Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.403
Filtrar
1.
Sci Rep ; 14(1): 7879, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570608

RESUMO

Achieving non-invasive spatiotemporal control over cellular functions, tissue organization, and behavior is a desirable aim for advanced therapies. Magnetic fields, due to their negligible interaction with biological matter, are promising for in vitro and in vivo applications, even in deep tissues. Particularly, the remote manipulation of paramagnetic (including superparamagnetic and ferromagnetic, all with a positive magnetic susceptibility) entities through magnetic instruments has emerged as a promising approach across various biological contexts. However, variations in the properties and descriptions of these instruments have led to a lack of reproducibility and comparability among studies. This article addresses the need for standardizing the characterization of magnetic instruments, with a specific focus on their ability to control the movement of paramagnetic objects within organisms. While it is well known that the force exerted on magnetic particles depends on the spatial variation (gradient) of the magnetic field, the magnitude of the field is often overlooked in the literature. Therefore, we comprehensively analyze and discuss both actors and propose a novel descriptor, termed 'effective gradient', which combines both dependencies. To illustrate the importance of both factors, we characterize different magnet systems and relate them to experiments involving superparamagnetic nanoparticles. This standardization effort aims to enhance the reproducibility and comparability of studies utilizing magnetic instruments for biological applications.


Assuntos
Magnetismo , Nanopartículas , Reprodutibilidade dos Testes , Imãs , Campos Magnéticos
2.
Sci Rep ; 14(1): 6597, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504094

RESUMO

Transcranial static magnetic field stimulation (tSMS) is a non-invasive brain stimulation technique that is portable and easy to use. Long-term, home-based treatments with tSMS of the supplementary motor area (SMA) are promising for movement disorders and other brain diseases. The aim of the present work was to investigate the potential of SMA-tSMS for reducing corticospinal excitability. We completed an open pilot study in which twenty right-handed healthy subjects (8 females; age: 31.3 ± 5.4 years) completed two 30-min sessions (at least one week apart) of SMA-tSMS. We assessed corticospinal excitability by applying transcranial magnetic stimulation (TMS) over the primary motor cortex, recording 30 motor evoked potentials (MEPs) from either the left or right first dorsal interosseous (FDI, 'hotspot' muscle) and extensor carpi radialis (ECR, 'offspot' muscle) in each session before and after (up to 30 min) tSMS. We observed moderate-to-extreme level of Bayesian evidence for a reduction of MEP amplitude after 30 min of tSMS over SMA compared to baseline. Thus, tSMS applied over SMA may reduce corticospinal excitability. These findings, if confirmed with double-blind, placebo-controlled experiments, support the potential of targeting the SMA for neuromodulating a large motor network in future therapeutic applications of tSMS.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Feminino , Humanos , Adulto , Estimulação Magnética Transcraniana/métodos , Córtex Motor/fisiologia , Projetos Piloto , Teorema de Bayes , Potencial Evocado Motor/fisiologia , Campos Magnéticos , Músculo Esquelético/fisiologia
3.
Bioinspir Biomim ; 19(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38452388

RESUMO

Certain animal species use the Earth's magnetic field (i.e. magnetoreception) alongside their other sensory modalities to navigate long distances that include continents and oceans. It is hypothesized that several animals use geomagnetic parameters, such as field intensity and inclination, to recognize specific locations or regions, potentially enabling migration without a pre-surveyed map. However, it is unknown how animals use geomagnetic information to generate guidance commands, or where in the world this type of strategy would maximize an animal's fitness. While animal experiments have been invaluable in advancing this area, the phenomenon is difficult to studyin vivoorin situ, especially on the global scale where the spatial layout of the geomagnetic field is not constant. Alongside empirical animal experiments, mathematical modeling and simulation are complementary tools that can be used to investigate animal navigation on a global scale, providing insights that can be informative across a number of species. In this study, we present a model in which a simulated animal (i.e. agent) navigates via an algorithm which determines travel heading based on local and goal magnetic signatures (here, combinations of geomagnetic intensity and inclination) in a realistic model of Earth's magnetic field. By varying parameters of the navigation algorithm, different regions of the world can be made more or less reliable to navigate. We present a mathematical analysis of the system. Our results show that certain regions can be navigated effectively using this strategy when these parameters are properly tuned, while other regions may require more complex navigational strategies. In a real animal, parameters such as these could be tuned by evolution for successful navigation in the animal's natural range. These results could also help with developing engineered navigation systems that are less reliant on satellite-based methods.


