Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 957
Filtrar
2.
Neurology ; 102(5): e209164, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373275

RESUMO

Brody disease is a rare autosomal recessive myopathy, caused by pathogenic variants in the ATP2A1 gene. It is characterized by an exercise-induced delay in muscle relaxation, often reported as muscle stiffness. Children may manifest with an abnormal gait and difficulty running. Delayed relaxation is commonly undetected, resulting in a long diagnostic delay. Almost all published cases so far were adults with childhood onset and adult diagnosis. With diagnostic next-generation sequencing, an increasing number of patients are diagnosed in childhood. We describe the clinical and genetic features of 9 children from 6 families with Brody disease. All presented with exercise-induced delayed relaxation, reported as difficulty running and performing sports. Muscle strength and mass was normal, and several children even had an athletic appearance. However, the walking and running patterns were abnormal. The diagnostic delay ranged between 2 and 7 years. Uniformly, a wide range of other disorders were considered before genetic testing was performed, revealing pathogenic genetic variants in ATP2A1. To conclude, this case series is expected to improve clinical recognition and timely diagnosis of Brody disease in children. We propose that ATP2A1 should be added to gene panels for congenital myopathies, developmental and movement disorders, and muscle channelopathies.


Assuntos
Transtornos dos Movimentos , Doenças Musculares , Miotonia Congênita , Adulto , Criança , Humanos , Diagnóstico Tardio , Mutação/genética , Doenças Musculares/genética , Marcha
3.
Eur J Neurol ; 31(4): e16207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270354

RESUMO

BACKGROUND AND PURPOSE: Myotonia congenita (MC) is a muscle channelopathy in which pathogenic variants in a key sarcolemmal chloride channel Gene (CLCN1) cause myotonia. This study used muscle magnetic resonance imaging (MRI) to quantify contractile properties and fat replacement of muscles in a Danish cohort of MC patients. METHODS: Individuals with the Thomsen (dominant) and Becker (recessive) variants of MC were studied. Isometric muscle strength, whole-body MRI, and clinical data were collected. The degree of muscle fat replacement of thigh, calf, and forearm muscles was quantitively calculated on Dixon MRI as fat fractions (FFs). Contractility was evaluated as the muscle strength per contractile muscle cross-sectional area (PT/CCSA). Muscle contractility was compared with clinical data. RESULTS: Intramuscular FF was increased and contractility reduced in calf and in forearm muscles compared with controls (FF = 7.0-14.3% vs. 5.3-9.6%, PT/CCSA = 1.1-4.9 Nm/cm2 vs. 1.9-5.8 Nm/cm2 [p < 0.05]). Becker individuals also showed increased intramuscular FF and reduced contractility of thigh muscles (FF = 11.9% vs. 9.2%, PT/CCSA = 1.9 Nm/cm2 vs. 3.2 Nm/cm2 [p < 0.05]). Individual muscle analysis showed that increased FF was limited to seven of 18 examined muscles (p < 0.05). There was a weak correlation between reduced contractility and severity of symptoms. CONCLUSIONS: Individuals with MC have increased fat replacement and reduced contractile properties of muscles. Nonetheless, changes were small and likely did not impact clinically on their myotonic symptoms.


Assuntos
Miotonia Congênita , Humanos , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Miotonia Congênita/patologia , Mutação , Músculo Esquelético/patologia , Força Muscular , Imageamento por Ressonância Magnética
4.
Hum Mol Genet ; 33(3): 233-244, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37883471

