Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.259
Filtrar
1.
Parasit Vectors ; 17(1): 177, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575981

RESUMO

BACKGROUND: Vertical transmission (VT) of arboviruses (arthropod-borne viruses) can serve as an essential link in the transmission cycle during adverse environmental conditions. The extent of VT among mosquito-borne arboviruses can vary significantly among different virus families and even among different viruses within the same genus. For example, orthobunyaviruses exhibit a higher VT rate than orthoflaviviruses and alphaviruses. Mosquitoes are also the natural hosts of a large number of insect-specific viruses (ISV) that belong to several virus families, including Bunyaviridae, Flaviviridae, and Togaviridae. Cell fusing agent virus (CFAV), an insect-specific orthoflavivirus, displays higher VT rates than other dual-host orthoflaviviruses, such as Zika and dengue viruses. High VT rates require establishment of stabilized infections in the germinal tissues of female vectors. To delve deeper into understanding the mechanisms governing these differences in VT rates and the establishment of stabilized infections, the ovary infection patterns and VT of Zika virus (ZIKV) and CFAV were compared. METHODS: Laboratory colonized Aedes aegypti females were infected with either ZIKV or CFAV by intrathoracic injection. Ovary infection patterns were monitored by in situ hybridization using virus-specific probes, and VT was determined by detecting the presence of the virus among the progeny, using a reverse-transcription quantitative polymerase chain reaction (PCR) assay. RESULTS: Both ZIKV and CFAV infect mosquito ovaries after intrathoracic injection. Infections then become widespread following a non-infectious blood meal. VT rates of ZIKV are similar to previously reported results (3.33%). CFAV, on the contrary transmits vertically very rarely. VT was not observed in the first gonotrophic cycle following intrathoracic injection, and only rarely in the second gonotrophic cycle. VT of CFAV is mosquito population independent, since similar results were obtained with Aedes aegypti collected from two different geographic locations. CONCLUSIONS: Although CFAV infects mosquito ovaries, the occurrence of VT remains infrequent in artificially infected Ae. aegypti, despite the observation of high VT rates in field-collected mosquitoes. These results suggest that infections of insect-specific viruses are stabilized in mosquitoes by some as yet unidentified mechanisms.


Assuntos
Aedes , Arbovírus , Vírus de Insetos , Infecção por Zika virus , Zika virus , Feminino , Animais , Mosquitos Vetores
2.
Viruses ; 16(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543716

RESUMO

We investigated the interaction between the insect-specific virus, Piura virus (PIUV), and the arbovirus Zika virus (ZIKV) in Aedes albopictus cells. We performed coinfection experiments in C6/36 cells. Piura virus (Cor 33 strain, Colombia) and ZIKV (PRVABC58 strain, Puerto Rico) were co-inoculated into C6/36 cells using two multiplicity of infection (MOI) combinations: 0.1 for both viruses and 1.0 for ZIKV, 0.1 for PIUV. Wells were infected in triplicate with either PIUV and ZIKV coinfection, ZIKV-only, or PIUV-only. Mock infected cells served as control wells. The cell suspension was collected daily 7 days post-infection. Zika virus load was titrated by TCID50 on Vero 76 cells. The ZIKV-only infection and PIUV and ZIKV coinfection experiments were also quantified by RT-qPCR. We also investigated whether ZIKV interfered in the PIUV replication. PIUV suppressed the replication of ZIKV, resulting in a 10,000-fold reduction in ZIKV titers within 3 days post-infection. PIUV viral loads were not reduced in the presence of ZIKV. We conclude that, when concurrently infected, PIUV suppresses ZIKV in C6/36 cells while ZIKV does not interfere in PIUV replication.