Assuntos
Campos Magnéticos , Magnetismo , Animais , Sensação , Oceanos e Mares , Modelos Biológicos
4.
ACS Nano ; 18(12): 8694-8705, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466230

RESUMO

Small-scale magnetic robots with fixed magnetizations have limited locomotion modes, restricting their applications in complex environments in vivo. Here we present a morphology-reconfigurable millirobot that can switch the locomotion modes locally by reprogramming its magnetizations during navigation, in response to distinct magnetic field patterns. By continuously switching its locomotion modes between the high-velocity rigid motion and high-adaptability soft actuation, the millirobot efficiently navigates in small lumens with intricate internal structures and complex surface topographies. As demonstrations, the millirobot performs multimodal locomotion including woodlouse-like rolling and flipping, sperm-like rotating, and snake-like gliding to negotiate different terrains, including the unrestricted channel and high platform, narrow channel, and solid-liquid interface, respectively. Finally, we demonstrate the drug delivery capability of the millirobot through the oviduct-mimicking phantom and ex vivo oviduct. The magnetization reprogramming strategy during navigation represents a promising approach for developing self-adaptive robots for performing complex tasks in vivo.


Assuntos
Oviductos , Sêmen , Masculino , Feminino , Humanos , Animais , Movimento (Física) , Sistemas de Liberação de Medicamentos , Campos Magnéticos
5.
Sci Rep ; 14(1): 7000, 2024 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523150

RESUMO

There is considerable interest in developing anti-glioma nanoplatforms. They make the all-in-one combination of therapies possible. Here we show how the selective Glioblastoma multiforme (GBM) cell killing of the here-established nanoplatforms increased after each coating and how the here-established vibration-inducing Alternating magnetic field (AMF) decreased the treatment time from 72 h to 30 s. Thanks to their magnetite core, these nanoplatforms can be guided to the tumor's specific site by a Fixed magnetic field, they bypass the Blood-Brain Barrier (BBB) and accumulate at the tumor site thanks to the RVG29 bonding to the G-protein on the ion-gated channel receptor known as the nicotinic acetylcholine receptor (nAchR), which expresses on BBB cells and overexpresses on GBM cells, and thanks to the positive charge gained by both chitosan and RVG29's peptide. Both ZIF-8 and its mediate adherence, Chitosan increases the drug loading capacity that stimuli response to the tumor's acidic environment. The Zn2+ ions generated from ZIF-8 sustained degradation in such an environment kill the GBM cells. Dynamic Light Scattering (DLS) evaluated these nanoplatform's mean size 155 nm indicating their almost optimum size for brain applications. Based on their elements' intrinsic properties, these nanoplatforms can enhance and combine other adjuvant therapies.


Assuntos
Quitosana , Glioblastoma , Glioma , Humanos , Quitosana/metabolismo , Glioma/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Glioblastoma/terapia , Glioblastoma/metabolismo , Campos Magnéticos , Linhagem Celular Tumoral
6.
J Colloid Interface Sci ; 664: 454-468, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484514

RESUMO

Nowadays, diseases associated with an ageing population, such as osteoporosis, require the development of new biomedical approaches to bone regeneration. In this regard, mechanotransduction has emerged as a discipline within the field of bone tissue engineering. Herein, we have tested the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs), obtained by the thermal decomposition method, with an average size of 13 nm, when exposed to the application of an external magnetic field for mechanotransduction in human bone marrow-derived mesenchymal stem cells (hBM-MSCs). The SPIONs were functionalized with an Arg-Gly-Asp (RGD) peptide as ligand to target integrin receptors on cell membrane and used in colloidal state. Then, a comprehensive and comparative bioanalytical characterization of non-targeted versus targeted SPIONs was performed in terms of biocompatibility, cell uptake pathways and mechanotransduction effect, demonstrating the osteogenic differentiation of hBM-MSCs. A key conclusion derived from this research is that when the magnetic stimulus is applied in the first 30 min of the in vitro assay, i.e., when the nanoparticles come into contact with the cell membrane surface to initiate endocytic pathways, a successful mechanotransduction effect is observed. Thus, under the application of a magnetic field, there was a significant increase in runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) gene expression as well as ALP activity, when cells were exposed to RGD-functionalized SPIONs, demonstrating osteogenic differentiation. These findings open new expectations for the use of remotely activated mechanotransduction using targeted magnetic colloidal nanoformulations for osteogenic differentiation by drug-free cell therapy using minimally invasive techniques in cases of bone loss.


