Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.267
Filtrar
1.
PLoS Negl Trop Dis ; 18(3): e0012028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452055

RESUMO

BACKGROUND: India is going through the maintenance phase of VL elimination programme which may be threatened by the persistence of hidden parasite pools among asymptomatic leishmanial infection (ALI) and PKDL. The present work was designed to determine the burden of VL, PKDL, and ALI and to assess the role of treatment of ALI in maintaining post-elimination phase. METHODS AND FINDING: The study was undertaken in Malda district, West Bengal, India during October 2016 to September 2021. Study areas were divided into 'Study' and 'Control' arms. VL and PKDL cases of both the arms were diagnosed by three active mass surveys with an interval of one year and treated as per National guideline. ALI of 'Study' arm was treated like VL. ALI of 'Control' arm was followed up to determine their fate. Fed sand-fly pools were analysed for parasitic DNA. No significant difference was noted between the incidence of VL and PKDL in both the arms. Incidence of ALI declined sharply in 'Study' arm but an increasing trend was observed in 'Control' arm. Significantly higher rate of sero-conversion was noted in 'Control' arm and was found to be associated with untreated ALI burden. Parasitic DNA was detected in 22.8% ALI cases and 2.2% sand-fly pools. CONCLUSION: Persistence of a significant number of PKDL and ALI and ongoing transmission, as evidenced by new infection and detection of leishmanial DNA in vector sand-flies, may threaten the maintenance of post-elimination phase. Emphasis should be given for elimination of pathogen to prevent resurgence of VL epidemics.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Phlebotomus , Psychodidae , Animais , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/complicações , Areia , Psychodidae/parasitologia , Infecções Assintomáticas/epidemiologia , Índia/epidemiologia , DNA , Leishmaniose Cutânea/epidemiologia
2.
Chem Commun (Camb) ; 60(30): 4092-4095, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38511970

RESUMO

Leishmania donovani are intracellular, human blood parasites that cause visceral leishmaniasis or kala-azar. Cell-penetrating peptides (CPPs) have been shown to modulate intracellular processes and cargo delivery, whereas host defense peptides (HDPs) promote proliferation of both naïve and antigen activated CD4+ T-cells. We report newly designed tripeptides that were able to trigger proinflammatory cytokine (IL-12 and IFN-γ) secretion by CD4+CD44+ T-cells in response to Leishmania donovani infection. These peptides can be used to induce antigen specific TH1 responses to combat obstacles of cytotoxicity and drug resistance associated with current anti-leishmanial drugs. Furthermore, these peptides can also be used as adjuvants to develop an effective immunoprophylactic approach for immunity restoration against visceral leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Interleucina-12 , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Linfócitos T , Imunidade , Linfócitos T CD4-Positivos
3.
Bioorg Chem ; 146: 107302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521010

RESUMO

Leishmaniasis, a group of neglected infectious diseases, encompasses a serious health concern, particularly with visceral leishmaniasis exhibiting potentially fatal outcomes. Nucleoside hydrolase (NH) has a fundamental role in the purine salvage pathway, crucial for Leishmania donovani survival, and presents a promising target for developing new drugs for visceral leishmaniasis treatment. In this study, LdNH was immobilized into fused silica capillaries, resulting in immobilized enzyme reactors (IMERs). The LdNH-IMER activity was monitored on-flow in a multidimensional liquid chromatography system, with the IMER in the first dimension. A C18 analytical column in the second dimension furnished the rapid separation of the substrate (inosine) and product (hypoxanthine), enabling direct enzyme activity monitoring through product quantification. LdNH-IMER exhibited high stability and was characterized by determining the Michaelis-Menten constant. A known inhibitor (1-(ß-d-Ribofuranosyl)-4-quinolone derivative) was used as a model to validate the established method in inhibitor recognition. Screening of three additional derivatives of 1-(ß-d-Ribofuranosyl)-4-quinolone led to the discovery of novel inhibitors, with compound 2a exhibiting superior inhibitory activity (Ki = 23.37 ± 3.64 µmol/L) compared to the employed model inhibitor. Docking and Molecular Dynamics studies provided crucial insights into inhibitor interactions at the enzyme active site, offering valuable information for developing new LdNH inhibitors. Therefore, this study presents a novel screening assay and contributes to the development of potent LdNH inhibitors.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , N-Glicosil Hidrolases/metabolismo , Cromatografia de Afinidade , 4-Quinolonas
4.
Eur J Med Chem ; 269: 116256, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461679