RESUMO

Mutations in skeletal muscle α-actin (Acta1) cause myopathies. In a mouse model of congenital myopathy, heterozygous Acta1 (H40Y) knock-in (Acta1+/Ki) mice exhibit features of human nemaline myopathy, including premature lethality, severe muscle weakness, reduced mobility, and the presence of nemaline rods in muscle fibers. In this study, we investigated the impact of Acta1 (H40Y) mutation on the neuromuscular junction (NMJ). We found that the NMJs were markedly fragmented in Acta1+/Ki mice. Electrophysiological analysis revealed a decrease in amplitude but increase in frequency of miniature end-plate potential (mEPP) at the NMJs in Acta1+/Ki mice, compared with those in wild type (Acta1+/+) mice. Evoked end-plate potential (EPP) remained similar at the NMJs in Acta1+/Ki and Acta1+/+ mice, but quantal content was increased at the NMJs in Acta1+/Ki, compared with Acta1+/+ mice, suggesting a homeostatic compensation at the NMJs in Acta1+/Ki mice to maintain normal levels of neurotransmitter release. Furthermore, short-term synaptic plasticity of the NMJs was compromised in Acta1+/Ki mice. Together, these results demonstrate that skeletal Acta1 H40Y mutation, albeit muscle-origin, leads to both morphological and functional defects at the NMJ.


Assuntos
Doenças Musculares , Miopatias da Nemalina , Miotonia Congênita , Humanos , Camundongos , Animais , Actinas/genética , Músculo Esquelético/fisiologia , Miopatias da Nemalina/genética , Junção Neuromuscular/genética , Modelos Animais de Doenças , Mutação
6.
Psychiatr Danub ; 35(Suppl 2): 415-416, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37800267
7.
Sci Rep ; 13(1): 14659, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670077

RESUMO

Physiological muscle contraction requires an intact ligand gating mechanism of the ryanodine receptor 1 (RyR1), the Ca2+-release channel of the sarcoplasmic reticulum. Some mutations impair the gating and thus cause muscle disease. The RyR1 mutation T4706M is linked to a myopathy characterized by muscle weakness. Although, low expression of the T4706M RyR1 protein can explain in part the symptoms, little is known about the function RyR1 channels with this mutation. In order to learn whether this mutation alters channel function in a manner that can account for the observed symptoms, we examined RyR1 channels isolated from mice homozygous for the T4709M (TM) mutation at the single channel level. Ligands, including Ca2+, ATP, Mg2+ and the RyR inhibitor dantrolene were tested. The full conductance of the TM channel was the same as that of wild type (wt) channels and a population of partial open (subconductive) states were not observed. However, two unique sub-populations of TM RyRs were identified. One half of the TM channels exhibited high open probability at low (100 nM) and high (50 µM) cytoplasmic [Ca2+], resulting in Ca2+-insensitive, constitutively high Po channels. The rest of the TM channels exhibited significantly lower activity within the physiologically relevant range of cytoplasmic [Ca2+], compared to wt. TM channels retained normal Mg2+ block, modulation by ATP, and inhibition by dantrolene. Together, these results suggest that the TM mutation results in a combination of primary and secondary RyR1 dysfunctions that contribute to disease pathogenesis.


Assuntos
Doenças Musculares , Miotonia Congênita , Animais , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina , Dantroleno , Citoplasma , Trifosfato de Adenosina
8.
J Clin Invest ; 134(5)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37651202