Assuntos
Mecanotransdução Celular , Osteogênese , Humanos , Diferenciação Celular , Campos Magnéticos , Oligopeptídeos/farmacologia , Células Cultivadas
7.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38452383

RESUMO

Objective. The aim of this work is to investigate the response of the Roos chamber (type 34001) irradiated by clinical proton beams in magnetic fields.Approach. At first, a Fano test was implemented in Monte Carlo software package GATE version 9.2 (based on Geant4 version 11.0.2) using a cylindrical slab geometry in a magnetic field up to 1 T. In accordance to an experimental setup (Fuchset al2021), the magnetic field correction factorskQB⃗of the Roos chamber were determined at different energies up to 252 MeV and magnetic field strengths up to 1 T, by separately simulating the ratios of chamber signalsMQ/MQB⃗,without and with magnetic field, and the dose-conversion factorsDw,QB⃗/Dw,Qin a small cylinder of water, with and without magnetic field. Additionally, detailed simulations were carried out to understand the observed magnetic field dependence.Main results. The Fano test was passed with deviations smaller than 0.25% between 0 and 1 T. The ratios of the chamber signals show both energy and magnetic field dependence. The maximum deviation of the dose-conversion factors from unity of 0.22% was observed at the lowest investigated proton energy of 97.4 MeV andB⃗= 1 T. The resultingkQB⃗factors increase initially with the applied magnetic field and decrease again after reaching a maximum at around 0.5 T; except for the lowest 97.4 MeV beam that show no observable magnetic field dependence. The deviation from unity of the factors is also larger for higher proton energies, where the maximum lies at 1.0035(5), 1.0054(7) and 1.0069(7) for initial energies ofE0= 152, 223.4 and 252 MeV, respectively.Significance. Detailed Monte Carlo studies showed that the observed effect can be mainly attributed to the differences in the transport of electrons produced both outside and inside of the air cavity in the presence of a magnetic field.


Assuntos
Terapia com Prótons , Prótons , Radiometria/métodos , Terapia com Prótons/métodos , Campos Magnéticos , Método de Monte Carlo
8.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38479018

RESUMO

Objective.To investigate the reliability and accuracy of the manual three-point co-registration in neuronavigated transcranial magnetic stimulation (TMS). The effect of the error in landmark pointing on the coil placement and on the induced electric and magnetic fields was examined.Approach.The position of the TMS coil on the head was recorded by the neuronavigation system and by 3D scanning for ten healthy participants. The differences in the coil locations and orientations and the theoretical error values for electric and magnetic fields between the neuronavigated and 3D scanned coil positions were calculated. In addition, the sensitivity of the coil location on landmark accuracy was calculated.Main results.The measured distances between the neuronavigated and 3D scanned coil locations were on average 10.2 mm, ranging from 3.1 to 18.7 mm. The error in angles were on average from two to three degrees. The coil misplacement caused on average a 29% relative error in the electric field with a range from 9% to 51%. In the magnetic field, the same error was on average 33%, ranging from 10% to 58%. The misplacement of landmark points could cause a 1.8-fold error for the coil location.Significance.TMS neuronavigation with three landmark points can cause a significant error in the coil position, hampering research using highly accurate electric field calculations. Including 3D scanning to the process provides an efficient method to achieve a more accurate coil position.