Assuntos
Aedes , Coinfecção , Vírus de Insetos , Infecção por Zika virus , Zika virus , Animais , Replicação Viral
3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38519112

RESUMO

The significance of gut microbiota in regulating animal immune response to viral infection is increasingly recognized. However, how chronic bee paralysis virus (CBPV) exploits host immune to disturb microbiota for its proliferation remains elusive. Through histopathological examination, we discovered that the hindgut harbored the highest level of CBPV, and displayed visible signs of damages. The metagenomic analysis showed that a notable reduction in the levels of Snodgrassella alvi and Lactobacillus apis, and a significant increase in the abundance of the opportunistic pathogens such as Enterobacter hormaechei and Enterobacter cloacae following CBPV infection. Subsequent co-inoculation experiments showed that these opportunistic pathogens facilitated the CBPV proliferation, leading to accelerated mortality in bees and exacerbation of bloated abdomen symptoms after CBPV infection. The expression level of antimicrobial peptide (AMP) was found to be significantly up-regulated by over 1000 times in response to CBPV infection, as demonstrated by subsequent transcriptome and quantitative real-time PCR investigations. In particular, through correlation analysis and a bacteriostatic test revealed that the AMPs did not exhibit any inhibitory effect against the two opportunistic pathogens. However, they did demonstrate inhibitory activity against S. alvi and L. apis. Our findings provide different evidence that the virus infection may stimulate and utilize the host's AMPs to eradicate probiotic species and facilitate the proliferation of opportunistic bacteria. This process weakens the intestinal barrier and ultimately resulting in the typical bloated abdomen.


Assuntos
Microbioma Gastrointestinal , Vírus de Insetos , Vírus de RNA , Viroses , Vírus , Abelhas , Animais , Vírus de RNA/fisiologia , Peptídeos Antimicrobianos , Vírus de Insetos/fisiologia , Paralisia
4.
Sci Rep ; 14(1): 352, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172530

RESUMO

The Colorado potato beetle is one of the most devastating potato pests in the world. However, its viral pathogens, which might have potential in pest control, have remained unexplored. With high-throughput sequencing of Colorado potato beetle samples derived from prepupal larvae which died from an unknown infection, we have identified two previously unknown RNA viruses and assembled their nearly complete genome sequences. The subsequent genetic and phylogenetic analysis demonstrated that the viruses, tentatively named Leptinotarsa iflavirus 1 and Leptinotarsa solinvi-like virus 1, are the novel representatives of the Iflaviridae and Solinviviridae families, respectively. To the best of our knowledge, these are the first sequencing-confirmed insect viruses derived from Colorado potato beetle samples. We propose that Leptinotarsa iflavirus 1 may be associated with a lethal disease in the Colorado potato beetle.


Assuntos
Besouros , Vírus de Insetos , Solanum tuberosum , Humanos , Animais , Besouros/genética , Solanum tuberosum/genética , Filogenia , Larva/genética
5.
Arch Insect Biochem Physiol ; 115(1): e22082, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288492

RESUMO

Bombyx mori bidensovirus (BmBDV) is one of the most important pathogens of silkworm. It mainly infects midgut cells of silkworm and causes losses to the sericulture industry. Long noncoding RNAs (lncRNAs) have been reported to play an important role in the regulation of antiviral immune response in silkworm. To explore whether lncRNAs are involved in BmBDV infection and immune response of silkworm, we performed a comparative transcriptome analysis to identify the lncRNAs and mRNAs between the BmBDV infected and noninfected silkworm larvae at the early stage. A total of 16,069 genes and 974 candidate lncRNAs were identified, among which 142 messenger RNA (mRNAs) and four lncRNAs were differentially expressed (DE). Target gene prediction revealed that 142 DEmRNAs were coexpressed with four DElncRNAs, suggesting that the expression of mRNA is mainly affected through trans-regulation activities. A regulatory network of DElncRNAs and DEmRNAs was constructed, showing that many genes targeted by different DElncRNAs are involved in metabolism and immunity, which implies that these genes and lncRNAs play an important role in the replication of BmBDV. Our results will help us to improve our understanding of lncRNA-mediated regulatory roles in BmBDV infection, providing a new perspective for further exploring the interaction between host and BmBDV.


