Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.609
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 242, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416210

RESUMO

Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 µg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 µg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Flavivirus , Chlorocebus aethiops , Animais , Flavivirus/genética , Temperatura , Vírus da Encefalite Japonesa (Espécie)/genética , Temperatura Baixa , Células COS , Mamíferos
2.
J Biol Chem ; 300(1): 105523, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043799

RESUMO

Filopodia are slender cellular protrusions containing parallel actin bundles involved in environmental sensing and signaling, cell adhesion and migration, and growth cone guidance and extension. Myosin 10 (Myo10), an unconventional actin-based motor protein, was reported to induce filopodial initiation with its motor domain. However, the roles of the multifunctional tail domain of Myo10 in filopodial formation and elongation remain elusive. Herein, we generated several constructs of Myo10-full-length Myo10, Myo10 with a truncated tail (Myo10 HMM), and Myo10 containing four mutations to disrupt its coiled-coil domain (Myo10 CC mutant). We found that the truncation of the tail domain decreased filopodial formation and filopodial length, while four mutations in the coiled-coil domain disrupted the motion of Myo10 toward filopodial tips and the elongation of filopodia. Furthermore, we found that filopodia elongated through multiple elongation cycles, which was supported by the Myo10 tail. These findings suggest that Myo10 tail is crucial for promoting long filopodia.


Assuntos
Miosinas , Pseudópodes , Actinas/metabolismo , Adesão Celular , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Domínios Proteicos , Pseudópodes/genética , Pseudópodes/metabolismo , Células COS , Animais , Chlorocebus aethiops , Humanos
3.
J Biol Chem ; 300(1): 105516, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042485

RESUMO

Class III myosins localize to inner ear hair cell stereocilia and are thought to be crucial for stereocilia length regulation. Mutations within the motor domain of MYO3A that disrupt its intrinsic motor properties have been associated with non-syndromic hearing loss, suggesting that the motor properties of MYO3A are critical for its function within stereocilia. In this study, we investigated the impact of a MYO3A hearing loss mutation, H442N, using both in vitro motor assays and cell biological studies. Our results demonstrate the mutation causes a dramatic increase in intrinsic motor properties, actin-activated ATPase and in vitro actin gliding velocity, as well as an increase in actin protrusion extension velocity. We propose that both "gain of function" and "loss of function" mutations in MYO3A can impair stereocilia length regulation, which is crucial for stereocilia formation during development and normal hearing. Furthermore, we generated chimeric MYO3A constructs that replace the MYO3A motor and neck domain with the motor and neck domain of other myosins. We found that duty ratio, fraction of ATPase cycle myosin is strongly bound to actin, is a critical motor property that dictates the ability to tip localize within filopodia. In addition, in vitro actin gliding velocities correlated extremely well with filopodial extension velocities over a wide range of gliding and extension velocities. Taken together, our data suggest a model in which tip-localized myosin motors exert force that slides the membrane tip-ward, which can combat membrane tension and enhance the actin polymerization rate that ultimately drives protrusion elongation.


Assuntos
Actinas , Perda Auditiva , Miosina Tipo III , Animais , Actinas/genética , Actinas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Chlorocebus aethiops , Células COS , Perda Auditiva/genética , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Miosina Tipo III/genética , Miosina Tipo III/metabolismo , Miosinas/genética , Miosinas/metabolismo , Estereocílios , Humanos
4.
Sci Rep ; 13(1): 22991, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151566