Assuntos
Campos Magnéticos , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Reprodutibilidade dos Testes , Eletricidade , Voluntários Saudáveis
9.
Int J Biol Macromol ; 264(Pt 2): 130525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431004

RESUMO

To realize the maximum therapeutic activity of medicine and protect the body from the adverse effects of active ingredients, drug delivery systems (DDS) featured with targeted transportation sites and controllable release have captured extensive attention over the past decades. Hydrogels with unique three-dimensional (3D) porous structures present tunable capacity, controllable degradation, various stimuli sensitivity, therapeutic agents encapsulation, and loaded drugs protection properties, which endow hydrogels with bred-in-the-bone advantages as vehicles for drug delivery. In recent years, with the impressive consciousness of the "back-to-nature" concept, biomass materials are becoming the 'rising star' as the hydrogels building blocks for controlled drug release carriers due to their biodegradability, biocompatibility, and non-toxicity properties. In particular, cellulose and its derivatives are promising candidates for fabricating hydrogels as their rich sources and high availability, and various smart cellulose-based hydrogels as targeted carriers under exogenous such as light, electric field, and magnetic field or endogenous such as pH, temperature, ionic strength, and redox gradients. In this review, we summarized the main synthetic strategies of smart cellulose-based hydrogels including physical and chemical cross-linking, and illustrated the detailed intelligent-responsive mechanism of hydrogels in DDS under external stimulus. Additionally, the ongoing development and challenges of cellulose-based hydrogels in the biomedical field are also presented.


Assuntos
Celulose , Hidrogéis , Celulose/química , Hidrogéis/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos , Campos Magnéticos
10.
Food Chem ; 447: 138990, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492306

RESUMO

This study investigated the combined effects of direct-current magnetic field (DC-MF, 9.5 mT) and tetrasodium-pyrophosphate (TSPP, 1-5 g/L) on emulsified gel properties of porcine myofibrillar protein (MP). Results showed that MP at DC-MF and 3 g/L TSPP had decreased spectrum intensity of UV and fluorescence compared to that without DC-MF, owing to the changes of MP tertiary structure caused by DC-MF, especially tryptophan and tyrosine. The emulsion treated with DC-MF behaved better emulsifying activity and stability than that without DC-MF under such condition. And emulsion had lower creaming index and better storage stability. Gels prepared by this MP emulsion had low porosity and stable structure, accompanying with smaller size and more uniform distribution of oil droplets. Microstructure images showed that gels were covered with microporous structure, which was conducive to the good WHC of the emulsified gels (97.12%). These results showed the feasibility of DC-MF and TSPP in improving MP emulsion/emulsified gel.


Assuntos
Proteínas Musculares , Fosfatos , Animais , Suínos , Emulsões/química , Proteínas Musculares/química , Géis/química , Campos Magnéticos
11.
Sci Rep ; 14(1): 5792, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461218

RESUMO

Cisplatin is a chemotherapy drug widely used in cancer treatment. Alongside its clinical benefits, however, it may inflict intolerable toxicity and other adverse effects on healthy tissues. Due to the limitation of administering a high dose of cisplatin as well as cancer drug resistance, it is necessary to utilize new methods optimizing treatment modalities through both higher therapeutic efficacy and reduced administered doses of radiation and drugs. In this study, sensitive (A2780) and resistant (A2780CP) ovarian carcinoma cells underwent treatment with cisplatin + static magnetic field (SMF). First, the levels of genotoxicity after treatment were evaluated by Comet assay. Then, cell cycle analysis and apoptosis assay were conducted by a flow cytometer. Lastly, the expression levels of genes involved in apoptosis and cellular drug uptake were investigated by PCR. After treating different groups of cells for 24, 48, and 96 h, the co-treatment of SMF and cisplatin as a combination managed to increase the amount of DNA damage in both sensitive and resistant cell lines. A considerable increase in mortality of cells was also observed mostly in the form of apoptosis, which was caused by inhibition of the cell cycle. The combination also increased the expression levels of apoptotic genes, namely P53 and P21; however, it did not have much effect on the expression levels of BCL2. Besides, the levels of CTR1 gene expression increased significantly in the groups receiving the aforementioned combination. Our study suggests that the combination of cisplatin + SMF might have clinical potential which needs further investigations through future studies.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose , Dano ao DNA , Campos Magnéticos
12.
Nat Commun ; 15(1): 2160, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461256

