Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.692
Filtrar
1.
Sci Adv ; 10(14): eadj4009, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569025

RESUMO

Triple-negative breast cancer (TNBC) is the deadliest subtype of breast cancer owing to the lack of effective therapeutic targets. Splicing factor 3a subunit 2 (SF3A2), a poorly defined splicing factor, was notably elevated in TNBC tissues and promoted TNBC progression, as confirmed by cell proliferation, colony formation, transwell migration, and invasion assays. Mechanistic investigations revealed that E3 ubiquitin-protein ligase UBR5 promoted the ubiquitination-dependent degradation of SF3A2, which in turn regulated UBR5, thus forming a feedback loop to balance these two oncoproteins. Moreover, SF3A2 accelerated TNBC progression by, at least in part, specifically regulating the alternative splicing of makorin ring finger protein 1 (MKRN1) and promoting the expression of the dominant and oncogenic isoform, MKRN1-T1. Furthermore, SF3A2 participated in the regulation of both extrinsic and intrinsic apoptosis, leading to cisplatin resistance in TNBC cells. Collectively, these findings reveal a previously unknown role of SF3A2 in TNBC progression and cisplatin resistance, highlighting SF3A2 as a potential therapeutic target for patients with TNBC.


Assuntos
Cisplatino , Neoplasias de Mama Triplo Negativas , Humanos , Cisplatino/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Processamento Alternativo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
2.
Curr Protoc ; 4(4): e1017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578012

RESUMO

The Ser/Arg-rich splicing factors (SR proteins) constitute a crucial protein family in alternative splicing, comprising twelve members characterized by unique repetitive Arg-Ser dipeptide sequences (RS) and one to two RNA-recognition motifs (RRM). The RS regions of SR proteins undergo variable phosphorylation, resulting in unphosphorylated, partially phosphorylated, or hyper-phosphorylated states based on functional requirements. Despite the identification of the SR protein family over 30 years ago, the purification of native SR proteins in soluble form at large quantities has presented challenges due to their low solubility. This protocol delineates a method for acquiring soluble, full-length, unphosphorylated, hypo- and hyper-phosphorylated SRSF1, a prototypical SR family member. Notably, this protocol facilitates the purification of SRSF1 in ample quantities suitable for NMR, as well as various biophysical and biochemical studies. The methodologies and principles outlined herein are expected to extend beyond SRSF1 protein production and can be adapted for purifying other SR protein family members or SR-related proteins, such as snRNP70 and U2AF-35. Given the involvement of these proteins in numerous essential biological processes, this protocol will prove beneficial to researchers in related fields. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Purification of SRSF1 from E. coli Support Protocol: Purification of ULP1 Basic Protocol 2: Purification of hypo-phosphorylated SRSF1 from E. coli Basic Protocol 3: Purification of hyper-phosphorylated SRSF1 from E. coli.


Assuntos
Escherichia coli , Proteínas , Escherichia coli/genética , Fosforilação , Processamento Alternativo
3.
Nat Commun ; 15(1): 2809, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561334

RESUMO

Protein arginine methyltransferase 9 (PRMT9) is a recently identified member of the PRMT family, yet its biological function remains largely unknown. Here, by characterizing an intellectual disability associated PRMT9 mutation (G189R) and establishing a Prmt9 conditional knockout (cKO) mouse model, we uncover an important function of PRMT9 in neuronal development. The G189R mutation abolishes PRMT9 methyltransferase activity and reduces its protein stability. Knockout of Prmt9 in hippocampal neurons causes alternative splicing of ~1900 genes, which likely accounts for the aberrant synapse development and impaired learning and memory in the Prmt9 cKO mice. Mechanistically, we discover a methylation-sensitive protein-RNA interaction between the arginine 508 (R508) of the splicing factor 3B subunit 2 (SF3B2), the site that is exclusively methylated by PRMT9, and the pre-mRNA anchoring site, a cis-regulatory element that is critical for RNA splicing. Additionally, using human and mouse cell lines, as well as an SF3B2 arginine methylation-deficient mouse model, we provide strong evidence that SF3B2 is the primary methylation substrate of PRMT9, thus highlighting the conserved function of the PRMT9/SF3B2 axis in regulating pre-mRNA splicing.