RESUMO

The present study examined human N-myristoylated proteins that specifically localize to mitochondria among the 1,705 human genes listed in MitoProteome, a mitochondrial protein database. We herein employed a strategy utilizing cellular metabolic labeling with a bioorthogonal myristic acid analog in transfected COS-1 cells established in our previous studies. Four proteins, DMAC1, HCCS, NDUFB7, and PLGRKT, were identified as N-myristoylated proteins that specifically localize to mitochondria. Among these proteins, DMAC1 and NDUFB7 play critical roles in the assembly of complex I of the mitochondrial respiratory chain. DMAC1 functions as an assembly factor, and NDUFB7 is an accessory subunit of complex I. An analysis of the intracellular localization of non-myristoylatable G2A mutants revealed that protein N-myristoylation occurring on NDUFB7 was important for the mitochondrial localization of this protein. Furthermore, an analysis of the role of the CHCH domain in NDUFB7 using Cys to Ser mutants revealed that it was essential for the mitochondrial localization of NDUFB7. Therefore, the present results showed that NDUFB7, a vital component of human mitochondrial complex I, was N-myristoylated, and protein N-myrisotylation and the CHCH domain were both indispensable for the specific targeting and localization of NDUFB7 to mitochondria.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Animais , Chlorocebus aethiops , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Células COS , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional , Ácido Mirístico/metabolismo , NADH NADPH Oxirredutases/metabolismo
5.
Curr Biol ; 33(21): 4582-4598.e10, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37858340

RESUMO

Abl family kinases are evolutionarily conserved regulators of cell migration and morphogenesis. Genetic experiments in Drosophila suggest that Abl family kinases interact functionally with microtubules to regulate axon guidance and neuronal morphogenesis. Vertebrate Abl2 binds to microtubules and promotes their plus-end elongation, both in vitro and in cells, but the molecular mechanisms by which Abl2 regulates microtubule (MT) dynamics are unclear. We report here that Abl2 regulates MT assembly via condensation and direct interactions with both the MT lattice and tubulin dimers. We find that Abl2 promotes MT nucleation, which is further facilitated by the ability of the Abl2 C-terminal half to undergo liquid-liquid phase separation (LLPS) and form co-condensates with tubulin. Abl2 binds to regions adjacent to MT damage, facilitates MT repair via fresh tubulin recruitment, and increases MT rescue frequency and lifetime. Cryo-EM analyses strongly support a model in which Abl2 engages tubulin C-terminal tails along an extended MT lattice conformation at damage sites to facilitate repair via fresh tubulin recruitment. Abl2Δ688-790, which closely mimics a naturally occurring splice isoform, retains binding to the MT lattice but does not bind tubulin, promote MT nucleation, or increase rescue frequency. In COS-7 cells, MT reassembly after nocodazole treatment is greatly slowed in Abl2 knockout COS-7 cells compared with wild-type cells, and these defects are rescued by re-expression of Abl2, but not Abl2Δ688-790. We propose that Abl2 locally concentrates tubulin to promote MT nucleation and recruits it to defects in the MT lattice to enable repair and rescue.


Assuntos
Microtúbulos , Tubulina (Proteína) , Animais , Chlorocebus aethiops , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Movimento Celular , Células COS , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(45): e2305959120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903280

RESUMO

TRAAK channels are mechano-gated two-pore-domain K+ channels. Up to now, activity of these channels has been reported in neurons but not in skeletal muscle, yet an archetype of tissue challenged by mechanical stress. Using patch clamp methods on isolated skeletal muscle fibers from adult zebrafish, we show here that single channels sharing properties of TRAAK channels, i.e., selective to K+ ions, of 56 pS unitary conductance in the presence of 5 mM external K+, activated by membrane stretch, heat, arachidonic acid, and internal alkaline pH, are present in enzymatically isolated fast skeletal muscle fibers from adult zebrafish. The kcnk4b transcript encoding for TRAAK channels was cloned and found, concomitantly with activity of mechano-gated K+ channels, to be absent in zebrafish fast skeletal muscles at the larval stage but arising around 1 mo of age. The transfer of the kcnk4b gene in HEK cells and in the adult mouse muscle, that do not express functional TRAAK channels, led to expression and activity of mechano-gated K+ channels displaying properties comparable to native zebrafish TRAAK channels. In whole-cell voltage-clamp and current-clamp conditions, membrane stretch and heat led to activation of macroscopic K+ currents and to acceleration of the repolarization phase of action potentials respectively, suggesting that heat production and membrane deformation associated with skeletal muscle activity can control muscle excitability through TRAAK channel activation. TRAAK channels may represent a teleost-specific evolutionary product contributing to improve swimming performance for escaping predators and capturing prey at a critical stage of development.