RESUMO

Rotating magnetic fields enable biomedical microrobots to overcome physiological barriers and promote extravasation and accumulation in tumors. Nevertheless, targeting deeply situated tumors requires suppression of off-target actuation in healthy tissue. Here, we investigate a control strategy for applying spatially selective torque density to microrobots by combining rotating fields with magnetostatic selection fields. Taking magnetotactic bacteria as diffuse torque-based actuators, we numerically model off-target torque suppression, indicating the feasibility of centimeter to millimeter resolution for human applications. We study focal torque application in vitro, observing off-target suppression of actuation-dependent effects such as colonization of bacteria in tumor spheroids. We then design and construct a mouse-scale torque-focusing apparatus capable of maneuvering the focal point. Applying this system to a mouse tumor model increased accumulation of intravenously injected bacteria within tumors receiving focused actuation compared to non-actuated or globally actuated groups. This control scheme combines the advantages of torque-based actuation with spatial targeting.


Assuntos
Magnetismo , Neoplasias , Animais , Humanos , Camundongos , Torque , Fenômenos Físicos , Campos Magnéticos , Bactérias
13.
Methods Enzymol ; 694: 1-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492947

RESUMO

Magnetic tweezers have become popular with the outbreak of single molecule micromanipulation: catching a single molecule of DNA, RNA or a single protein and applying mechanical constrains using micron-size magnetic beads and magnets turn out to be easy. Various factors have made this possible: the fact that manufacturers have been preparing these beads to catch various biological entities-the ease of use provided by magnets which apply a force or a torque at a distance thus inside a flow cell-some chance: since the forces so generated are in the right range to stretch a single molecule. This is a little less true for torque. Finally, one feature which also appears very important is the simplicity of their calibration using Brownian motion. Here we start by describing magnetic tweezers used routinely in our laboratory where we have tried to develop a device as simple as possible so that the experimentalist can really focus on the biological aspect of the biomolecules that he/she is interested in. We discuss the implications of the various components and their important features. Next, we summarize what is easy to achieve and what is less easy. Then we refer to contributions by other groups who have brought valuable insights to improve magnetic tweezers.


Assuntos
Magnetismo , Imãs , Magnetismo/métodos , DNA , Campos Magnéticos , Movimento (Física) , Pinças Ópticas
14.
Nanotheranostics ; 8(2): 163-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444740

RESUMO

Background: Combining magnetic particle imaging (MPI) and magnetic fluid hyperthermia (MFH) offers the ability to perform localized hyperthermia and magnetic particle imaging-assisted thermometry of hyperthermia treatment. This allows precise regional selective heating inside the body without invasive interventions. In current MPI-MFH platforms, separate systems are used, which require object transfer from one system to another. Here, we present the design, development and evaluation process for integrable MFH platforms, which extends a commercial MPI scanner with the functionality of MFH. Methods: The biggest issue of integrating magnetic fluid hyperthermia platforms into a magnetic particle imaging system is the magnetic coupling of the devices, which induces high voltage in the imaging system, and is harming its components. In this paper, we use a self-compensation approach derived from heuristic algorithms to protect the magnetic particle imaging scanner. The integrable platforms are evaluated regarding electrical and magnetic characteristics, cooling capability, field strength, the magnetic coupling to a replica of the magnetic particle imaging system's main solenoid and particle heating. Results: The MFH platforms generate suitable magnetic fields for the magnetic heating of particles and are compatible with a commercial magnetic particle imaging scanner. In combination with the imaging system, selective heating with a gradient field and steerable heating positioning using the MPI focus fields are possible. Conclusion: The proposed MFH platforms serve as a therapeutic tool to unlock the MFH functionality of a commercial magnetic particle imaging scanner, enabling its use in future preclinical trials of MPI-guided, spatially selective magnetic hyperthermia therapy.


Assuntos
Hipertermia Induzida , Campos Magnéticos
15.
Comput Biol Med ; 170: 108053, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325210