Assuntos
Bombyx , Vírus de Insetos , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , Vírus de Insetos/genética , Perfilação da Expressão Gênica
6.
Sci China Life Sci ; 67(1): 175-187, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946067

RESUMO

Invertebrate species are a natural reservoir of viral genetic diversity, and invertebrate pests are widely distributed in crop fields. However, information on viruses infecting invertebrate pests of crops is limited. In this report, we describe the deep metatranscriptomic sequencing of 88 invertebrate samples covering all major invertebrate pests in rice fields. We identified 296 new RNA viruses and 13 known RNA viruses. These viruses clustered within 31 families, with many highly divergent viruses constituting potentially new families and genera. Of the identified viruses, 13 RNA viruses clustered within the Fiersviridae family of bacteriophages, and 48 RNA viruses clustered within families and genera of mycoviruses. We detected known rice viruses in novel invertebrate hosts at high abundances. Furthermore, some novel RNA viruses have genome structures closely matching to known plant viruses and clustered within genera of several plant virus species. Forty-five potential insect pathogenic RNA viruses were detected in invertebrate species. Our analysis revealed that host taxonomy plays a major role and geographical location plays an important role in structuring viral diversity. Cross-species transmission of RNA viruses was detected between invertebrate hosts. Newly identified viral genomes showed extensive variation for invertebrate viral families or genera. Together, the large-scale metatranscriptomic analysis greatly expands our understanding of RNA viruses in rice invertebrate species, the results provide valuable information for developing efficient strategies to manage insect pests and virus-mediated crop diseases.


Assuntos
Vírus de Insetos , Oryza , Vírus de Plantas , Vírus de RNA , Animais , Oryza/genética , Invertebrados , Vírus de RNA/genética , Insetos , Vírus de Insetos/genética , Vírus de Plantas/genética , Variação Genética , Filogenia , Genoma Viral/genética
7.
Mol Ecol ; 33(3): e17226, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018898

RESUMO

Insect-specific viruses (ISVs) can affect insect health and fitness, but can also interact with other insect-associated microorganisms. Despite this, ISVs are often studied in isolation from each other, in laboratory populations. Consequently, their diversity, prevalence and associations with other viruses in field populations are less known, yet these parameters are important to understanding virus epidemiology. To help address this knowledge gap, we assessed the diversity, prevalence and coinfections of three ISVs (horizontally transmitted cripavirus, biparentally transmitted sigmavirus and maternally transmitted iflavirus) in 29 field populations of Queensland fruit fly, Australia's most significant horticultural pest, in the context of their different transmission modes. We detected new virus variant diversity. In contrast to the very high virus prevalence in laboratory populations, 46.8% of 293 field flies carried one virus and 4.8% had two viruses. Cripavirus and sigmavirus occurred in all regions, while iflavirus was restricted to subtropical and tropical regions. Cripavirus was most prevalent (37.5%), followed by sigmavirus (13.7%) and iflavirus (4.4%). Cripavirus coinfected some flies with either one of the two vertically transmitted viruses. However, sigmavirus did not coinfect individuals with iflavirus. Three different modelling approaches detected negative association patterns between sigmavirus and iflavirus, consistent with the absence of such coinfections in laboratory populations. This may be linked with their maternal transmission and the ineffective paternal transmission of sigmavirus. Furthermore, we found that, unlike sigmavirus and iflavirus, cripavirus load was higher in laboratory than field flies. Laboratory and mass-rearing conditions may increase ISV prevalence and load due to increased transmission opportunities. We conclude that a combination of field and laboratory studies is needed to uncover ISV interactions and further our understanding of ISV epidemiology.