Assuntos
Temperatura Alta , Peixe-Zebra , Animais , Camundongos , Chlorocebus aethiops , Peixe-Zebra/genética , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético , Células COS
7.
ACS Appl Mater Interfaces ; 15(35): 41817-41827, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37622994

RESUMO

To achieve efficient gene delivery in vitro or in vivo, nonviral vectors should have excellent biostability across cellular and tissue barriers and also smart stimuli responsiveness toward controlled release of therapeutic genes into the cell nucleus. However, it remains a key challenge to effectively combine the biostability of covalent polymers with the stimuli responsiveness of noncovalent polymers into one nonviral vehicle. In this work, we report the construction of a kind of cationic supramolecular block copolymers (SBCs) through noncovalent polymerization of ß-cyclodextrin/azobenzene-terminated pentaethylenehexamine (DMA-Azo-PEHA-ß-CD) in aqueous media using ß-CD-monosubstituted poly(ethylene glycol) (PEG-ß-CD) as a supramolecular initiator. The resultant SBC exhibits superior biostability, biocompatibility, and light/pH dual-responsive characteristics, and it also demonstrates efficient plasmid DNA condensation capacity and the ability to rapidly release plasmid DNA into cells driven by visible light (450 nm). Eventually, this SBC-based delivery system demonstrates visible light-induced enhancement of gene delivery in both COS-7 and HeLa cells. We anticipate that this work provides a facile and robust strategy to enhance gene delivery in vitro or in vivo via visible light-guided manipulation of genes, further achieving safe, highly efficient, targeting gene therapy for cancer.


Assuntos
Técnicas de Transferência de Genes , Luz , Polímeros , Células HeLa , Humanos , Polietilenoglicóis , Células COS , Animais , Chlorocebus aethiops , Células MCF-7
8.
Bioorg Med Chem ; 92: 117423, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37531921

RESUMO

Hematopoietic progenitor kinase 1 (HPK1) is regarded as a highly validated target in pre-clinical immune oncology. HPK1 has been described as regulating multiple critical signaling pathway in both adaptive and innate cells. In support of this role, HPK1 KO T cells show enhanced sensitivity to TCR activation and HPK1 KO mice display enhanced anti-tumor activity. Taken together, inhibition of HPK1 has the potential to induce enhanced anti-tumor immune response. Herein, we described the discovery of highly potent HPK1 inhibitors starting form a weak HTS hit. Using a structure-based drug design, HPK1 inhibitors exhibiting excellent cellular single-digit nanomolar potency in both proximal (pSLP76) and distal (IL-2) biomarkers along with sustained elevation of IL-2 cytokine secretion were discovered.


Assuntos
Interleucina-2 , Receptores de Antígenos de Linfócitos T , Camundongos , Animais , Chlorocebus aethiops , Proteínas Serina-Treonina Quinases , Células COS
9.
J Biol Chem ; 299(9): 105084, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495111