RESUMO

Visceral leishmaniasis is a potentially fatal disease caused by infection by the intracellular protist pathogens Leishmania donovani or Leishmania infantum. Present therapies are ineffective because of high costs, variable efficacy against different species, the requirement for hospitalization, toxicity and drug resistance. Detailed analysis of previously published hit molecules suggested a crucial role of 'guanidine' linkage for their efficacy against L. donovani. Here we report the design of 2-aminoquinazoline heterocycle as a basic pharmacophore-bearing guanidine linkage. The introduction of various groups and functionality at different positions of the quinazoline scaffold results in enhanced antiparasitic potency with modest host cell cytotoxicity using a physiologically relevant THP-1 transformed macrophage infection model. In terms of the ADME profile, the C7 position of quinazoline was identified as a guiding tool for designing better molecules. The good ADME profile of the compounds suggests that they merit further consideration as lead compounds for treating visceral leishmaniasis.


Assuntos
Leishmania donovani , Leishmania infantum , Leishmaniose Visceral , Humanos , Leishmaniose Visceral/tratamento farmacológico , Antiparasitários/farmacologia , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico
5.
Am J Trop Med Hyg ; 110(4): 656-662, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38442428

RESUMO

Post-kala-azar dermal leishmaniasis (PKDL), the dermal sequel to visceral leishmaniasis (VL), is characterized by hypopigmented macules (macular) and/or papules and nodules (polymorphic). Post-kala-azar dermal leishmaniasis plays a significant role in disease transmission, emphasizing the need for monitoring chemotherapeutic effectiveness. Accordingly, this study aimed to quantify the parasite burden in PKDL patients after treatment with miltefosine by a quantitative polymerase chain reaction (qPCR). A Leishmania kinetoplastid gene-targeted qPCR was undertaken using DNA from skin biopsy specimens of patients with PKDL at three time points, i.e., at disease presentation (week 0, n = 157, group 1), upon completion of treatment (week 12, n = 39, group 2), and at any time point 6 months after completion of treatment (week ≥36, n = 54, group 3). A cycle threshold (Ct) <30 was considered the cutoff for positivity, and load was quantified as the number of parasites/µg genomic DNA (gDNA); cure was considered when samples had a Ct >30. The parasite load at disease presentation (group 1) was 10,769 (1,339-80,441)/µg gDNA (median [interquartile range]). In groups 2 and 3, qPCR results were negative in 35/39 cases (89.7%) and 48/54 cases (88.8%), respectively. In the 10/93 (10.8%) qPCR-positive cases, the parasite burdens in groups 2 and 3 were 2,420 (1,205-5,661)/µg gDNA and 22,195 (5,524-100,106)/µg gDNA, respectively. Serial monitoring was undertaken in 45 randomly selected cases that had completed treatment; all cases in groups 2 or 3 had a Ct >30, indicating cure. Overall, qPCR confirmed an 89.2% cure (as 83/93 cases showed parasite clearance), and the persistent qPCR positivity was attributed to nonadherence to treatment or unresponsiveness to miltefosine and remains to be investigated.


Assuntos
Leishmania donovani , Leishmania , Leishmaniose Cutânea , Leishmaniose Visceral , Fosforilcolina/análogos & derivados , Humanos , Leishmaniose Visceral/parasitologia , Leishmaniose Cutânea/parasitologia , DNA
6.
Parasite Immunol ; 46(3): e13031, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527908