Assuntos
Processamento Alternativo , RNA , Animais , Humanos , Camundongos , Arginina/metabolismo , Camundongos Knockout , Mutação , Proteína-Arginina N-Metiltransferases/metabolismo , RNA/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/genética
4.
Sci Data ; 11(1): 359, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594303

RESUMO

The genome of faba bean was first published in 2023. To promote future molecular breeding studies, we improved the quality of the faba genome based on high-density genetic maps and the Illumina and Pacbio RNA-seq datasets. Two high-density genetic maps were used to conduct the scaffold ordering and orientation of faba bean, culminating in an increased length (i.e., 14.28 Mbp) of chromosomes and a decrease in the number of scaffolds by 45. In gene model mining and optimisation, the PacBio and Illumina RNA-seq datasets from 37 samples allowed for the identification and correction 121,606 transcripts, and the data facilitated a prediction of 15,640 alternative splicing events, 2,148 lncRNAs, and 1,752 fusion transcripts, thus allowing for a clearer understanding of the gene structures underlying the faba genome. Moreover, a total of 38,850 new genes including 56,188 transcripts were identified compared with the reference genome. Finally, the genetic data of the reference genome was integrated and a comprehensive and complete faba bean transcriptome sequence of 103,267 transcripts derived from 54,753 uni-genes was formed.


Assuntos
Vicia faba , Vicia faba/genética , RNA-Seq , Transcriptoma , Processamento Alternativo
5.
BMC Plant Biol ; 24(1): 250, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580919

RESUMO

Alternative splicing (AS), a pivotal post-transcriptional regulatory mechanism, profoundly amplifies diversity and complexity of transcriptome and proteome. Liriodendron chinense (Hemsl.) Sarg., an excellent ornamental tree species renowned for its distinctive leaf shape, which resembles the mandarin jacket. Despite the documented potential genes related to leaf development of L. chinense, the underlying post-transcriptional regulatory mechanisms remain veiled. Here, we conducted a comprehensive analysis of the transcriptome to clarify the genome-wide landscape of the AS pattern and the spectrum of spliced isoforms during leaf developmental stages in L. chinense. Our investigation unveiled 50,259 AS events, involving 10,685 genes (32.9%), with intron retention as the most prevalent events. Notably, the initial stage of leaf development witnessed the detection of 804 differentially AS events affiliated with 548 genes. Although both differentially alternative splicing genes (DASGs) and differentially expressed genes (DEGs) were enriched into morphogenetic related pathways during the transition from fishhook (P2) to lobed (P7) leaves, there was only a modest degree of overlap between DASGs and DEGs. Furthermore, we conducted a comprehensively AS analysis on homologous genes involved in leaf morphogenesis, and most of which are subject to post-transcriptional regulation of AS. Among them, the AINTEGUMENTA-LIKE transcript factor LcAIL5 was characterization in detailed, which experiences skipping exon (SE), and two transcripts displayed disparate expression patterns across multiple stages. Overall, these findings yield a comprehensive understanding of leaf development regulation via AS, offering a novel perspective for further deciphering the mechanism of plant leaf morphogenesis.


Assuntos
Liriodendron , Liriodendron/genética , Processamento Alternativo , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Genes de Plantas
6.
FASEB J ; 38(5): e23543, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466278