RESUMO

Long-range membrane traffic is guided by microtubule-associated proteins and posttranslational modifications, which collectively comprise a traffic code. The regulatory principles of this code and how it orchestrates the motility of kinesin and dynein motors are largely unknown. Septins are a large family of GTP-binding proteins, which assemble into complexes that associate with microtubules. Using single-molecule in vitro motility assays, we tested how the microtubule-associated SEPT2/6/7, SEPT2/6/7/9, and SEPT5/7/11 complexes affect the motilities of the constitutively active kinesins KIF5C and KIF1A and the dynein-dynactin-bicaudal D (DDB) motor complex. We found that microtubule-associated SEPT2/6/7 is a potent inhibitor of DDB and KIF5C, preventing mainly their association with microtubules. SEPT2/6/7 also inhibits KIF1A by obstructing stepping along microtubules. On SEPT2/6/7/9-coated microtubules, KIF1A inhibition is dampened by SEPT9, which alone enhances KIF1A, showing that individual septin subunits determine the regulatory properties of septin complexes. Strikingly, SEPT5/7/11 differs from SEPT2/6/7, in permitting the motility of KIF1A and immobilizing DDB to the microtubule lattice. In hippocampal neurons, filamentous SEPT5 colocalizes with somatodendritic microtubules that underlie Golgi membranes and lack SEPT6. Depletion of SEPT5 disrupts Golgi morphology and polarization of Golgi ribbons into the shaft of somato-proximal dendrites, which is consistent with the tethering of DDB to microtubules by SEPT5/7/11. Collectively, these results suggest that microtubule-associated complexes have differential specificities in the regulation of the motility and positioning of microtubule motors. We posit that septins are an integral part of the microtubule-based code that spatially controls membrane traffic.


Assuntos
Dineínas , Cinesinas , Proteínas Associadas aos Microtúbulos , Septinas , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Septinas/metabolismo , Células COS , Células HEK293 , Humanos , Animais , Chlorocebus aethiops , Transporte Proteico
10.
Sensors (Basel) ; 23(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37514669

RESUMO

In this study, a series of new artificial luciferases (ALucs) was created using sequential insights on missing peptide blocks, which were revealed using the alignment of existing ALuc sequences. Through compensating for the missing peptide blocks in the alignment, 10 sibling sequences were artificially fabricated and named from ALuc55 to ALuc68. The phylogenetic analysis showed that the new ALucs formed an independent branch that was genetically isolated from other natural marine luciferases. The new ALucs successfully survived and luminesced with native coelenterazine (nCTZ) and its analogs in living mammalian cells. The results showed that the bioluminescence (BL) intensities of the ALucs were interestingly proportional to the length of the appended peptide blocks. The computational modeling revealed that the appended peptide blocks created a flexible region near the active site, potentially modulating the enzymatic activities. The new ALucs generated various colors with maximally approximately 90 nm redshifted BL spectra in orange upon reaction with the authors' previously reported 1- and 2-series coelenterazine analogs. The utilities of the new ALucs in bioassays were demonstrated through the construction of single-chain molecular strain probes and protein fragment complementation assay (PCA) probes. The success of this study can guide new insights into how we can engineer and functionalize marine luciferases to expand the toolbox of optical readouts for bioassays and molecular imaging.


Assuntos
Bioensaio , Sondas Moleculares , Animais , Chlorocebus aethiops , Filogenia , Células COS , Luciferases/química , Medições Luminescentes/métodos , Mamíferos/metabolismo
11.
J Biol Chem ; 299(6): 104785, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37146967

RESUMO

Adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and calcitonin gene-related peptide (CGRP) have functions in the cardiovascular, lymphatic, and nervous systems by activating three heterodimeric receptors comprising the class B GPCR CLR and a RAMP1, -2, or -3 modulatory subunit. CGRP and AM prefer the RAMP1 and RAMP2/3 complexes, respectively, whereas AM2/IMD is thought to be relatively nonselective. Accordingly, AM2/IMD exhibits overlapping actions with CGRP and AM, so the rationale for this third agonist for the CLR-RAMP complexes is unclear. Here, we report that AM2/IMD is kinetically selective for CLR-RAMP3, known as the AM2R, and we define the structural basis for its distinct kinetics. In live cell biosensor assays, AM2/IMD-AM2R elicited longer-duration cAMP signaling than the other peptide-receptor combinations. AM2/IMD and AM bound the AM2R with similar equilibrium affinities, but AM2/IMD had a slower off-rate and longer receptor residence time, thus explaining its prolonged signaling capacity. Peptide and receptor chimeras and mutagenesis were used to map the regions responsible for the distinct binding and signaling kinetics to the AM2/IMD mid-region and the RAMP3 extracellular domain (ECD). Molecular dynamics simulations revealed how the former forms stable interactions at the CLR ECD-transmembrane domain interface and how the latter augments the CLR ECD binding pocket to anchor the AM2/IMD C terminus. These strong binding components only combine in the AM2R. Our findings uncover AM2/IMD-AM2R as a cognate pair with unique temporal features, reveal how AM2/IMD and RAMP3 collaborate to shape CLR signaling, and have significant implications for AM2/IMD biology.