RESUMO

BACKGROUNDFXLEARN, the first-ever large multisite trial of effects of disease-targeted pharmacotherapy on learning, was designed to explore a paradigm for measuring effects of mechanism-targeted treatment in fragile X syndrome (FXS). In FXLEARN, the effects of metabotropic glutamate receptor type 5 (mGluR5) negative allosteric modulator (NAM) AFQ056 on language learning were evaluated in 3- to 6-year-old children with FXS, expected to have more learning plasticity than adults, for whom prior trials of mGluR5 NAMs have failed.METHODSAfter a 4-month single-blind placebo lead-in, participants were randomized 1:1 to AFQ056 or placebo, with 2 months of dose optimization to the maximum tolerated dose, then 6 months of treatment during which a language-learning intervention was implemented for both groups. The primary outcome was a centrally scored videotaped communication measure, the Weighted Communication Scale (WCS). Secondary outcomes were objective performance-based and parent-reported cognitive and language measures.RESULTSFXLEARN enrolled 110 participants, randomized 99, and had 91 who completed the placebo-controlled period. Although both groups made language progress and there were no safety issues, the change in WCS score during the placebo-controlled period was not significantly different between the AFQ056 and placebo-treated groups, nor were there any significant between-group differences in change in any secondary measures.CONCLUSIONDespite the large body of evidence supporting use of mGluR5 NAMs in animal models of FXS, this study suggests that this mechanism of action does not translate into benefit for the human FXS population and that better strategies are needed to determine which mechanisms will translate from preclinical models to humans in genetic neurodevelopmental disorders.TRIAL REGISTRATIONClincalTrials.gov NCT02920892.FUNDING SOURCESNeuroNEXT network NIH grants U01NS096767, U24NS107200, U24NS107209, U01NS077323, U24NS107183, U24NS107168, U24NS107128, U24NS107199, U24NS107198, U24NS107166, U10NS077368, U01NS077366, U24NS107205, U01NS077179, and U01NS077352; NIH grant P50HD103526; and Novartis IIT grant AFQ056X2201T for provision of AFQ056.


Assuntos
Fissura Palatina , Síndrome do Cromossomo X Frágil , Indóis , Hipertermia Maligna , Miotonia Congênita , Adulto , Animais , Criança , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Método Simples-Cego , Aprendizagem , Idioma
9.
Exp Clin Transplant ; 21(Suppl 2): 72-77, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37496349

RESUMO

Czechoslovakia was created after the First World War in 1918 as a common state of Czechs, Moravians, and Slovaks. After several transformations, 2 separate republics were established from Czechoslovakia in 1993: the Czech Republic and the Slovak Republic. The objective of this article was to analyze the Prague Spring (1968), the period after the invasion into Czechoslovakia by Warsaw Pact Troops (1968), the period of cruel normalization (1968-1989), and the influence of Soviet domination in the Czechoslovak Republic on people with higher education. The invasion of the Warsaw Pact Troops into Czechoslovakia and the period of normalization had a highly negative impact on the life and work of the Czechoslovak people. Many eminent scientists left the Republic. The reason for this was persecution for their attitude to the situation behind the Iron Curtain. Professor Jan Brod, a world-renowned nephrologist and cardiologist, one of the signatories of the Two Thousand Words Manifesto, emigrated to the Federal Republic of Germany in 1968. Professor William Ganz, a world-renowned cardiologist of Slovak origin, emigrated to the United States in 1966. With Jeremy Swan, he was a coinventor of the Swan-Ganz balloon flotation catheter. Primary reasons for the emigration of scientists from Czechoslovakia was the suppression of the nascent democracy (the Prague Spring in 1968 by the invasion of Warsaw Pact Troops and the continuation of Soviet rule).


Assuntos
Emigração e Imigração , Miotonia Congênita , Masculino , Humanos , Estados Unidos , Tchecoslováquia , Eslováquia , Relações Interpessoais
10.
Genes (Basel) ; 14(7)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37510268

RESUMO

BACKGROUND: Congenital myopathies are a group of clinically, genetically, and histologically heterogeneous diseases caused by mutations in a large group of genes. One of these is CACNA1S, which is recognized as the cause of Dihydropyridine Receptor Congenital Myopathy. METHODS: To better characterize the phenotypic spectrum of CACNA1S myopathy, we conducted a systematic review of cases in the literature through three electronic databases following the PRISMA guidelines. We selected nine articles describing 23 patients with heterozygous, homozygous, or compound heterozygous mutations in CACNA1S and we added one patient with a compound heterozygous mutation in CACNA1S (c.1394-2A>G; c.1724T>C, p.L575P) followed at our Institute. We collected clinical and genetic data, muscle biopsies, and muscle MRIs when available. RESULTS: The phenotype of this myopathy is heterogeneous, ranging from more severe forms with a lethal early onset and mild-moderate forms with a better clinical course. CONCLUSIONS: Our patient presented a phenotype compatible with the mild-moderate form, although she presented peculiar features such as a short stature, myopia, mild sensorineural hearing loss, psychiatric symptoms, and posterior-anterior impairment gradient on thigh muscle MRI.