RESUMO

In visceral leishmaniasis, the Type II helper T cell predominance results in B cell modulation and enhancement of anti-leishmanial IgG. However, information regarding its dermal sequel, post-kala-azar dermal leishmaniasis (PKDL), remains limited. Accordingly, this study aimed to elucidate the B cell-mediated antibody-dependent/independent immune profiles of PKDL patients. In the peripheral blood of PKDL patients, immunophenotyping of B cell subsets was performed by flow cytometry and by immunohistochemistry at lesional sites. The functionality of B cells was assessed in terms of skin IgG by immunofluorescence, while the circulating levels of B cell chemoattractants (CCL20, CXCL13, CCL17, CCL22, CCL19, CCL27, CXCL9, CXCL10 and CXCL11) were evaluated by a multiplex assay. In patients with PKDL as compared with healthy controls, there was a significant decrease in pan CD19+ B cells. However, within the CD19+ B cell population, there was a significantly raised proportion of switched memory B cells (CD19+IgD-CD27+) and plasma cells (CD19+IgD-CD38+CD27+). This was corroborated at lesional sites where a higher expression of CD20+ B cells and CD138+ plasma cells was evident; they were Ki67 negative and demonstrated a raised IgG. The circulating levels of B cell chemoattractants were raised and correlated positively with lesional CD20+ B cells. The increased levels of B cell homing markers possibly accounted for their enhanced presence at the lesional sites. There was a high proportion of plasma cells, which accounted for the increased presence of IgG that possibly facilitated parasite persistence and disease progression.


Assuntos
Subpopulações de Linfócitos B , Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Humanos , Pele , Imunoglobulina G
7.
Int Immunopharmacol ; 129: 111644, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38330797

RESUMO

Residing obligatorily as amastigotes within the mammalian macrophages, the parasite Leishmania donovani inflicts the potentially fatal, globally re-emerging disease visceral leishmaniasis (VL) by altering intracellular signaling through kinases and phosphatases. Because the phosphatases that modulate the VL outcome in humans remained unknown, we screened a human phosphatase siRNA-library for anti-leishmanial functions in THP-1, a human macrophage-like cell line. Of the 251 phosphatases, the screen identified the Ca++-activated K+-channel-associated phosphatase myotubularin-related protein-6 (MTMR6) as the only phosphatase whose silencing reduced parasite load and IL-10 production in human macrophages. Virulent, but not avirulent, L. donovani infection increased MTMR6 expression in macrophages. As virulent L. donovani parasites expressed higher lipophosphoglycan, a TLR2-ligand, we tested the effect of TLR2 stimulation or blockade on MTMR6 expression. TLR1/TLR2-ligand Pam3CSK4 enhanced, but TLR2 blockade reduced, MTMR6 expression. L. donovani infection of macrophages ex vivo increased, but miltefosine treatment reduced, MTMR6 expression. Corroboratively, compared to endemic controls, untreated VL patients had higher, but miltefosine-treated VL patients had reduced, MTMR6 expression. The phosphatase siRNA-library screening thus identified MTMR6 as the first TLR2-modulated ion channel-associated phosphatase with significant implications in VL patients and anti-leishmanial functions.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Fosforilcolina , Animais , Humanos , Canais Iônicos , Leishmaniose Visceral/parasitologia , Ligantes , Mamíferos , Fosforilcolina/análogos & derivados , Proteínas Tirosina Fosfatases não Receptoras , RNA Interferente Pequeno/genética , Receptor 2 Toll-Like
8.
Parasitol Int ; 100: 102865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38341021

RESUMO

In visceral and mucocutaneous leishmaniasis, humoral immune response can reflect disease severity and parasite burden. Cutaneous leishmaniasis (CL) in Sri Lanka is caused by a usually visceralizing parasite, Leishmania donovani. We assessed the parasite burden (relative quantity-RQ) in 190 CL patients using quantitative real-time PCR (qPCR-with primers designed for this study) and smear microscopy, then correlated it with clinical parameters and IgG response. RQ of parasite DNA was determined with human-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the internal control. The qPCR sensitivity was tested with serially diluted DNA from cultured L. donovani parasites. Smears were assigned a score based on number of parasites per high power field. Data from previous studies were used for comparison and correlation; nested Internal Transcribed Spacer 1 (ITS1) PCR as reference standard (RS) and IgG antibody titers to the Leishmania rKRp42 antigen as the immune response. The qPCR amplified and quantified 86.8% of the samples while demonstrating a fair and significant agreement with ITS1-PCR and microscopy. Parasite burden by qPCR and microscopy were highly correlated (r = 0.76; p = 0.01) but showed no correlation with the IgG response (r = 0.056; p = 0.48). Corresponding mean RQs of IgG titers grouped by percentiles, showed no significant difference (p = 0.93). Mean RQ was higher in early lesions (p = 0.04), decreased with lesion size (p = 0.12) and slightly higher among papules, nodules and wet ulcers (p = 0.72). Our study established qPCR's efficacy in quantifying parasite burden in Sri Lankan CL lesions but no significant correlation was observed between the parasite burden and host IgG response to the Leishmania rKRP42 antigen.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Parasitos , Animais , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Sri Lanka/epidemiologia , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/parasitologia , Leishmania donovani/genética , DNA , Imunoglobulina G
9.
Exp Parasitol ; 259: 108710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350521