Assuntos
Adrenomedulina , Peptídeo Relacionado com Gene de Calcitonina , Proteínas Modificadoras da Atividade de Receptores , Receptores de Adrenomedulina , Receptores Acoplados a Proteínas G , Animais , Humanos , Adrenomedulina/química , Adrenomedulina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Chlorocebus aethiops , Células COS , AMP Cíclico/metabolismo , Células HEK293 , Modelos Moleculares , Simulação de Dinâmica Molecular , Estabilidade Proteica , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/genética , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(2): 138-143, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872432

RESUMO

Objective To study the regulation of D816V mutation of III tyrosine kinase receptor KIT on RNA binding proteins HNRNPL and HNRNPK. Methods In COS-1 cells, wild-type KIT or KIT D816V mutation were expressed alone or together with HNRNPL or HNRNPK. Activation of KIT and phosphorylation of HNRNPL and HNRNPK were detected by immunoprecipitation and Western blot analysis. The localization of KIT, HNRNPL and HNRNPK in COS-1 cells were examined by confocal microscopy. Results Wild-type KIT needs to bind its ligand stem cell factor (SCF) for phosphorylation, while KIT D816V could auto-phosphorylation without SCF stimulation. In addition, KIT D816V can induce phosphorylation of HNRNPL and HNRNPK, which is not possible in wild-type KIT. HNRNPL and HNRNPK are expressed in the nucleus, and wild-type KIT is expressed in cytosol and cell membrane, while KIT D816V is mainly found in cytosol. Conclusion Wild-type KIT needs SCF binding for activation, while KIT D816V can autoactivate without SCF stimulation, and induces phosphorylation of HNRNPL and HNRNPK specifically.


Assuntos
Fator de Células-Tronco , Chlorocebus aethiops , Animais , Fosforilação , Células COS , Western Blotting , Membrana Celular , Mutação
13.
J Biol Chem ; 299(5): 104631, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963494

RESUMO

For decades, sarcomeric myosin heavy chain proteins were assumed to be restricted to striated muscle where they function as molecular motors that contract muscle. However, MYH7b, an evolutionarily ancient member of this myosin family, has been detected in mammalian nonmuscle tissues, and mutations in MYH7b are linked to hereditary hearing loss in compound heterozygous patients. These mutations are the first associated with hearing loss rather than a muscle pathology, and because there are no homologous mutations in other myosin isoforms, their functional effects were unknown. We generated recombinant human MYH7b harboring the D515N or R1651Q hearing loss-associated mutation and studied their effects on motor activity and structural and assembly properties, respectively. The D515N mutation had no effect on steady-state actin-activated ATPase rate or load-dependent detachment kinetics but increased actin sliding velocity because of an increased displacement during the myosin working stroke. Furthermore, we found that the D515N mutation caused an increase in the proportion of myosin heads that occupy the disordered-relaxed state, meaning more myosin heads are available to interact with actin. Although we found no impact of the R1651Q mutation on myosin rod secondary structure or solubility, we observed a striking aggregation phenotype when this mutation was introduced into nonmuscle cells. Our results suggest that each mutation independently affects MYH7b function and structure. Together, these results provide the foundation for further study of a role for MYH7b outside the sarcomere.