Assuntos
Doenças Musculares , Miotonia Congênita , Feminino , Humanos , Canais de Cálcio Tipo L/genética , Doenças Musculares/genética , Mutação , Músculo Esquelético/patologia , Fenótipo , Miotonia Congênita/genética
11.
J Neuromuscul Dis ; 10(5): 915-924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355912

RESUMO

BACKGROUND: Myotonia congenita is the most common form of nondystrophic myotonia and is caused by Mendelian inherited mutations in the CLCN1 gene encoding the voltage-gated chloride channel of skeletal muscle. OBJECTIVE: The study aimed to describe the clinical and genetic spectrum of Myotonia congenita in a large pediatric cohort. METHODS: Demographic, genetic, and clinical data of the patients aged under 18 years at time of first clinical attendance from 11 centers in different geographical regions of Türkiye were retrospectively investigated. RESULTS: Fifty-four patients (mean age:15.2 years (±5.5), 76% males, with 85% Becker, 15% Thomsen form) from 40 families were included. Consanguineous marriage rate was 67%. 70.5% of patients had a family member with Myotonia congenita. The mean age of disease onset was 5.7 (±4.9) years. Overall 23 different mutations (2/23 were novel) were detected in 52 patients, and large exon deletions were identified in two siblings. Thomsen and Becker forms were observed concomitantly in one family. Carbamazepine (46.3%), mexiletine (27.8%), phenytoin (9.3%) were preferred for treatment. CONCLUSIONS: The clinical and genetic heterogeneity, as well as the limited response to current treatment options, constitutes an ongoing challenge. In our cohort, recessive Myotonia congenita was more frequent and novel mutations will contribute to the literature.


Assuntos
Miotonia Congênita , Masculino , Humanos , Criança , Adolescente , Idoso , Lactente , Pré-Escolar , Feminino , Miotonia Congênita/genética , Estudos Retrospectivos , Canais de Cloreto/genética , Mutação , Músculo Esquelético
12.
J Vet Diagn Invest ; 35(4): 413-416, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212506

RESUMO

Hereditary myotonia (HM) is characterized by delayed muscle relaxation after contraction as a result of a mutation in the CLCN1 gene. We describe here a complex CLCN1 variant in a mixed-breed dog with clinical and electromyographic signs of HM. Blood samples from the myotonic dog, as well as from his male littermate and parents, were analyzed via amplification of the 23 exons encoding CLCN1. After sequencing the CLCN1 gene, a complex variant was found in exon 6 c.[705T>G; 708del; 712_732del], resulting in a premature stop codon in exon 7 and a protein that was 717 amino acids shorter than the normal CLC protein. The myotonic dog was identified as homozygous recessive for the complex CLCN1 variant; its parents were heterozygous, and its male littermate was homozygous wild-type. Knowledge of the CLCN1 mutations responsible for the development of hereditary myotonia allows greater clarification of this condition.


Assuntos
Doenças do Cão , Miotonia Congênita , Miotonia , Animais , Cães , Masculino , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Éxons , Mutação , Miotonia/genética , Miotonia/veterinária , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Miotonia Congênita/veterinária
13.
BMC Neurol ; 23(1): 171, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106355