RESUMO

Sri Lanka reports a large focus of Leishmania donovani caused cutaneous leishmaniasis (CL). Subsequent emergence of visceral leishmaniasis (VL) was also reported recently. Expansion of the on-going disease outbreak and many complexities indicate urgent need to enhance early case detection methods. In vitro cultivation (IVC) of parasites causing visceral leishmaniasis (VL) is important for disease confirmation and to obtain sufficient quantities of parasites required in many scientific studies. IVC is carried out as a useful second line investigation for direct microscopy negative patients with CL in this setting. Along with the emergence of VL, current study was carried out to evaluate in vitro growth of local VL parasites and to identify their differences associated with in vitro growth characteristics. Routine parasitological diagnostic methods, i.e., light microscopy (LM), polymerase chain reaction (PCR) were used for confirmation of suspected cases. Lesion samples from 125 suspected CL cases and bone marrow or splenic aspirations from 125 suspected VL patients were used to inoculate IVCs. Media M199 (about 70 µl) supplemented with 15-20% of heat inactivated fetal bovine serum was used for initial culturing procedures in capillaries. Capillary cultures were monitored daily. Total of 44 different compositions/conditions were used for evaluating in vitro growth of VL causing parasite. Daily records on parasite counts, morphological appearance (size, shape, and wriggly movements) were maintained. In vitro transformation of Leishmania promastigotes to amastigotes and outcome of the attempts on recovery of live Leishmania from culture stabilates was also compared between CL and VL parasites. Proportion of cultures showing a transformation of promastigotes were 40/45 (88.9%) and 4/10 (40.0%) for CL and VL respectively. In the transformed cultures, parasites showing typical shape, size and movement patterns were less in VL (1/4, 25.0%) compared to CL (28/40, 70.0%). CL cultures showed a growth up to mass culturing level with mean duration of two weeks while it was about five weeks for VL cultures. Proportion of cultures that reached a parasite density of 1 × 106 cells/ml (proceeded to mass cultures) was significantly low in VL (4/10, 40%) as compared to CL (28/40, 70.0%). None of media compositions/conditions were successful for mass culturing of VL parasites while all of them were shown to be useful for growing CL strains. Also in vitro transformation to amastigote form and recovering of culture stabilates were not successful compared to CL. There were clear differences between in vitro growth of Leishmania parasites causing local CL and VL. Further studies are recommended for optimization of in vitro culturing of VL parasite which will be invaluable to enhance case detection in future.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Parasitos , Animais , Humanos , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/parasitologia , Sri Lanka/epidemiologia , Leishmaniose Cutânea/parasitologia , Biópsia
10.
Acta Trop ; 252: 107139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307362