Assuntos
Perda Auditiva , Cadeias Pesadas de Miosina , Animais , Humanos , Camundongos , Actinas/metabolismo , Linhagem Celular , Chlorocebus aethiops , Células COS , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Cinética , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Agregados Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Phys Chem B ; 127(8): 1744-1748, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36795426

RESUMO

Recent developments in single-molecule enzymology (SME) have allowed for the observation of subpopulations present in enzyme ensembles. Tissue-nonspecific alkaline phosphatase (TNSALP), a homodimeric monophosphate esterase central to bone metabolism, has become a model enzyme for SME studies. TNSALP contains two internal disulfide bonds that are critical for its effective dimerization; mutations in its disulfide bonding framework have been reported in patients with hypophosphatasia, a rare disease characterized by impaired bone and tooth mineralization. In this paper, we present the kinetics of these mutants and show that these disulfide bonds are not crucial for TNSALP enzymatic function. This surprising result reveals that the enzyme's active conformation does not rely on its disulfide bonds. We posit that the signs and symptoms seen in hypophosphatasia are likely not primarily due to impaired enzyme function, but rather decreased enzyme expression and trafficking.


Assuntos
Fosfatase Alcalina , Hipofosfatasia , Animais , Chlorocebus aethiops , Humanos , Fosfatase Alcalina/química , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Hipofosfatasia/genética , Hipofosfatasia/metabolismo , Células COS , Mutação , Dissulfetos/química
15.
Biosens Bioelectron ; 227: 115123, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36812793

RESUMO

We report quantitative determination of extracellular H2O2 released from single COS-7 cells with high spatial resolution, using scanning electrochemical microscopy (SECM). Our strategy of depth scan imaging in vertical x-z plane was conveniently utilized to a single cell for obtaining probe approach curves (PACs) to any positions on the membrane of a live cell by simply drawing a vertical line on one depth SECM image. This SECM mode provides an efficient way to record a batch of PACs, and visualize cell topography simultaneously. The H2O2 concentration at the membrane surface in the center of an intact COS-7 cell was deconvoluted from apparent O2, and determined to be 0.020 mM by overlapping the experimental PAC with the simulated one having a known H2O2 release value. The H2O2 profile determined in this way gives insight into physiological activity of single live cells. In addition, intracellular H2O2 profile was demonstrated using confocal microscopy by labelling the cells with a luminomphore, 2',7'-dichlorodihydrofluorescein diacetate. The two methodologies have illustrated complementary experimental results of H2O2 detection, indicating that H2O2 generation is centered at endoplasmic reticula.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Animais , Chlorocebus aethiops , Microscopia Eletroquímica de Varredura/métodos , Células COS , Microscopia Confocal
16.
Eur J Histochem ; 67(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36632786

RESUMO

Spastin, a microtubule-severing enzyme, is known to be important for neurite outgrowth. However, the role of spastin post-translational modification, particularly its phosphorylation regulation in neuronal outgrowth, remains unclear. This study aimed to investigate the effects of eliminating spastin phosphorylation on the neurite outgrowth of rat hippocampal neurons. To accomplish this, we constructed a spastin mutant with eleven potential phosphorylation sites mutated to alanine. The phosphorylation levels of the wildtype spastin (WT) and the mutant (11A) were then detected using Phos-tag SDS-PAGE. The spastin constructs were transfected into COS7 cells for the observation of microtubule severing, and into rat hippocampal neurons for the detection of neuronal outgrowth. The results showed that compared to the spastin WT, the phosphorylation levels were significantly reduced in the spastin 11A mutant. The spastin mutant 11A impaired its ability to promote neurite length, branching, and complexity in hippocampal neurons, but did not affect its ability to sever microtubules in COS7 cells. In conclusion, the data suggest that mutations at multiple phosphorylation sites of spastin do not impair its microtubule cleavage ability in COS7 cells, but reduce its ability to promote neurite outgrowth in rat hippocampal neurons.