Assuntos
Coinfecção , Vírus de Insetos , Vírus de RNA , Tephritidae , Humanos , Animais , Insetos
8.
Insect Sci ; 31(1): 255-270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37358052

RESUMO

Sap-sucking insects often transmit plant viruses but also carry insect viruses, which infect insects but not plants. The impact of such insect viruses on insect host biology and ecology is largely unknown. Here, we identified a novel insect-specific virus carried by brown citrus aphid (Aphis citricidus), which we tentatively named Aphis citricidus picornavirus (AcPV). Phylogenetic analysis discovered a monophyletic cluster with AcPV and other unassigned viruses, suggesting that these viruses represent a new family in order Picornavirales. Systemic infection with AcPV triggered aphid antiviral immunity mediated by RNA interference, resulting in asymptomatic tolerance. Importantly, we found that AcPV was transmitted horizontally by secretion of the salivary gland into the feeding sites of plants. AcPV influenced aphid stylet behavior during feeding and increased the time required for intercellular penetration, thus promoting its transmission among aphids with plants as an intermediate site. The gene expression results suggested that this mechanism was linked with transcription of salivary protein genes and plant defense hormone signaling. Together, our results show that the horizontal transmission of AcPV in brown citrus aphids evolved in a manner similar to that of the circulative transmission of plant viruses by insect vectors, thus providing a new ecological perspective on the activity of insect-specific viruses found in aphids and improving the understanding of insect virus ecology.


Assuntos
Afídeos , Citrus , Vírus de Insetos , Vírus de Plantas , Vírus de RNA , Animais , Afídeos/genética , RNA/metabolismo , Vírus de Insetos/genética , Filogenia , Vírus de RNA/genética , Vírus de Plantas/genética , Doenças das Plantas
9.
J Virol ; 98(1): e0150723, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38095414

RESUMO

A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Humanos , Aedes/virologia , Dengue/transmissão , Vírus da Dengue/genética , Vírus de Insetos , Mosquitos Vetores/virologia , Filogenia , Sorogrupo
10.
Virus Res ; 339: 199266, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37944758

RESUMO

Surveillance of mosquito vectors is critical for early detection, prevention and control of vector borne diseases. In this study we used advanced molecular tools, such as DNA barcoding in combination with novel sequencing technologies to discover new and already known viruses in genetically identified mosquito species. Mosquitoes were captured using BG sentinel traps in Western Kenya during May and July 2019, and homogenized individually before pooled into groups of ten mosquitoes. The pools and individual samples were then used for molecular analysis and to infect cell cultures. Of a total of fifty-four (54) 10-pools, thirteen (13) showed cytopathic effect (CPE) on VeroB4 cells, eighteen (18) showed CPE on C6/36 cells. Eight (8) 10-pools out of the 31 CPE positive pools showed CPE on both VeroB4 and C6/36 cells. When using reverse transcriptase polymerase chain reaction (RT-PCR), Sanger sequencing and Twist Comprehensive Viral Research Panel (CVRP) (Twist Biosciences), all pools were found negative by RT-PCR when using genus specific primers targeting alphaviruses, orthobunyaviruses and virus specific primers towards o'nyong-nyong virus, chikungunya virus and Sindbis virus (previously reported to circulate in the region). Interestingly, five pools were RT-PCR positive for flavivirus. Two of the RT-PCR positive pools showed CPE on both VeroB4 and C6/36 cells, two pools showed CPE on C6/36 cells alone and one pool on VeroB4 cells only. Fifty individual mosquito homogenates from the five RT-PCR positive 10-pools were analyzed further for flavivirus RNA. Of these, 19 out of the 50 individual mosquito homogenates indicated the presence of flavivirus RNA. Barcoding of the flavivirus positive mosquitoes revealed the mosquito species as Aedes aegypti (1), Mansonia uniformis (6), Anopheles spp (3), Culex pipiens (5), Culex spp (1), Coquilletidia metallica (2) and Culex quinquefasciatus (1). Of the 19 flavivirus positive individual mosquitoes, five (5) virus positive homogenates were sequenced. Genome sequences of two viruses were completed. One was identified as the single-stranded RNA Culex flavivirus and the other as the double-stranded RNA Hubei chryso-like virus 1. Both viruses were found in the same Anopheles spp. homogenate extracted from a sample that showed CPE on both VeroB4 and C6/36 cells. The detection of both viruses in a single mosquito homogenate indicated coinfection. Phylogenetic analyses suggested that the Culex flavivirus sequence detected was closely related to a Culex flavivirus isolated from Uganda in 2008. All four Hubei chryso-like virus 1 segments clusters closely to Hubei chryso-like virus 1 strains isolated in Australia, China and USA. Two novel strains of insect-specific viruses in Anopheles mosquitoes were detected and characterized.