RESUMO

Clotrimazole is an FDA approved drug and is widely used as an antifungal agent. An extensive body of research is available about its mechanism of action on various cell types but its mode of killing of Leishmania donovani parasites is unknown. L. donovani causes Visceral Leishmaniasis which is a public health problem with limited treatment options. Its present chemotherapy is expensive, has adverse effects and is plagued with drug resistance issues. In this study we have explored the possibility of repurposing clotrimazole as an antileishmanial drug. We have assessed its efficacy on the parasites and attempted to understand its mode of action. We found that it has a half-maximal inhibitory concentration (IC50) of 35.75 ± 1.06 µM, 12.75 ± 0.35 µM and 73 ± 1.41 µM in promastigotes, intracellular amastigotes and macrophages, respectively. Clotrimazole is 5.73 times more selective for the intracellular amastigotes as compared to the mammalian cell. Effect of clotrimazole was reduced by ergosterol supplementation. It leads to impaired parasite morphology. It alters plasma membrane permeability and disrupts plasma membrane potential. Mitochondrial function is compromised as is evident from increased ROS generation, depolarized mitochondrial membrane and decreased ATP levels. Cell cycle analysis of clotrimazole treated parasites shows arrest at sub-G0 phase suggesting apoptotic mode of cell death.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Animais , Clotrimazol/farmacologia , Clotrimazol/metabolismo , Clotrimazol/uso terapêutico , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Macrófagos , Pontos de Checagem do Ciclo Celular , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Mamíferos
11.
J Biol Chem ; 300(3): 105720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311179

RESUMO

SET domain proteins methylate specific lysines on proteins, triggering stimulation or repression of downstream processes. Twenty-nine SET domain proteins have been identified in Leishmania donovani through sequence annotations. This study initiates the first investigation into these proteins. We find LdSET7 is predominantly cytosolic. Although not essential, set7 deletion slows down promastigote growth and hypersensitizes the parasite to hydroxyurea-induced G1/S arrest. Intriguingly, set7-nulls survive more proficiently than set7+/+ parasites within host macrophages, suggesting that LdSET7 moderates parasite response to the inhospitable intracellular environment. set7-null in vitro promastigote cultures are highly tolerant to hydrogen peroxide (H2O2)-induced stress, reflected in their growth pattern, and no detectable DNA damage at H2O2 concentrations tested. This is linked to reactive oxygen species levels remaining virtually unperturbed in set7-nulls in response to H2O2 exposure, contrasting to increased reactive oxygen species in set7+/+ cells under similar conditions. In analyzing the cell's ability to scavenge hydroperoxides, we find peroxidase activity is not upregulated in response to H2O2 exposure in set7-nulls. Rather, constitutive basal levels of peroxidase activity are significantly higher in these cells, implicating this to be a factor contributing to the parasite's high tolerance to H2O2. Higher levels of peroxidase activity in set7-nulls are coupled to upregulation of tryparedoxin peroxidase transcripts. Rescue experiments using an LdSET7 mutant suggest that LdSET7 methylation activity is critical to the modulation of the cell's response to oxidative environment. Thus, LdSET7 tunes the parasite's behavior within host cells, enabling the establishment and persistence of infection without eradicating the host cell population it needs for survival.


Assuntos
Leishmania donovani , Estresse Oxidativo , Peroxidases , Proteínas de Protozoários , Animais , Peróxido de Hidrogênio/metabolismo , Leishmania donovani/genética , Leishmania donovani/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Domínios PR-SET
12.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342312

RESUMO

Leishmania donovani is an auxotroph for heme. Parasite acquires heme by clathrin-mediated endocytosis of hemoglobin by specific receptor. However, the regulation of receptor recycling pathway is not known in Leishmania. Here, we have cloned, expressed and characterized the Rab4 homologue from L. donovani. We have found that LdRab4 localizes in both early endosomes and Golgi in L. donovani. To understand the role of LdRab4 in L. donovani, we have generated transgenic parasites overexpressing GFP-LdRab4:WT, GFP-LdRab4:Q67L, and GFP-LdRab4:S22N. Our results have shown that overexpression of GFP-LdRab4:Q67L or GFP-LdRab4:S22N does not alter the cell surface localization of hemoglobin receptor in L. donovani. Surprisingly, we have found that overexpression of GFP-LdRab4:S22N significantly blocks the transport of Ldgp63 to the cell surface whereas the trafficking of Ldgp63 is induced to the cell surface in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites. Consequently, we have found significant inhibition of gp63 secretion by GFP-LdRab4:S22N overexpressing parasites whereas secretion of Ldgp63 is enhanced in GFP-LdRab4:WT and GFP-LdRab4:Q67L overexpressing parasites in comparison to untransfected control parasites. Moreover, we have found that survival of transgenic parasites overexpressing GFP-LdRab4:S22N is severely compromised in macrophages in comparison to GFP-LdRab4:WT and GFP-LdRab4:Q67L expressing parasites. These results demonstrated that LdRab4 unconventionally regulates the secretory pathway in L. donovani.