RESUMO

Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway capable of interacting with collectin-10 (CL-10) and the MASPs to activate the complement cascade. Alternative splicing of the COLEC11 gene gives rise to two different isoforms found in serum (A and D). These isoforms vary in the length of their collagen-like region, which is involved in the stabilization of the trimeric subunit and the interaction with the MASPs. Here we aim at elucidating the biological differences of naturally occurring CL-11 isoforms A and D. We produced recombinant CL-11 as independent isoforms (CL-11A and CL-11D) and together with CL-10 (CL-10/11A, CL-10/11D). Both CL-11 isoforms associated with CL-10, but CL-11D did so to a lesser extent. CL-10/11 heterocomplexes were composed of trimeric subunits of CL-10 and CL-11, as opposed to CL-10 and CL-11 homotrimers. Heterocomplexes were more stable and migrated with higher apparent molecular weights. Immunoprecipitation of serum CL-11 and subsequent mass spectrometry analysis confirmed that native CL-11 circulates in the form of CL-10/11 heterocomplexes that associate with MASP-1, and MASP-3, but not necessarily MASP-2. Despite a shorter collagen region, CL-11D was capable to bind to the MASPs, suggesting that the missing exon 4 is not required for MASP association CL-11D had a reduced ligand binding compared to full-length CL-11A. Based on its reduced ability to oligomerize, form CL-10/11 heterocomplexes, and bind to ligands, we hypothesize that CL-11D may have a limited complement activation potential compared to full-length CL-11A.


Assuntos
Processamento Alternativo , Serina Proteases Associadas a Proteína de Ligação a Manose , Isoformas de Proteínas/genética , Colágeno , Colectinas/genética
7.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474122

RESUMO

Alternative splicing (AS) plays a crucial role in regulating gene expression, function, and diversity. However, limited reports exist on the identification and comparison of AS in Eastern and Western pigs. Here, we analyzed 243 transcriptome data from eight tissues, integrating information on transcription factors (TFs), selection signals, splicing factors (SFs), and quantitative trait loci (QTL) to comprehensively study alternative splicing events (ASEs) in pigs. Five ASE types were identified, with Mutually Exclusive Exon (MXE) and Skipped Exon (SE) ASEs being the most prevalent. A significant portion of genes with ASEs (ASGs) showed conservation across all eight tissues (63.21-76.13% per tissue). Differentially alternative splicing genes (DASGs) and differentially expressed genes (DEGs) exhibited tissue specificity, with blood and adipose tissues having more DASGs. Functional enrichment analysis revealed coDASG_DEGs in adipose were enriched in pathways associated with adipose deposition and immune inflammation, while coDASG_DEGs in blood were enriched in pathways related to immune inflammation and metabolism. Adipose deposition in Eastern pigs might be linked to the down-regulation of immune-inflammation-related pathways and reduced insulin resistance. The TFs, selection signals, and SFs appeared to regulate ASEs. Notably, ARID4A (TF), NSRP1 (SF), ANKRD12, IFT74, KIAA2026, CCDC18, NEXN, PPIG, and ROCK1 genes in adipose tissue showed potential regulatory effects on adipose-deposition traits. NSRP1 could promote adipogenesis by regulating alternative splicing and expression of CCDC18. Conducting an in-depth investigation into AS, this study has successfully identified key marker genes essential for pig genetic breeding and the enhancement of meat quality, which will play important roles in promoting the diversity of pork quality and meeting market demand.


Assuntos
Adipogenia , Processamento Alternativo , Suínos , Animais , Adipogenia/genética , Melhoramento Vegetal , Transcriptoma , Inflamação , Perfilação da Expressão Gênica
8.
Elife ; 132024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470242

RESUMO

Most eukaryotic genes undergo alternative splicing (AS), but the overall functional significance of this process remains a controversial issue. It has been noticed that the complexity of organisms (assayed by the number of distinct cell types) correlates positively with their genome-wide AS rate. This has been interpreted as evidence that AS plays an important role in adaptive evolution by increasing the functional repertoires of genomes. However, this observation also fits with a totally opposite interpretation: given that 'complex' organisms tend to have small effective population sizes (Ne), they are expected to be more affected by genetic drift, and hence more prone to accumulate deleterious mutations that decrease splicing accuracy. Thus, according to this 'drift barrier' theory, the elevated AS rate in complex organisms might simply result from a higher splicing error rate. To test this hypothesis, we analyzed 3496 transcriptome sequencing samples to quantify AS in 53 metazoan species spanning a wide range of Ne values. Our results show a negative correlation between Ne proxies and the genome-wide AS rates among species, consistent with the drift barrier hypothesis. This pattern is dominated by low abundance isoforms, which represent the vast majority of the splice variant repertoire. We show that these low abundance isoforms are depleted in functional AS events, and most likely correspond to errors. Conversely, the AS rate of abundant isoforms, which are relatively enriched in functional AS events, tends to be lower in more complex species. All these observations are consistent with the hypothesis that variation in AS rates across metazoans reflects the limits set by drift on the capacity of selection to prevent gene expression errors.