RESUMO

BACKGROUND: Neutral lipid storage disease with myopathy (NLSD-M) is an autosomal recessive disease that manifests itself around the 3rd to 4th decade with chronic myopathy predominantly proximal in the shoulder girdle. Clinical myotonia is uncommon. We will report a rare case of association of pathogenic variants on PNPLA2 and CLCN1 genes with a mixed phenotype of NLSD-M and a subclinical form of Thomsen's congenital myotonia. CASE PRESENTATION: We describe a patient with chronic proximal myopathy, subtle clinical myotonia and electrical myotonia on electromyography (EMG). Serum laboratory analysis disclosure hyperCKemia (CK 1280 mg/dL). A blood smear analysis showed Jordan's anomaly, a hallmark of NLSD-M. A genetic panel was collected using next-generation sequencing (NGS) technique, which identified two pathogenic variants on genes supporting two different diagnosis: NLSD-M and Thomsen congenital myotonia, whose association has not been previously described. CONCLUSIONS: Although uncommon, it is important to remember the possibility of association of pathogenic variants to explain a specific neuromuscular disease phenotype. The use of a range of complementary methods, including myopathy genetic panels, may be essential to diagnostic definition in such cases.


Assuntos
Doenças Musculares , Miotonia Congênita , Miotonia , Humanos , Aciltransferases/genética , Canais de Cloreto/genética , Lipase/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação/genética , Miotonia/genética , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética
14.
Rev Neurol ; 76(4): 147-150, 2023 02 16.
Artigo em Espanhol | MEDLINE | ID: mdl-36782350

RESUMO

INTRODUCTION: Myotonia congenita is the most common form of genetic myotonia and is caused by mutations in the CLCN1 gene. It can be inherited in an autosomal dominant or recessive manner. We present a series of cases to update its incidence in our environment, to describe its phenotype in relation to the genotype found, and we also review the mutations found, among which we provide a new, undescribed alteration. CASES REPORT: The medical records of patients with a diagnosis of congenital myotonia studied and followed up in the pediatric neurology section in a tertiary hospital between the years 2015-2020 were reviewed. Demographic variables (age, sex), disease course (age of onset, symptoms and signs, time elapsed until diagnosis, clinical evolution), family history and evaluation of response to treatment were collected. Five cases with a clinical diagnosis of myotonia congenita were identified (three with Becker's disease and two with Thomsen's disease). The incidence in relation to the number of births is estimated at 1:15,000 newborns for cases with the Becker phenotype and 1:21,000 newborns for the Thomsen phenotypes. We found a probably pathogenic mutation not previously described (CLCN1: c.824T> C). CONCLUSIONS: the approximate incidence in our environment was higher than previously known and we describe a new, undescribed mutation: c.824T> C with pathogenicity predictors that behaved like a Becker recessive phenotype but with an earlier debut.


TITLE: Miotonía congénita. Incidencia y presentación de una serie de casos.Introducción. La miotonía congénita es la forma más común de miotonía de causa genética y se produce por mutaciones en el gen CLCN1. Puede heredarse de manera autosómica dominante o recesiva. Presentamos una serie de casos para actualizar su incidencia en nuestro medio, para describir su fenotipo en relación con el genotipo encontrado y, además, revisamos las mutaciones encontradas, entre las que aportamos una nueva alteración no descrita. Casos clínicos. Se revisaron las historias clínicas de pacientes con diagnóstico de miotonía congénita estudiados y seguidos en la consulta de neurología pediátrica en un hospital de tercer nivel entre los años 2015 y 2020. Se recogieron variables demográficas (edad y sexo), curso de la enfermedad (edad de inicio, síntomas y signos, tiempo transcurrido hasta el diagnóstico y evolución clínica), antecedentes familiares y evaluación de la respuesta al tratamiento. Se identificaron cinco casos con diagnóstico clínico de miotonía congénita (tres con enfermedad de Becker y dos con enfermedad de Thomsen). La incidencia en relación con el número de nacimientos la estimamos en 1:15.000 recién nacidos para los casos con fenotipo Becker y en 1:21.000 recién nacidos para los fenotipos Thomsen. Hallamos una mutación probablemente patogénica no descrita previamente (CLCN1: c.824T>C). Conclusiones. La incidencia aproximada en nuestro medio fue superior a la previamente conocida y describimos una nueva mutación no descrita: c.824T>C, con predictores de patogenicidad, que se comportó como un fenotipo recesivo Becker, pero con inicio más temprano.