Assuntos
Anopheles , Culex , Flavivirus , Vírus de Insetos , Animais , Anopheles/genética , Filogenia , Quênia , Vírus de Insetos/genética , RNA
11.
Sci Rep ; 13(1): 22081, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086841

RESUMO

Mosquitoes (Diptera: Culicidae) are primary vectors of arthropod-borne viruses (arboviruses) that pose significant public health threats. Recent advances in sequencing technology emphasize the importance of understanding the arboviruses and insect-specific viruses (ISVs) hosted by mosquitoes, collectively called the "virome". Colombia, a tropical country with favorable conditions for the development and adaptation of multiple species of Culicidae, offers a favorable scenario for the transmission of epidemiologically important arboviruses. However, entomovirological surveillance studies are scarce in rural areas of the country, where humans, mosquitoes, and animals (both domestic and wild) coexist, leading to a higher risk of transmission of zoonotic diseases to humans. Thus, our study aimed to perform a preliminary metagenomic analysis of the mosquitoes of special relevance to public health belonging to the genera Ochlerotatus, Culex, Limatus, Mansonia, Psorophora, and Sabethes, within a rural savanna ecosystem in the Colombian Orinoco. We employed third-generation sequencing technology (Oxford Nanopore Technologies; ONT) to describe the virome of mosquitoes samples. Our results revealed that the virome was primarily shaped by insect-specific viruses (ISVs), with the Iflaviridae family being the most prevalent across all mosquito samples. Furthermore, we identified a group of ISVs that were common in all mosquito species tested, displaying the highest relative abundance concerning other groups of viruses. Notably, Hanko iflavirus-1 was especially prevalent in Culex eknomios (88.4%) and Ochlerotatus serratus (88.0%). Additionally, other ISVs, such as Guadalupe mosquito virus (GMV), Hubei mosquito virus1 (HMV1), Uxmal virus, Tanay virus, Cordoba virus, and Castlerea virus (all belonging to the Negevirus genus), were found as common viral species among the mosquitoes, although in lower proportions. These initial findings contribute to our understanding of ISVs within mosquito vectors of the Culicidae family in the Eastern Plains of Colombia. We recommend that future research explore deeper into ISV species shared among diverse vector species, and their potential interactions with arboviruses. In addition, we also showed the need for a thorough exploration of the influence of local rural habitat conditions on the shape of the virome in mosquito vectors.


Assuntos
Aedes , Arbovírus , Culex , Culicidae , Vírus de Insetos , Vírus , Animais , Humanos , Colômbia , Ecossistema , Arbovírus/genética
12.
Parasit Vectors ; 16(1): 402, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932781

RESUMO

BACKGROUND: Cell fusing agent virus (CFAV) was the first insect-specific virus to be characterized, and has been reported to negatively influence the growth of arboviruses such as dengue, Zika, and La Cross, making it a promising biocontrol agent for mosquito-borne disease prevention. Aedes aegypti Aag2 cells were naturally infected with CFAV. However, the ability of this virus to stably colonize an Ae. aegypti population via artificial infection and how it influences the vector competence of this mosquito have yet to be demonstrated. METHODS: CFAV used in this study was harvested from Aag2 cells and its complete genome sequence was obtained by polymerase chain reaction and rapid amplification of complementary DNA ends, followed by Sanger sequencing. Phylogenetic analysis of newly identified CFAV sequences and other sequences retrieved from GenBank was performed. CFAV stock was inoculated into Ae. aegypti by intrathoracic injection, the survival of parental mosquitoes was monitored and CFAV copies in the whole bodies, ovaries, and carcasses of the injected F0 generation and in the whole bodies of the F1 generation on different days were examined by reverse transcription-quantitative polymerase chain reaction. RESULTS: The virus harvested from Aag2 cells comprised a mixture of three CFAV strains. All genome sequences of CFAV derived from Aag2 cells clustered into one clade but were far from those isolated or identified from Ae. aegypti. Aag2-derived CFAV efficiently replicated in the mosquito body and did not attenuate the survival of Ae. aegypti. However, the viral load in the ovarian tissues was much lower than that in other tissues and the virus could not passage to the offspring by vertical transmission. CONCLUSIONS: The results of this study demonstrate that Aag2-derived CFAV was not vertically transmitted in Ae. aegypti and provide valuable information on the colonization of mosquitoes by this virus.