Assuntos
Processamento Alternativo , Splicing de RNA , Animais , Deriva Genética , Isoformas de Proteínas , RNA Mensageiro/genética
9.
Elife ; 122024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470475

RESUMO

Spermiogenesis is a critical, post-meiotic phase of male gametogenesis, in which the proper gene expression is essential for sperm maturation. However, the underFlying molecular mechanism that controls mRNA expression in the round spermatids remains elusive. Here, we identify that FBXO24, an orphan F-box protein, is highly expressed in the testis of humans and mice and interacts with the splicing factors (SRSF2, SRSF3, and SRSF9) to modulate the gene alternative splicing in the round spermatids. Genetic mutation of FBXO24 in mice causes many abnormal splicing events in round spermatids, thus affecting a large number of critical genes related to sperm formation that were dysregulated. Further molecular and phenotypical analyses revealed that FBXO24 deficiency results in aberrant histone retention, incomplete axonemes, oversized chromatoid body, and abnormal mitochondrial coiling along sperm flagella, ultimately leading to male sterility. In addition, we discovered that FBXO24 interacts with MIWI and SCF subunits and mediates the degradation of MIWI via K48-linked polyubiquitination. Furthermore, we show that FBXO24 depletion could lead to aberrant piRNA production in testes, which suggests FBXO24 is required for normal piRNA counts. Collectively, these data demonstrate that FBXO24 is essential for sperm formation by regulating mRNA alternative splicing and MIWI degradation during spermiogenesis.


Assuntos
Processamento Alternativo , RNA de Interação com Piwi , Humanos , Masculino , Animais , Camundongos , Sêmen , Espermatozoides , Fertilidade , Fatores de Processamento de Serina-Arginina
10.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473933

RESUMO

Loss of function of members of the muscleblind-like (MBNL) family of RNA binding proteins has been shown to play a key role in the spliceopathy of RNA toxicity in myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children. MBNL1 and MBNL2 are the most abundantly expressed members in skeletal muscle. A key aspect of DM1 is poor muscle regeneration and repair, leading to dystrophy. We used a BaCl2-induced damage model of muscle injury to study regeneration and effects on skeletal muscle satellite cells (MuSCs) in Mbnl1∆E3/∆E3 and Mbnl2∆E2/∆E2 knockout mice. Similar experiments have previously shown deleterious effects on these parameters in mouse models of RNA toxicity. Muscle regeneration in Mbnl1 and Mbnl2 knockout mice progressed normally with no obvious deleterious effects on MuSC numbers or increased expression of markers of fibrosis. Skeletal muscles in Mbnl1∆E3/∆E3/ Mbnl2∆E2/+ mice showed increased histopathology but no deleterious reductions in MuSC numbers and only a slight increase in collagen deposition. These results suggest that factors beyond the loss of MBNL1/MBNL2 and the associated spliceopathy are likely to play a key role in the defects in skeletal muscle regeneration and deleterious effects on MuSCs that are seen in mouse models of RNA toxicity due to expanded CUG repeats.


Assuntos
Processamento Alternativo , Distrofia Miotônica , Humanos , Criança , Camundongos , Animais , Distrofia Miotônica/genética , Músculo Esquelético/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
11.
PLoS One ; 19(3): e0291960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478511

RESUMO

Common variants affecting mRNA splicing are typically identified though splicing quantitative trait locus (sQTL) mapping and have been shown to be enriched for GWAS signals by a similar degree to eQTLs. However, the specific splicing changes induced by these variants have been difficult to characterize, making it more complicated to analyze the effect size and direction of sQTLs, and to determine downstream splicing effects on protein structure. In this study, we catalogue sQTLs using exon percent spliced in (PSI) scores as a quantitative phenotype. PSI is an interpretable metric for identifying exon skipping events and has some advantages over other methods for quantifying splicing from short read RNA sequencing. In our set of sQTL variants, we find evidence of selective effects based on splicing effect size and effect direction, as well as exon symmetry. Additionally, we utilize AlphaFold2 to predict changes in protein structure associated with sQTLs overlapping GWAS traits, highlighting a potential new use-case for this technology for interpreting genetic effects on traits and disorders.