Assuntos
Leishmania donovani , Via Secretória , Animais , Leishmania donovani/genética , Animais Geneticamente Modificados/metabolismo , Proteínas de Transporte/metabolismo , Hemoglobinas/metabolismo , Heme/metabolismo
13.
Emerg Infect Dis ; 30(3): 611-613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407178

RESUMO

We sequenced Leishmania donovani genomes in blood samples collected in emerging foci of visceral leishmaniasis in western Nepal. We detected lineages very different from the preelimination main parasite population, including a new lineage and a rare one previously reported in eastern Nepal. Our findings underscore the need for genomic surveillance.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Leishmania donovani/genética , Leishmaniose Visceral/epidemiologia , Nepal/epidemiologia , Genômica
14.
Front Cell Infect Microbiol ; 14: 1332381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357442

RESUMO

Visceral leishmaniasis (VL) is the most severe type of leishmaniasis which is caused by infection of Leishmania donovani complex. In the BALB/c mouse model of VL, multinucleated giant cells (MGCs) with heavy parasite infection consist of the largest population of hemophagocytes in the spleen of L. donovani-infected mice, indicating that MGCs provide the parasites a circumstance beneficial for their survival. Although ATP6V0D2 is a demonstrated factor inducing the formation of hemophagocytic MGCs during L. donovani infection, functions of this protein in shaping the infection outcome in macrophages remain unclear. Here we evaluated the influence of upregulated ATP6V0D2 on intracellular survival of the parasites. L. donovani infection-induced hemophagocytosis of normal erythrocytes by macrophages was suppressed by RNAi-based knockdown of Atp6v0d2. The knockdown of Atp6v0d2 did not improve the survival of amastigotes within macrophages when the cells were cultured in the absence of erythrocytes. On the other hand, reduced intracellular survival of amastigotes in macrophages by the knockdown was observed when macrophages were supplemented with antibody-opsonized erythrocytes before infection. There, increase in cytosolic labile iron pool was observed in the L. donovani-infected knocked-down macrophages. It suggests that ATP6V0D2 plays roles not only in upregulation of hemophagocytosis but also in iron trafficking within L. donovani-infected macrophages. Superior access to iron in macrophages may be how the upregulated expression of the molecule brings benefit to Leishmania for their intracellular survival in the presence of erythrocytes.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Animais , Camundongos , Eritrócitos , Ferro/metabolismo , Leishmaniose Visceral/parasitologia , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Regulação para Cima
15.
Sci Rep ; 14(1): 3246, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332162

RESUMO

Leishmania donovani is the causal organism of leishmaniasis with critical health implications affecting about 12 million people around the globe. Due to less efficacy, adverse side effects, and resistance, the available therapeutic molecules fail to control leishmaniasis. The mitochondrial primase of Leishmania donovani (LdmtPRI1) is a vital cog in the DNA replication mechanism, as the enzyme initiates the replication of the mitochondrial genome of Leishmania donovani. Hence, we target this protein as a probable drug target against leishmaniasis. The de-novo approach enabled computational prediction of the three-dimensional structure of LdmtPRI1, and its active sites were identified. Ligands from commercially available drug compounds were selected and docked against LdmtPRI1. The compounds were chosen for pharmacokinetic study and molecular dynamics simulation based on their binding energies and protein interactions. The LdmtPRI1 gene was cloned, overexpressed, and purified, and a primase activity assay was performed. The selected compounds were verified experimentally by the parasite and primase inhibition assay. Capecitabine was observed to be effective against the promastigote form of Leishmania donovani, as well as inhibiting primase activity. This study's findings suggest capecitabine might be a potential anti-leishmanial drug candidate after adequate further studies.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Leishmaniose , Humanos , Leishmania donovani/genética , DNA Primase , DNA Mitocondrial , Capecitabina/uso terapêutico , Reposicionamento de Medicamentos , Leishmaniose/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Antiprotozoários/química
16.
PLoS Negl Trop Dis ; 18(1): e0011559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166146