Assuntos
Aedes , Flavivirus , Vírus de Insetos , Infecção por Zika virus , Zika virus , Animais , Linhagem Celular , Filogenia , Mosquitos Vetores
13.
PLoS Pathog ; 19(10): e1011726, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37883353

RESUMO

Fungi are highly widespread and commonly colonize multicellular organisms that live in natural environments. Notably, studies on viruses infecting plant-associated fungi have revealed the interesting phenomenon of the cross-kingdom transmission of viruses and viroids from plants to fungi. This implies that fungi, in addition to absorbing water, nutrients, and other molecules from the host, can acquire intracellular parasites that reside in the host. These findings further suggest that fungi can serve as suitable alternative hosts for certain plant viruses and viroids. Given the frequent coinfection of fungi and viruses in humans/animals, the question of whether fungi can also acquire animal viruses and serve as their hosts is very intriguing. In fact, the transmission of viruses from insects to fungi has been observed. Furthermore, the common release of animal viruses into the extracellular space (viral shedding) could potentially facilitate their acquisition by fungi. Investigations of the cross-infection of animal viruses in fungi may provide new insights into the epidemiology of viral diseases in humans and animals.


Assuntos
Vírus de Insetos , Vírus de Plantas , Viroides , Animais , Humanos , Doenças das Plantas/microbiologia , Fungos , Plantas
14.
PLoS One ; 18(9): e0290902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733661

RESUMO

Nitric oxide synthase 3 (NOS3) eluting polyvinyl alcohol-based hydrogels have a large potential in medical applications and device coatings. NOS3 promotes nitric oxide and nitrate production and can effectively be delivered using insect cell viruses, termed baculoviruses. Nitric oxide is known for regulating cell proliferation, promoting blood vessel vasodilation, and inhibiting bacterial growth. The polyvinyl alcohol (PVA)-based hydrogels investigated here sustained baculovirus elution from five to 25 days, depending on the hydrogel composition. The quantity of viable baculovirus loaded significantly declined with each freeze-thaw from one to four (15.3 ± 2.9% vs. 0.9 ± 0.5%, respectively). The addition of gelatin to the hydrogels protected baculovirus viability during the freeze-thaw cycles, resulting in a loading capacity of 94.6 ± 1.2% with sustained elution over 23 days. Adding chitosan, PEG-8000, and gelatin to the hydrogels altered the properties of the hydrogel, including swelling, blood coagulation, and antimicrobial effects, beneficial for different therapeutic applications. Passive absorption of the baculovirus into PVA hydrogels exhibited the highest baculovirus loading (96.4 ± 0.6%) with elution over 25 days. The baculovirus-eluting hydrogels were hemocompatible and non-cytotoxic, with no cell proliferation or viability reduction after incubation. This PVA delivery system provides a method for high loading and sustained release of baculoviruses, sustaining nitric oxide gene delivery. This proof of concept has clinical applications as a medical device or stent coating by delivering therapeutic genes, improving blood compatibility, preventing thrombosis, and preventing infection.


Assuntos
Baculoviridae , Vírus de Insetos , Baculoviridae/genética , Gelatina , Óxido Nítrico , Álcool de Polivinil , Hidrogéis
15.
PLoS Pathog ; 19(8): e1011588, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37651317

RESUMO

Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.