Assuntos
Processamento Alternativo , Polimorfismo de Nucleotídeo Único , Splicing de RNA/genética , Proteínas/genética , Éxons/genética
12.
Sci Rep ; 14(1): 6731, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509306

RESUMO

RNA-binding proteins (RBPs) contribute to the pathogenesis of proliferative diabetic retinopathy (PDR) by regulating gene expression through alternative splicing events (ASEs). However, the RBPs differentially expressed in PDR and the underlying mechanisms remain unclear. Thus, this study aimed to identify the differentially expressed genes in the neovascular membranes (NVM) and retinas of patients with PDR. The public transcriptome dataset GSE102485 was downloaded from the Gene Expression Omnibus database, and samples of PDR and normal retinas were analyzed. A mouse model of oxygen-induced retinopathy was used to confirm the results. The top 20 RBPs were screened for co-expression with alternative splicing genes (ASGs). A total of 403 RBPs were abnormally expressed in the NVM and retina samples. Functional analysis demonstrated that the ASGs were enriched in cell cycle pathways. Cell cycle-associated ASEs and an RBP-AS regulatory network, including 15 RBPs and their regulated ASGs, were extracted. Splicing factor proline/glutamine rich (SFPQ), microtubule-associated protein 1 B (MAP1B), heat-shock protein 90-alpha (HSP90AA1), microtubule-actin crosslinking factor 1 (MACF1), and CyclinH (CCNH) expression remarkably differed in the mouse model. This study provides novel insights into the RBP-AS interaction network in PDR and for developing screening and treatment options to prevent diabetic retinopathy-related blindness.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Animais , Humanos , Retinopatia Diabética/patologia , Processamento Alternativo , Retina/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ciclo Celular/genética
13.
Front Immunol ; 15: 1354500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495873

RESUMO

Little is known about the role of alternative splicing (AS) in regulating gene expression in Mycobacteria-infected individuals in distinct stages of infection. Pre-mRNA AS consists of the removal of introns and the assembly of exons contained in eukaryotic genes. AS events can influence transcript stability or structure with important physiological consequences. Using RNA-Seq data from peripheral blood (PB) and ileocecal valve (ICV) samples collected from Holstein cattle with focal and diffuse paratuberculosis (PTB)-associated histopathological lesions in gut tissues and without lesions (controls), we detected differential AS profiles between the infected and control groups. Four of the identified AS events were experimentally validated by reverse transcription-digital droplet PCR (RT-ddPCR). AS events in several genes correlated with changes in gene expression. In the ICV of animals with diffuse lesions, for instance, alternatively spliced genes correlated with changes in the expression of genes involved in endocytosis, antigen processing and presentation, complement activation, and several inflammatory and autoimmune diseases in humans. Taken together, our results identified common mechanisms of AS involvement in the pathogenesis of PTB and human diseases and shed light on novel diagnostic and therapeutic interventions to control these diseases.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Bovinos , Humanos , Precursores de RNA/genética , Processamento Alternativo , Paratuberculose/genética , Imunidade
14.
Methods Mol Biol ; 2784: 133-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502483

RESUMO

RNA-fluorescence in situ hybridization (RNA-FISH) is an essential and widely used tool for visualizing RNA molecules in intact cells. Recent advances have increased RNA-FISH sensitivity, signal detection efficiency, and throughput. However, detection of endogenous mRNA splice variants has been challenging due to the limits of visualization of RNA-FISH fluorescence signals and due to the limited number of RNA-FISH probes per target. HiFENS (high-throughput FISH detection of endogenous pre-mRNA splicing isoforms) is a method that enables visualization and relative quantification of mRNA splice variants at single-cell resolution in an automated high-throughput manner. HiFENS incorporates HCR (hybridization chain reaction) signal amplification strategies to enhance the fluorescence signal generated by low abundance transcripts or a small number of FISH probes targeting short stretches of RNA, such as single exons. The technique offers a significant advance in high-throughput FISH-based RNA detection and provides a powerful tool that can be used as a readout in functional genomics screens to discover and dissect cellular pathways regulating gene expression and alternative pre-mRNA splicing events.