Assuntos
Microtúbulos , Crescimento Neuronal , Espastina , Animais , Ratos , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Crescimento Neuronal/genética , Fosforilação/genética , Espastina/genética , Espastina/metabolismo , Células COS , Chlorocebus aethiops , Humanos
17.
Biochem Biophys Res Commun ; 636(Pt 1): 147-154, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36332477

RESUMO

Mucopolysaccharidosis type I Hurler syndrome (MPS IH) is a severe lysosomal storage disorder caused by alpha-l-iduronidase (IDUA) deficiency. Premature truncation mutations (PTC) are the most common (50%-70%) type of IDUA mutations and correlate with MPS IH. Nonsense suppression therapy is a therapeutic approach that aims to induce stop codon readthrough. The different ability of gentamicin to bind mutant mRNA in readthrough is determined by nucleotide sequence (PTC context: UGA > UAG > UAA) and inserted amino acid including the nucleotide position +4 of the PTC, as well as the mRNA secondary structure. We used COS-7 cells to investigate the functional characteristics of p.Q500X and p.R619X, IDUA variants and the effects of gentamicin in inducing stop codon readthrough of seven IDUA variants including p.Q500X, p.R619X, p.Q70X, p.E299X, p.W312X, p.Q380X, and p.W402X. Moreover, we performed prediction of RNA secondary structure using the online tool RNAfold. We found that cells treated with gentamicin showed significantly enhanced full-length IDUA expression and restored IDUA activity, in a dose-dependent manner, only in cells expressing cDNA with W312X, Q380X, W402X, and R619X. Among the readthrough-responsive variants, we observed UGA PTC in W312X, W402X and R619X; and UAG PTC with C at nucleotide +4 in Q380X. Changes of RNA secondary structure were noted only in mutants with readthrough-responsive variants including W312X, Q380X, W402X, and R619X. Additional preclinical studies of selected PTCs with potential readthrough, using drugs with less oto-nephrotoxicity, in patient's skin fibroblasts and animal model are necessary for the premise of personalized medicine.


Assuntos
Iduronidase , Mucopolissacaridose I , Chlorocebus aethiops , Animais , Iduronidase/genética , Códon sem Sentido/genética , Gentamicinas/farmacologia , Códon de Terminação/genética , Células COS , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/genética , Mucopolissacaridose I/metabolismo , Mutação , RNA Mensageiro/metabolismo , Nucleotídeos/uso terapêutico
18.
Front Endocrinol (Lausanne) ; 13: 982246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051397

RESUMO

Results of previous studies provided evidence for the existence of a functional gonadotropin-inhibitory hormone (GnIH) system in the European sea bass, Dicentrarchus labrax, which exerted an inhibitory action on the brain-pituitary-gonadal axis of this species. Herein, we further elucidated the intracellular signaling pathways mediating in sea bass GnIH actions and the potential interactions with sea bass kisspeptin (Kiss) signaling. Although GnIH1 and GnIH2 had no effect on basal CRE-luc activity, they significantly decreased forskolin-elicited CRE-luc activity in COS-7 cells transfected with their cognate receptor GnIHR. Moreover, an evident increase in SRE-luc activity was noticed when COS-7 cells expressing GnIHR were challenged with both GnIH peptides, and this stimulatory action was significantly reduced by two inhibitors of the PKC pathway. Notably, GnIH2 antagonized Kiss2-evoked CRE-luc activity in COS-7 cells expressing GnIHR and Kiss2 receptor (Kiss2R). However, GnIH peptides did not alter NFAT-RE-luc activity and ERK phosphorylation levels. These data indicate that sea bass GnIHR signals can be transduced through the PKA and PKC pathways, and GnIH can interfere with kisspeptin actions by reducing its signaling. Our results provide additional evidence for the understanding of signaling pathways activated by GnIH peptides in teleosts, and represent a starting point for the study of interactions with multiple neuroendocrine factors on cell signaling.


