxidative stress.


Assuntos
Acaricidas , Acetilcolinesterase , Benzoatos , Pirazóis , Ratos , Animais , Ratos Wistar , Acetilcolinesterase/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Catalase/metabolismo , Peroxidação de Lipídeos , Dano ao DNA , Superóxido Dismutase/metabolismo , Colesterol , Lipídeos , Glutationa/metabolismo , Mamíferos/metabolismo
15.
Exp Appl Acarol ; 92(2): 217-232, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329588

RESUMO

Cattle tick control poses a significant challenge for livestock in tropical and subtropical regions. The objective of this study was to determine the most suitable timing to initiate a strategic tick control program and to identify the ideal number of acaricide treatments for adult taurine cattle (Bos taurus taurus) in a tropical region throughout the year. Three groups with 10 bovines each were performed: T01 (strategic treatment in late autumn/winter/late spring, every 28 days), T02 (strategic treatment to act in the "first tick generation" - early spring/summer/early autumn, every 28 days) and T03 (control). Tick counts (females 4-8 mm) were conducted every 14 days. If the tick burden in any group reached 30 or more during these counts, we applied an additional treatment. Over the course of a year, T02 required significantly fewer (p < 0.05) acaricide treatments than T01, with nine treatments for T02 and eleven for T01. Furthermore, during the tick counts, animals in T02 showed a lower tick burden compared to those in T01. Initiating the strategic tick control program in early spring, corresponding to the first tick generation, proved more effective than starting in autumn. This approach not only required fewer acaricide treatments but also resulted in a reduced tick burden. These benefits are particularly valuable in terms of animal welfare and managing acaricide resistance issues.


Assuntos
Acaricidas , Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Feminino , Bovinos , Animais , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária , Doenças dos Bovinos/prevenção & controle , Controle de Ácaros e Carrapatos/métodos
16.
PLoS One ; 19(2): e0297980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38329992

RESUMO

The ectoparasitic mite, Varroa destructor is the most serious widespread pest of managed honeybees (Apis mellifera). Several acaricide products, which include essential oils, have been proposed for mite control. In this study, we aimed to apply atmospheric-pressure plasma to modify a cardboard piece surface in order to prolong the delivery of essential oils for controlling Varroa in honeybee colonies. Absorption capacity, release rates and evaporation rates of essential oils were determined. Cardboard piece showed a higher absorption capacity of cinnamon compared to citronella and clove. Surface modification of cardboard pieces using argon plasma at different gas flow rates and treatment durations, significantly affected the absorption of clove oil. Additionally, the release rate of cinnamon, citronella and clove was significantly enhanced after argon plasma treatments. Evaporation of cinnamon was dramatically increased by plasma treatment at 6-h of incubation. The highest evaporation rate was obtained by plasma-treated cardboard piece at a gas flow rate of 0.5 Lpm for 60 s (0.2175 ± 0.0148 µl/g•h). Efficiency of plasma-treated cardboard piece, impregnated with essential oils, was also investigated for Varroa control in honeybee colonies. In the first experiment, formic acid 65% (v/v) showed the highest efficiency of 90.60% and 81.59% with the percent of mite infestation was 0.23 ± 0.13% and 0.47 ± 0.19% at 21 and 35 days, respectively after treatment. The efficacy of cardamon oil (5% (v/v)) delivered using plasma-treated cardboard pieces was 57.71% (0.70 ± 0.16% of mite infestation) at day 21 of experiment. However, the delivery of cardamon oil at the concentration of 1% and 5% (v/v) by untreated cardboard piece had 16.93% and 24.05% of efficacy to control mites. In the 2nd experiment, the application of plasma-treated cardboard pieces impregnated with 5% (v/v) clove oil induced a 38.10% reduction in the population of Varroa mites followed by 5% (v/v) of cardamon with 30% efficiency. Although, the infestation rate of Varroa in colonies was not significant different between treatments, essential oils delivered using plasma-treated cardboard pieces tended to decrease Varroa population in the treated colonies. Hence, atmospheric-pressure plasma for the modification of other materials, should be further investigated to provide alternative control treatment applications against honeybee mites.


Assuntos
Acaricidas , Lamiaceae , Óleos Voláteis , Gases em Plasma , Escabiose , Varroidae , Abelhas , Animais , Acaricidas/farmacologia , Óleos Voláteis/farmacologia , Óleo de Cravo , Gases em Plasma/farmacologia
17.
J Photochem Photobiol B ; 251: 112847, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241947

RESUMO

The bovine tick Rhipicephalus microplus, a primary ectoparasite of veterinary concern, contributes significantly to disease transmission and reduced cattle productivity, resulting in substantial economic losses. The overuse of chemical acaricides has led to the emergence of resistant strains, posing a considerable challenge to veterinary medicine. Consequently, the development of alternative parasite control methods is essential to ensure livestock quality and enhance food safety worldwide. Our study introduces an innovative approach to photodynamic inactivation (PDI) of the bovine tick, harnessing natural daylight for a potential field application. Reproductive parameters (female and egg mass, egg production index, and larval hatch) were evaluated in engorged female ticks under photodynamic action using the hematoporphyrin (HP) and tetra-cationic porphyrins free-base meso-tetra-ruthenated (4-pyridyl) (RuTPyP) and its zinc(II) complex (ZnRuTPyP) as photosensitizers (PS). The results showed that there was no significant difference between the groups treated with tetra­ruthenium porphyrins and the control group. However, HP exhibits a control percentage of 97.9% at a concentration of 2.5 µmol.L-1, aligning with the expected control rates achieved by conventional chemical acaricides. Photophysical and physicochemical parameters such as the number of singlet oxygen produced and lipophilicity were discussed for each PS and related to tick control percentages. Furthermore, the interaction between HP and chitin, an important macromolecule presents in the tick's cuticle, considered as the primary target tick structure during PDI was observed by the absorption and fluorescence emission spectroscopic techniques. Therefore, the results presented here extend the potential for controlling R. microplus through photodynamic inactivation while utilizing sunlight as a source of natural irradiation.