RESUMO

The parasite Leishmania donovani is one of the species causing visceral leishmaniasis in humans, a deadly infection claiming up to 40,000 lives each year. The current drugs for leishmaniasis treatment have severe drawbacks and there is an urgent need to find new anti-leishmanial compounds. However, the search for drug candidates is complicated by the intracellular lifestyle of Leishmania. Here, we investigate the use of human induced pluripotent stem cell (iPS)-derived macrophages (iMACs) as host cells for L. donovani. iMACs obtained through embryoid body differentiation were infected with L. donovani promastigotes, and high-content imaging techniques were used to optimize the iMACs seeding density and multiplicity of infection, allowing us to reach infection rates up to 70% five days after infection. IC50 values obtained for miltefosine and amphotericin B using the infected iMACs or mouse peritoneal macrophages as host cells were comparable and in agreement with the literature, showing the potential of iMACs as an infection model for drug screening.


Assuntos
Antiprotozoários , Células-Tronco Pluripotentes Induzidas , Leishmania donovani , Leishmaniose Visceral , Animais , Humanos , Camundongos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia
17.
PLoS Negl Trop Dis ; 18(1): e0011920, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295092

RESUMO

Sand fly transmitted Leishmania species are responsible for severe, wide ranging, visceral and cutaneous leishmaniases. Genetic exchange can occur among natural Leishmania populations and hybrids can now be produced experimentally, with limitations. Feeding Phlebotomus orientalis or Phlebotomus argentipes on two strains of Leishmania donovani yielded hybrid progeny, selected using double drug resistance and fluorescence markers. Fluorescence activated cell sorting of cultured clones derived from these hybrids indicated diploid progeny. Multilocus sequence typing of the clones showed hybridisation and nuclear heterozygosity, although with inheritance of single haplotypes in a kinetoplastid target. Comparative genomics showed diversity of clonal progeny between single chromosomes, and extraordinary heterozygosity across all 36 chromosomes. Diversity between progeny was seen for the HASPB antigen, which has been noted previously as having implications for design of a therapeutic vaccine. Genomic diversity seen among Leishmania strains and hybrid progeny is of great importance in understanding the epidemiology and control of leishmaniasis. As an outcome of this study we strongly recommend that wider biological archives of different Leishmania species from endemic regions should be established and made available for comparative genomics. However, in parallel, performance of genetic crosses and genomic comparisons should give fundamental insight into the specificity, diversity and limitations of candidate diagnostics, vaccines and drugs, for targeted control of leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Phlebotomus , Psychodidae , Animais , Phlebotomus/genética , Leishmania donovani/genética , Psychodidae/genética , Cruzamentos Genéticos , Genômica , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/epidemiologia
18.
Infect Immun ; 92(2): e0050423, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38193711

RESUMO

The intracellular protozoan parasite Leishmania donovani causes debilitating human diseases that involve visceral and dermal manifestations. Type 3 interferons (IFNs), also referred to as lambda IFNs (IFNL, IFN-L, or IFN-λ), are known to play protective roles against intracellular pathogens at the epithelial surfaces. Herein, we show that L. donovani induces IFN-λ3 in human as well as mouse cell line-derived macrophages. Interestingly, IFN-λ3 treatment significantly decreased parasite load in infected cells, mainly by increasing reactive oxygen species production. Microscopic examination showed that IFN-λ3 inhibited uptake but not replication, while the phagocytic ability of the cells was not affected. This was confirmed by experiments that showed that IFN-λ3 could decrease parasite load only when added to the medium at earlier time points, either during or soon after parasite uptake, but had no effect on parasite load when added at 24 h post-infection, suggesting that an early event during parasite uptake was targeted. Furthermore, the parasites could overcome the inhibitory effect of IFN-λ3, which was added at earlier time points, within 2-3 days post-infection. BALB/c mice treated with IFN-λ3 before infection led to a significant increase in expression of IL-4 and ARG1 post-infection in the spleen and liver, respectively, and to different pathological changes, especially in the liver, but not to changes in parasite load. Treatment with IFN-λ3 during infection did not decrease the parasite load in the spleen either. However, IFN-λ3 was significantly increased in the sera of visceral leishmaniasis patients, and the IFNL genetic variant rs12979860 was significantly associated with susceptibility to leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Parasitos , Animais , Humanos , Camundongos , Linhagem Celular , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C
19.
Free Radic Biol Med ; 213: 371-393, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272324