Assuntos
Bass , Animais , Bass/fisiologia , Células COS , Chlorocebus aethiops , Gonadotropina Coriônica , Kisspeptinas/metabolismo , Transdução de Sinais
19.
J Biol Chem ; 298(9): 102297, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872017

RESUMO

Insulin signaling in blood vessels primarily functions to stimulate angiogenesis and maintain vascular homeostasis through the canonical PI3K and MAPK signaling pathways. However, angiogenesis is a complex process coordinated by multiple other signaling events. Here, we report a distinct crosstalk between the insulin receptor and endoglin/activin receptor-like kinase 1 (ALK1), an endothelial cell-specific TGF-ß receptor complex essential for angiogenesis. While the endoglin-ALK1 complex normally binds to TGF-ß or bone morphogenetic protein 9 (BMP9) to promote gene regulation via transcription factors Smad1/5, we show that insulin drives insulin receptor oligomerization with endoglin-ALK1 at the cell surface to trigger rapid Smad1/5 activation. Through quantitative proteomic analysis, we identify ependymin-related protein 1 (EPDR1) as a major Smad1/5 gene target induced by insulin but not by TGF-ß or BMP9. We found endothelial EPDR1 expression is minimal at the basal state but is markedly enhanced upon prolonged insulin treatment to promote cell migration and formation of capillary tubules. Conversely, we demonstrate EPDR1 depletion strongly abrogates these angiogenic effects, indicating that EPDR1 is a crucial mediator of insulin-induced angiogenesis. Taken together, these results suggest important therapeutic implications for EPDR1 and the TGF-ß pathways in pathologic angiogenesis during hyperinsulinemia and insulin resistance.


Assuntos
Endoglina , Fator 2 de Diferenciação de Crescimento , Insulina , Neovascularização Patológica , Proteínas do Tecido Nervoso , Receptores de Fatores de Crescimento Transformadores beta , Animais , Humanos , Camundongos , Receptores de Activinas Tipo II/metabolismo , Chlorocebus aethiops , Células COS , Endoglina/genética , Endoglina/metabolismo , Fator 2 de Diferenciação de Crescimento/genética , Insulina/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases , Proteômica , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Fator de Crescimento Transformador beta/metabolismo
20.
J Biol Chem ; 298(9): 102292, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868557

RESUMO

Katanin p60 ATPase-containing subunit A1 (KATNA1) is a microtubule-cleaving enzyme that regulates the development of neural protrusions through cytoskeletal rearrangements. However, the mechanism underlying the linkage of the small ubiquitin-like modifier (SUMO) protein to KATNA1 and how this modification regulates the development of neural protrusions is unclear. Here we discovered, using mass spectrometry analysis, that SUMO-conjugating enzyme UBC9, an enzyme necessary for the SUMOylation process, was present in the KATNA1 interactome. Moreover, GST-pull down and co-immunoprecipitation assays confirmed that KATNA1 and SUMO interact. We further demonstrated using immunofluorescence experiments that KATNA1 and the SUMO2 isoform colocalized in hippocampal neurites. We also performed a bioinformatics analysis of KATNA1 protein sequences to identify three potentially conserved SUMOylation sites (K77, K157, and K330) among vertebrates. Mutation of K330, but not K77 or K157, abolished KATNA1-induced microtubule severing and decreased the level of binding observed for KATNA1 and SUMO2. Cotransfection of SUMO2 and wildtype KATNA1 in COS7 cells increased microtubule severing, whereas no effect was observed after cotransfection with the K330R KATNA1 mutant. Furthermore, in cultured hippocampal neurons, overexpression of wildtype KATNA1 significantly promoted neurite outgrowth, whereas the K330R mutant eliminated this effect. Taken together, our results demonstrate that the K330 site in KATNA1 is modified by SUMOylation and SUMOylation of KATNA1 promotes microtubule dynamics and hippocampal neurite outgrowth.


Assuntos
Katanina , Microtúbulos , Crescimento Neuronal , Sumoilação , Adenosina Trifosfatases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Katanina/genética , Katanina/metabolismo , Microtúbulos/enzimologia , Microtúbulos/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...