Assuntos
Vírus de Insetos , Animais , Ecologia , Vetores Genéticos , Genômica , Insetos
16.
Braz J Microbiol ; 54(3): 1447-1458, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531005

RESUMO

The decline in honey bee colonies in different parts of the world in recent years is due to different reasons, such as agricultural practices, climate changes, the use of chemical insecticides, and pests and diseases. Viral infections are one of the main causes leading to honey bee population declines, which have a major economic impact due to honey production and pollination. To investigate the presence of viruses in bees in southern Brazil, we used a metagenomic approach to sequence adults' samples of concentrated extracts from Apis mellifera collected in fifteen apiaries of six municipalities in the Rio Grande do Sul state, Brazil, between 2016 and 2017. High-throughput sequencing (HTS) of these samples resulted in the identification of eight previously known viruses (Apis rhabdovirus 1 (ARV-1), Acute bee paralysis virus (ABPV), Aphid lethal paralysis virus (ALPV), Black queen cell virus (BQCV), Bee Macula-like virus (BeeMLV), Deformed wing virus (DWV), Lake Sinai Virus NE (LSV), and Varroa destructor virus 3 (VDV-3)) and a thogotovirus isolate. This thogotovirus shares high amino acid identities in five of the six segments with Varroa orthomyxovirus 1, VOV-1 (98.36 to 99.34% identity). In contrast, segment 4, which codes for the main glycoprotein (GP), has no identity with VOV-1, as observed for the other segments, but shares an amino acid identity of 34-38% with other glycoproteins of viruses from the Orthomyxoviridae family. In addition, the putative thogotovirus GP also shows amino acid identities ranging from 33 to 41% with the major glycoprotein (GP64) of insect viruses of the Baculoviridae family. To our knowledge, this is the second report of a thogotovirus found in bees and given this information, this thogotovirus isolate was tentatively named Apis thogotovirus 1 (ATHOV-1). The detection of multiple viruses in bees is important to better understand the complex interactions between viruses and their hosts. By understanding these interactions, better strategies for managing viral infections in bees and protecting their populations can be developed.


Assuntos
Abelhas , Vírus de Insetos , Abelhas/virologia , Metagenômica , Sequenciamento de Nucleotídeos em Larga Escala , Brasil , Vírus de Insetos/classificação , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Filogenia , Proteínas Virais/química , Proteínas Virais/genética
17.
Pest Manag Sci ; 79(9): 2975-2991, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37103223

RESUMO

Virus-like particles (VLPs) represent a biodegradable, biocompatible nanomaterial made from viral coat proteins that can improve the delivery of antigens, drugs, nucleic acids, and other substances, with most applications in human and veterinary medicine. Regarding agricultural viruses, many insect and plant virus coat proteins have been shown to assemble into VLPs accurately. In addition, some plant virus-based VLPs have been used in medical studies. However, to our knowledge, the potential application of plant/insect virus-based VLPs in agriculture remains largely underexplored. This review focuses on why and how to engineer coat proteins of plant/insect viruses as functionalized VLPs, and how to exploit VLPs in agricultural pest control. The first part of the review describes four different engineering strategies for loading cargo at the inner or the outer surface of VLPs depending on the type of cargo and purpose. Second, the literature on plant and insect viruses the coat proteins of which have been confirmed to self-assemble into VLPs is reviewed. These VLPs are good candidates for developing VLP-based agricultural pest control strategies. Lastly, the concepts of plant/insect virus-based VLPs for delivering insecticidal and antiviral components (e.g., double-stranded RNA, peptides, and chemicals) are discussed, which provides future prospects of VLP application in agricultural pest control. In addition, some concerns are raised about VLP production on a large scale and the short-term resistance of hosts to VLP uptake. Overall, this review is expected to stimulate interest and research exploring plant/insect virus-based VLP applications in agricultural pest management. © 2023 Society of Chemical Industry.