Assuntos
Acaricidas , Porfirinas , Rhipicephalus , Animais , Feminino , Bovinos , Acaricidas/farmacologia , Rhipicephalus/fisiologia , Porfirinas/farmacologia , Reprodução
18.
Vet Parasitol ; 327: 110137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278036

RESUMO

The ANESPSAT, a synthetic spilanthol derivative, and its nanoformulation were evaluated against Rhipicephalus microplus and Amblyomma sculptum ticks. ANESPSAT activity was compared with spilanthol and derivatives (ANESPE and others). The compound was synthesized in a gram-scale by a 2-step process, comprising a direct ester amidation and a Horner-Wadsworth- Emmons reaction. The nanoemulsions were produced by coarse homogenization followed by high-energy ultrasonication, in which hydrodynamic diameter, polydispersity index, and zeta potential remained stable. The spilanthol-eugenol hybrid derivatives did not show significant acaricidal activity. ANESPE killed 83% of the R. microplus larvae at 30 mg.mL-1, while ANESPSAT killed 97% at 0.5 mg.mL-1, showing to be the most active compound. Spilanthol and ANESPSAT had similar high mortality rates for tick larvae, with LC50 values of 0.10 and 0.14 mg.mL-1 for R. microplus larvae, and 0.04 and 0.48 mg.mL-1 for A. sculptum larvae, respectively. The efficacy of spilanthol was lower against R. microplus engorged females when compared with ANESPSAT, which was highly effective (>98%) against R. microplus engorged females. The nanoemulsion with ANESPSAT was effective against tick females, preventing egg laying and achieving 100% efficacy at 2.5 mg.mL-1. Spilanthol had only 59% efficacy at 10 mg.mL-1. The results suggest that ANESPSAT, a natural product derivative, could be used in novel formulations for tick management that might be safer and environmentally friendly.


Assuntos
Acaricidas , Rhipicephalus , Feminino , Animais , Acaricidas/farmacologia , Alcamidas Poli-Insaturadas , Larva
19.
Vet Parasitol ; 327: 110121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286058

RESUMO

The drug resistance of poultry red mites to chemical acaricides is a global issue in the control of the mites, which presents an ongoing threat to the poultry industry. Though the increased production of detoxification enzymes has been frequently implicated in resistance development, the overexpression mechanism of acaricide-resistant related genes in mites remains unclear. In the present study, it was observed that the transcription factor Cap 'n' Collar isoform-C (CncC) and its partner small muscle aponeurosis fibromatosis (Maf) were highly expressed in resistant strains compared to sensitive strains under the stress of beta-cypermethrin. When the CncC/Maf pathway genes were down-regulated by RNA interference (RNAi), the expression of the ABC transporter genes was down-regulated, leading to a significant increase in the sensitivity of resistant strains to beta-cypermethrin, suggesting that CncC/Maf played a crucial role in mediating the resistance of D.gallinae to beta-cypermethrin by regulating ABC transporters. Furthermore, it was observed that the content of H2O2 and the activities of peroxidase (POD) and catalase (CAT) enzymes were significantly higher in resistant strains after beta-cypermethrin stress, indicating that beta-cypermethrin activates reactive oxygen species (ROS). In ROS scavenger assays, it was found that the expression of CncC/Maf significantly decreased, along with a decrease in the ABC transporter genes. The present study showed that beta-cypermethrin seemed to trigger the outbreak of ROS, subsequently activated the CncC/Maf pathway, as a result induced the ABC transporter-mediated resistance to the drug, shedding more light on the resistance mechanisms of D.gallinae to pyrethroids.


Assuntos
Acaricidas , Ácaros , Piretrinas , Animais , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Piretrinas/farmacologia , Acaricidas/farmacologia , Ácaros/genética , Transportadores de Cassetes de Ligação de ATP/genética
20.
Trop Anim Health Prod ; 56(2): 49, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236343

RESUMO

The role of arthropods as livestock pests has been well established. Besides their biting habits causing nuisance in animals; they are important vectors for transmission of economically important livestock diseases worldwide. Various pests and vector control managemental programs that also make use of chemicals have variable success rates. Consequently, insecticide/acaricide resistance has been reported against most of the commonly used chemicals along with increased concern for environment and demand for clean and green, residue-free animal products. This calls for an urgent need to develop novel, alternate, effective strategies/technologies. This lays the foundation for the use of semiochemicals as alternatives along with other biological control agents. Current knowledge on semiochemical use in livestock is refined and limited; however, it has been widely exploited in the agricultural sector to control plant and food crop pests, surveillance, and monitoring. Semiochemicals have an added advantage of being natural and safe; however, knowledge of extraction and quantification by using assays needs to be explicit. Expertise is required in behavioral and electrophysiological studies of arthropods and their interactions with the host and environment targeting specific semiochemicals for promising results. A thorough prior understanding on aspects such as mechanism of action, the stimulus for the release, the effecter/target species, response produced, application methods, dose and concentration is required to develop any successful pest/vector control program. The current review provides essential and frontline information on semiochemicals and their potential applications in the livestock sector along with future challenges and interventions.


Assuntos
Acaricidas , Gado , Animais , Agricultura , Feromônios , Controle de Pragas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...