RESUMO

Magnetic fluid hyperthermia (MFH) is a technique whose results show promise in the treatment against cancer, but which still faces obstacles such as controlling the spatial distribution of temperature. The present study developed an agent-based model in order to simulate the temperature changes in an aqueous environment submitted to the magnetic fluid hyperthermia technique. The developed model was built with its parameters based on the clinical treatment protocol for glioblastoma multiforme (GBM). Using thermodynamic properties of magnetic fluid and tissues, we define a specific thermal parameter (α) and evaluate its influence, together with the intensity of the external magnetic field (H), on the dynamics of the temperature of the cancer environment. The temperature evolution generated by the model was in accordance with experimental results known from the subject literature. The parameters evaluation indicates that the temperature stabilization of the tumor environment during MFH treatment is due to the local interactions of energy diffusion, as well as indicating that the α-parameter is a key factor for controlling the temperature and heating speed.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Temperatura , Hipertermia Induzida/métodos , Magnetismo , Campos Magnéticos , Neoplasias/terapia
16.
Biomaterials ; 306: 122498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310828

RESUMO

Magnetic hyperthermia therapy (MHT) has garnered immense interest due to its exceptional spatiotemporal specificity, minimal invasiveness and remarkable tissue penetration depth. Nevertheless, the limited magnetothermal heating capability and the potential toxicity of metal ions in magnetic materials based on metallic elements significantly impede the advancement of MHT. Herein, we introduce the concept of nonmetallic materials, with graphite (Gra) as a proof of concept, as a highly efficient and biocompatible option for MHT of tumors in vivo for the first time. The Gra exhibits outstanding magnetothermal heating efficacy owing to the robust eddy thermal effect driven by its excellent electrical conductivity. Furthermore, being composed of carbon, Gra offers superior biocompatibility as carbon is an essential element for all living organisms. Additionally, the Gra boasts customizable shapes and sizes, low cost, and large-scale production capability, facilitating reproducible and straightforward manufacturing of various Gra implants. In a mouse tumor model, Gra-based MHT successfully eliminates the tumors at an extremely low magnetic field intensity, which is less than one-third of the established biosafety threshold. This study paves the way for the development of high-performance magnetocaloric materials by utilizing nonmetallic materials in place of metallic ones burdened with inherent limitations.


Assuntos
Grafite , Hipertermia Induzida , Neoplasias , Animais , Camundongos , Neoplasias/terapia , Campos Magnéticos
17.
J Mater Chem B ; 12(8): 2150-2157, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38318681

RESUMO

In recent years, self-propelled light-driven micromotors have gained significant attention due to their capabilities for a wide range of applications, including cargo delivery, chemical sensing, environmental monitoring, etc. Here, we demonstrate the design of light-driven micromotors for local pH sensing applications. The micromotors are spherical Janus particles with multiple functional coatings that provide them with interesting features, like a dual optical response, i.e., controlled swimming under UV light (320-400 nm) and pH-dependent fluorescence signal emission when excited with blue light (450 nm), and moving path guidance using a weak external uniform magnetic field (50 G). All of these features allow the micromotors to sense the pH of the medium on-demand and locally or of a target location by guiding them to swim to the target location. The pH-dependent change in the fluorescence signal intensity is used for the measurement of the local pH of the medium. It is observed that the careful measurement of small pH changes requires a spectrometer that precisely measures the intensity change. However, the fluorescence signal of the micromotors was good enough to provide a clear visual demarcation for large pH changes. Systematic experimental studies supported by controlled experiments are performed to optimize the system as well as to calibrate the micromotors for local pH sensing applications. The characteristics like easy-to-design structure, light activation, directional swimming, and ability to measure the pH on-demand and locally prove that micromotors have the potential to revolutionize pH monitoring in various domains, including lab-on-a-chip devices, biomedical research, environmental monitoring, quality control in industrial processes, etc.


Assuntos
Monitoramento Ambiental , Campos Magnéticos , Concentração de Íons de Hidrogênio
18.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38302440

RESUMO

Magnetic fields are being used for detailed anatomical and functional examination of the human brain. In addition, evidence for their efficacy in treatment of brain dysfunctions is accumulating. Transcranial static magnetic field stimulation (tSMS) is a recently developed technique for noninvasively modifying brain functions. In tSMS, a strong and small magnet when placed over the skull can temporarily suppress brain functions. Its modulatory effects persist beyond the time of stimulation. However, the neurophysiological mechanisms underlying tSMS-induced plasticity remain unclear. Here, using acute motor cortical slice preparation obtained from male C57BL/6N mice, we show that tSMS alters the intrinsic electrical properties of neurons by altering the activity of chloride (Cl-) channels in neurons. Exposure of mouse pyramidal neurons to a static magnetic field (SMF) at a strength similar to human tSMS temporarily decreased their excitability and induced transient neuronal swelling. The effects of SMF were blocked by DIDS and GlyH-101, but not by NPPB, consistent with the pharmacological profile of SLC26A11, a transporter protein with Cl- channel activity. Whole-cell voltage-clamp recordings of the GlyH-101-sensitive Cl- current component showed significant enhancement of the component at both subthreshold and depolarized membrane potentials after SMF application, resulting in shunting inhibition and reduced repetitive action potential (AP) firing at the respective potentials. Thus, this study provides the first neurophysiological evidence for the inhibitory effect of tSMS on neuronal activity and advances our mechanistic understanding of noninvasive human neuromodulation.