RESUMO

Understanding the unique metabolic pathway of L. donovani is crucial for comprehending its biology under oxidative stress conditions. The de novo cysteine biosynthetic pathway of L. donovani is absent in humans and its product, cysteine regulates the downstream components of trypanothione-based thiol metabolism, important for maintaining cellular redox homeostasis. The role of serine o-acetyl transferase (SAT), the first enzyme of this pathway remains unexplored. In order to investigate the role of SAT protein, we cloned SAT gene into pXG-GFP+ vector for episomal expression of SAT in Amphotericin B sensitive L. donovani promastigotes. The SAT overexpression was confirmed by SAT enzymatic assay, GFP fluorescence, immunoblotting and PCR. Our study unveiled an upregulated expression of both LdSAT and LdCS of cysteine biosynthetic pathway and other downstream thiol pathway proteins in LdSAT-OE promastigotes. Additionally, there was an increase in enzymatic activities of LdSAT and LdCS proteins in LdSAT-OE, which was found similar to the Amp B resistant parasites, indicating a potential role of SAT protein in modulating drug resistance. We observed that the overexpression of SAT in Amp B sensitive parasites increases tolerance to drug pressure and oxidative stress via trypanothione-dependent antioxidant mechanism. Moreover, the in vitro J774A.1 macrophage infectivity assessment showed that SAT overexpression augments parasite infectivity. In LdSAT-OE promastigotes, antioxidant enzyme activities like APx and SOD were upregulated, intracellular reactive oxygen species were reduced with a corresponding increase in thiol level, emphasizing SAT's role in stress tolerance and enhanced infectivity. Additionally, the ROS mediated upregulation in the expression of LdSAT, LdCS, LdTryS and LdcTXNPx proteins reveals an essential cross talk between SAT and proteins of thiol metabolism in combating oxidative stress and maintaining redox homeostasis. Taken together, our results provide the first insight into the role of SAT protein in parasite infectivity and survival under drug pressure and oxidative stress.


Assuntos
Leishmania donovani , Humanos , Leishmania donovani/genética , Leishmania donovani/metabolismo , Compostos de Sulfidrila/metabolismo , Serina O-Acetiltransferase/metabolismo , Cisteína/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Oxirredução , Resistência a Medicamentos/genética
20.
Int Immunopharmacol ; 129: 111589, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38295542

RESUMO

The protozoan parasite Leishmania donovani resides within mammalian macrophages and alters its antigen-presenting functions to negatively regulate host-protective T cell responses. This negative regulation of human T cell responses in vitro is attributed to myotubularin-related protein-6 (MTMR6), an ion channel-associated phosphatase. As mouse and human MTMR6 share homology, we studied whether MTMR6 silencing by lentivirally expressed MTMR6shRNA (Lv-MTMR6shRNA) reduced Leishmania growth in macrophages and whether MTMR6 silencing in Leishmania-susceptible BALB/c mice reduced the infection and reinstated host-protective T cell functions. MTMR6 silencing reduced amastigote count and IL-10 production, increased IL-12 expression and, induced IFN-γ-secreting T cells with anti-leishmanial activity in macrophage-T cell co-cultures. Lv-MTMR6shRNA reduced the infection, accompanied by increased IFN-γ expression, in susceptible BALB/c mice. Delays in Lv-MTMR6shRNA treatment by 7 days post-infection significantly reduced the infection suggesting MTMR6 as a plausible therapeutic target. Priming of BALB/c mice with avirulent parasites and Lv-MTMR6shRNA reduced parasite burden in challenge infection. These results indicate that MTMR6 is the first receptor-regulated ion channel-associated phosphatase regulating anti-leishmanial immune responses.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Leishmaniose , Camundongos , Humanos , Animais , Proteínas Tirosina Fosfatases não Receptoras/genética , Camundongos Endogâmicos BALB C , Canais Iônicos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...