Assuntos
Precursores de RNA , RNA , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Hibridização in Situ Fluorescente/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hibridização de Ácido Nucleico , Processamento Alternativo
15.
BMC Genomics ; 25(1): 293, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504181

RESUMO

BACKGROUND: Alternative splicing (AS) is a principal mode of genetic regulation and one of the most widely used mechanisms to generate structurally and functionally distinct mRNA and protein variants. Dysregulation of AS may result in aberrant transcription and protein products, leading to the emergence of human diseases. Although considered important for regulating gene expression, genome-wide AS dysregulation, underlying mechanisms, and clinical relevance in knee osteoarthritis (OA) remain unelucidated. Therefore, in this study, we elucidated and validated AS events and their regulatory mechanisms during OA progression. RESULTS: In this study, we identified differentially expressed genes between human OA and healthy meniscus samples. Among them, the OA-associated genes were primarily enriched in biological pathways such as extracellular matrix organization and ossification. The predominant OA-associated regulated AS (RAS) events were found to be involved in apoptosis during OA development. The expression of the apoptosis-related gene BCL2L13, XAF1, and NF2 were significantly different between OA and healthy meniscus samples. The construction of a covariation network of RNA-binding proteins (RBPs) and RAS genes revealed that differentially expressed RBP genes LAMA2 and CUL4B may regulate the apoptotic genes XAF1 and BCL2L13 to undergo AS events during OA progression. Finally, RT-qPCR revealed that CUL4B expression was significantly higher in OA meniscus samples than in normal controls and that the AS ratio of XAF1 was significantly different between control and OA samples; these findings were consistent with their expected expression and regulatory relationships. CONCLUSIONS: Differentially expressed RBPs may regulate the AS of apoptotic genes during knee OA progression. XAF1 and its regulator, CUL4B, may serve as novel biomarkers and potential therapeutic targets for this disease.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Processamento Alternativo , RNA Mensageiro/genética , Biomarcadores/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo
17.
Cancer Res Commun ; 4(3): 911-918, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38477596

RESUMO

Lack of robust activation of Stimulator of Interferon Genes (STING) pathway and subsequent induction of type I IFN responses is considered a barrier to antitumor immunity in acute myeloid leukemia (AML). Using common human AML cell lines as in vitro tools to evaluate the efficacy of novel STING agonists, we found most AML lines to be poor producers of IFNs upon exposure to extremely potent agonists, suggesting cell-intrinsic suppression of STING signaling may occur. We observed unexpected patterns of response that did not correlate with levels of STING pathway components or of known enzymes associated with resistance. To identify a genetic basis for these observations, we cloned and sequenced STING from the cDNA of human AML cell lines and found both frequent mutations and deviations from normal RNA splicing. We identified two novel spliced isoforms of STING in these lines and validated their expression in primary human AML samples. When transduced into reporter cells, these novel STING isoforms exhibited complete insensitivity to agonist stimulation. These observations identify alternative splicing as a mechanism of STING pathway suppression and suggest that most AML silences the STING pathway through direct modification rather than through engagement of external inhibitory factors. SIGNIFICANCE: We find that AML acquires resistance to innate immune activation via the STING pathway through aberrant splicing of the STING transcript including two novel forms described herein that act as dominant negatives. These data broaden understanding of how cancers evolve STING resistance, and suggest that the AML tumor microenvironment, not the cancer cell, should be the target of therapeutic interventions to activate STING.