Assuntos
Cloretos , Glicina/análogos & derivados , Hidrazinas , Campos Magnéticos , Masculino , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Magnética Transcraniana/métodos
19.
Comput Biol Med ; 171: 108142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394805

RESUMO

As the alternative solution to the conventional guidewire, the magnetic robot can help interventionists perform percutaneous coronary intervention (PCI) because magnetic fields are transparent and safe for biological tissues. Despite extensive research on magnetic robots, the exploration of their deflection control for practical applications still requires further research. In this paper, a hierarchical analysis framework (HAF) is proposed to control the magnetic robot's deflection. Six deflection subpatterns are analyzed through HAF, incorporating statistical and regression analyses to establish governing equations of magnetic robots. The performance of the control equations is validated through precise control of the magnetic continuum robot (MCR) and magnet-tipped robot (MTR) in both uniform and gradient magnetic fields. Experimental results show that under the uniform magnetic field, the average root mean square error (RMSE) of governing equation of MCR is 0.08±0.05°, 0.41±0.34°, 1.47±0.49° and 1.07±0.66° for four-types horizontal deflection, 0.19±0.07mm and 0.16±0.10mm for two-types vertical deflection, respectively. Based on the governing equations, the MTR is able to precisely navigate to coronary arteries with various degrees of stenosis (30%, 52%, and 60%), and successfully pass through a series of rings, with an average error of 1.05 mm. The research successfully demonstrates the potential of HAF in creating robust and reliable governing equations for magnetic actuation in medical robotics, with significant implications for enhancing the precision and safety of PCI procedures.


Assuntos
Intervenção Coronária Percutânea , Robótica , Robótica/métodos , Campos Magnéticos , Imãs , Desenho de Equipamento
20.
Phys Med ; 119: 103314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335742

RESUMO

PURPOSE: The purpose of this study was to directly calculate [Formula: see text] correction factors for four cylindrical ICs for a 0.35 T MR-linac using the Monte Carlo (MC) method. METHODS: A previously-validated TOPAS/GEANT4 MC head model of the 0.35 T MR-linac was employed. The MR-compatible Exradin A12, A1SL, A26, and A28 cylindrical ICs were modeled considering the dead volume in the air cavity. The [Formula: see text] correction factor was determined for initial electron energies of 5-7 MeV. The correction factor was calculated for all four angular orientations in the lateral plane. The impact of the 0.35 T magnetic field on the IC response was also investigated. RESULTS: The maximum beam quality dependence in the [Formula: see text] exhibited by the A12, A1SL, A26, and A28 ICs was 1.10 %, 2.17 %, 0.81 %, and 1.75 %, respectively, considering all angular orientations. The magnetic field dependence was < 1 % and the maximum [Formula: see text] correction was < 2 % when the detector was aligned along the direction of the magnetic field at 0° and 180° angles. The A12 IC over-responded up to 5.40 % for the orthogonal orientation. An asymmetry in the response of up to 8.30 % was noted for the A28 IC aligned at 90° and 270° angles. CONCLUSIONS: A parallel orientation for the IC, with respect to the magnetic field, is recommended for reference dosimetry in MRgRT. Both over and under-response in the IC signal was noted for the orthogonal orientations, which is highly dependent on the cavity diameter, cavity length, and the dead volume.


Assuntos
Aceleradores de Partículas , Radiometria , Radiometria/métodos , Imageamento por Ressonância Magnética , Eficiência Biológica Relativa , Método de Monte Carlo , Campos Magnéticos , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...