Assuntos
Vírus de Insetos , Nanopartículas , Humanos , Vírus de Insetos/metabolismo , Proteínas do Capsídeo/genética , Agricultura , Controle de Pragas
18.
Nat Commun ; 14(1): 1357, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914655

RESUMO

In most eukaryotes, biparentally inherited nuclear genomes and maternally inherited cytoplasmic genomes have different evolutionary interests. Strongly female-biased sex ratios that are repeatedly observed in various arthropods often result from the male-specific lethality (male-killing) induced by maternally inherited symbiotic bacteria such as Spiroplasma and Wolbachia. However, despite some plausible case reports wherein viruses are raised as male-killers, it is not well understood how viruses, having much smaller genomes than bacteria, are capable of inducing male-killing. Here we show that a maternally inherited double-stranded RNA (dsRNA) virus belonging to the family Partitiviridae (designated DbMKPV1) induces male-killing in Drosophila. DbMKPV1 localizes in the cytoplasm and possesses only four genes, i.e., one gene in each of the four genomic segments (dsRNA1-dsRNA4), in contrast to ca. 1000 or more genes possessed by Spiroplasma or Wolbachia. We also show that a protein (designated PVMKp1; 330 amino acids in size), encoded by a gene on the dsRNA4 segment, is necessary and sufficient for inducing male-killing. Our results imply that male-killing genes can be easily acquired by symbiotic viruses through reassortment and that symbiotic viruses are hidden players in arthropod evolution. We anticipate that host-manipulating genes possessed by symbiotic viruses can be utilized for controlling arthropods.


Assuntos
Drosophila melanogaster , Genes Virais , Vírus de Insetos , Razão de Masculinidade , Simbiose , Drosophila melanogaster/embriologia , Drosophila melanogaster/virologia , Vírus de Insetos/genética , Genes Virais/fisiologia , Masculino , Animais , Desenvolvimento Embrionário , RNA Viral/fisiologia , RNA de Cadeia Dupla/fisiologia , Evolução Molecular , Fases de Leitura Aberta/genética , Caracteres Sexuais , Feminino
19.
STAR Protoc ; 4(1): 102033, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853733

RESUMO

Characterization of double-stranded (ds)RNAs is relevant to the understanding of viral replication and immune sensing. Here, we provide a protocol describing the use of anti-dsRNA antibodies for immunofluorescence and immunoblotting in virus-infected insect cells, which can also be applied to tissues and other organisms. We describe the procedures to prepare insect cells for viral infection, followed by RNA extraction and in vitro production of synthetic dsRNA controls. We then detail the steps for dsRNA detection by immunoblotting and immunofluorescence. For complete details on the use and execution of this protocol, please refer to de Faria et al. (2022).1.


Assuntos
Vírus de Insetos , Insetos , RNA de Cadeia Dupla , Insetos/citologia , Insetos/virologia , Vírus de Insetos/genética , Imunofluorescência , Immunoblotting
20.
Nat Microbiol ; 8(1): 135-149, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604511

RESUMO

Aedes aegypti and A. albopictus mosquitoes are the main vectors for dengue virus (DENV) and other arboviruses, including Zika virus (ZIKV). Understanding the factors that affect transmission of arboviruses from mosquitoes to humans is a priority because it could inform public health and targeted interventions. Reasoning that interactions among viruses in the vector insect might affect transmission, we analysed the viromes of 815 urban Aedes mosquitoes collected from 12 countries worldwide. Two mosquito-specific viruses, Phasi Charoen-like virus (PCLV) and Humaita Tubiacanga virus (HTV), were the most abundant in A. aegypti worldwide. Spatiotemporal analyses of virus circulation in an endemic urban area revealed a 200% increase in chances of having DENV in wild A. aegypti mosquitoes when both HTV and PCLV were present. Using a mouse model in the laboratory, we showed that the presence of HTV and PCLV increased the ability of mosquitoes to transmit DENV and ZIKV to a vertebrate host. By transcriptomic analysis, we found that in DENV-infected mosquitoes, HTV and PCLV block the downregulation of histone H4, which we identify as an important proviral host factor in vivo.


Assuntos
Aedes , Arbovírus , Vírus da Dengue , Dengue , Vírus de Insetos , Vírus de RNA , Infecção por Zika virus , Zika virus , Animais , Humanos , Zika virus/genética , Vírus de Insetos/fisiologia , Vírus da Dengue/genética , Mosquitos Vetores , Arbovírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...