Assuntos
Interferon Tipo I , Leucemia Mieloide Aguda , Humanos , Isoformas de Proteínas/genética , Leucemia Mieloide Aguda/genética , Processamento Alternativo/genética , Interferon Tipo I/genética , Linhagem Celular , Microambiente Tumoral
18.
Funct Integr Genomics ; 24(2): 67, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528184

RESUMO

BACKGROUND: Although the events associated with alternative splicing (AS), alternative polyadenylation (APA) and alternative transcription initiation (ATI) can be identified by many approaches based on isoform sequencing (Iso-Seq), these analyses are generally independent of each other and the links between these events are still rarely mentioned. However, an interdependency analysis can be achieved because the transcriptional start site, splice sites and polyA site could be simultaneously included in a long, full-length read from Iso-Seq. RESULTS: We create ASAPA pipeline that enables streamlined analysis for a robust detection of potential links among AS, ATI and APA using Iso-Seq data. We tested this pipeline using Arabidopsis data and found some interesting results: some adjacent introns tend to be simultaneously spliced or retained; coupling between AS and ATI or APA is limited to the initial or terminal intron; and ATI and APA are potentially linked in some special cases. CONCLUSION: Our pipeline enables streamlined analysis for a robust detection of potential links among AS, ATI and APA using Iso-Seq data, which is conducive to a better understanding of transcription landscape generation.


Assuntos
Processamento Alternativo , Poliadenilação , Isoformas de Proteínas/genética , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala
19.
Mol Cell ; 84(6): 1049-1061.e8, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38452766

RESUMO

The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.2, with different actions and chromatin-targeting mechanisms. The mechanisms orchestrating PRC2 assembly are not fully understood. Here, we report that alternative splicing (AS) of PRC2 core component SUZ12 generates an uncharacterized isoform SUZ12-S, which co-exists with the canonical SUZ12-L isoform in virtually all tissues and developmental stages. SUZ12-S drives PRC2.1 formation and favors PRC2 dimerization. While SUZ12-S is necessary and sufficient for the repression of target genes via promoter-proximal H3K27me3 deposition, SUZ12-L maintains global H3K27 methylation levels. Mouse embryonic stem cells (ESCs) lacking either isoform exit pluripotency more slowly and fail to acquire neuronal cell identity. Our findings reveal a physiological mechanism regulating PRC2 assembly and higher-order interactions in eutherians, with impacts on H3K27 methylation and gene repression.


Assuntos
Processamento Alternativo , Complexo Repressor Polycomb 2 , Animais , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Isoformas de Proteínas/genética
20.
Sci Rep ; 14(1): 6362, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493204

RESUMO

Despite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In glioma, profound inter- and intra-tumoral heterogeneity of antigen landscape hampers therapeutic development. Therefore, it is critical to consider alternative sources to expand the repertoire of targetable (neo-)antigens and improve therapeutic outcomes. Accumulating evidence suggests that tumor-specific alternative splicing (AS) could be an untapped reservoir of antigens. In this study, we investigated tumor-specific AS events in glioma, focusing on those predicted to generate major histocompatibility complex (MHC)-presentation-independent, cell-surface antigens that could be targeted by antibodies and chimeric antigen receptor-T cells. We systematically analyzed bulk RNA-sequencing datasets comparing 429 tumor samples (from The Cancer Genome Atlas) and 9166 normal tissue samples (from the Genotype-Tissue Expression project), and identified 13 AS events in 7 genes predicted to be expressed in more than 10% of the patients, including PTPRZ1 and BCAN, which were corroborated by an external RNA-sequencing dataset. Subsequently, we validated our predictions and elucidated the complexity of the isoforms using full-length transcript amplicon sequencing on patient-derived glioblastoma cells. However, analyses of the RNA-sequencing datasets of spatially mapped and longitudinally collected clinical tumor samples unveiled remarkable spatiotemporal heterogeneity of the candidate AS events. Furthermore, proteomics analysis did not reveal any peptide spectra matching the putative antigens. Our investigation illustrated the diverse characteristics of the tumor-specific AS events and the challenges of antigen exploration due to their notable spatiotemporal heterogeneity and elusive nature at the protein levels. Redirecting future efforts toward intracellular, MHC-presented antigens could offer a more viable avenue.


Assuntos
Glioblastoma , Glioma , Humanos , Processamento Alternativo , Antígenos de Superfície , Glioma/genética , Antígenos de Histocompatibilidade , RNA , Antígenos de Neoplasias/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...