Assuntos
Distrofia Muscular de Duchenne , Miotonia Congênita , Humanos , Miotonia Congênita/diagnóstico , Miotonia Congênita/epidemiologia , Miotonia Congênita/genética , Incidência , Canais de Cloreto/genética , Mutação , Linhagem
15.
Rev. neurol. (Ed. impr.) ; 76(4): 147-150, Feb 16, 2023. tab
Artigo em Espanhol | IBECS | ID: ibc-216042

RESUMO

Introducción: La miotonía congénita es la forma más común de miotonía de causa genética y se produce por mutaciones en el gen CLCN1. Puede heredarse de manera autosómica dominante o recesiva. Presentamos una serie de casos para actualizar su incidencia en nuestro medio, para describir su fenotipo en relación con el genotipo encontrado y, además, revisamos las mutaciones encontradas, entre las que aportamos una nueva alteración no descrita. Casos clínicos. Se revisaron las historias clínicas de pacientes con diagnóstico de miotonía congénita estudiados y seguidos en la consulta de neurología pediátrica en un hospital de tercer nivel entre los años 2015 y 2020. Se recogieron variables demográficas (edad y sexo), curso de la enfermedad (edad de inicio, síntomas y signos, tiempo transcurrido hasta el diagnóstico y evolución clínica), antecedentes familiares y evaluación de la respuesta al tratamiento. Se identificaron cinco casos con diagnóstico clínico de miotonía congénita (tres con enfermedad de Becker y dos con enfermedad de Thomsen). La incidencia en relación con el número de nacimientos la estimamos en 1:15.000 recién nacidos para los casos con fenotipo Becker y en 1:21.000 recién nacidos para los fenotipos Thomsen. Hallamos una mutación probablemente patogénica no descrita previamente (CLCN1: c.824T>C). Conclusiones: La incidencia aproximada en nuestro medio fue superior a la previamente conocida y describimos una nueva mutación no descrita: c.824T>C, con predictores de patogenicidad, que se comportó como un fenotipo recesivo Becker, pero con inicio más temprano.(AU)


Introduction: Myotonia congenita is the most common form of genetic myotonia and is caused by mutations in the CLCN1 gene. It can be inherited in an autosomal dominant or recessive manner. We present a series of cases to update its incidence in our environment, to describe its phenotype in relation to the genotype found, and we also review the mutations found, among which we provide a new, undescribed alteration. Cases report: The medical records of patients with a diagnosis of congenital myotonia studied and followed up in the pediatric neurology section in a tertiary hospital between the years 2015-2020 were reviewed. Demographic variables (age, sex), disease course (age of onset, symptoms and signs, time elapsed until diagnosis, clinical evolution), family history and evaluation of response to treatment were collected. Five cases with a clinical diagnosis of myotonia congenita were identified (three with Becker’s disease and two with Thomsen’s disease). The incidence in relation to the number of births is estimated at 1:15,000 newborns for cases with the Becker phenotype and 1:21,000 newborns for the Thomsen phenotypes. We found a probably pathogenic mutation not previously described (CLCN1: c.824T> C). Conclusions: the approximate incidence in our environment was higher than previously known and we describe a new, undescribed mutation: c.824T> C with pathogenicity predictors that behaved like a Becker recessive phenotype but with an earlier debut.(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Adolescente , Distrofia Muscular de Duchenne , Miotonia Congênita , Incidência , Genótipo , Fenótipo , Registros Médicos , Neurologia , Doenças do Sistema Nervoso
16.
Exp Neurol ; 362: 114342, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720299

RESUMO

Non-dystrophic myotonias include several entities with possible clinical overlap, i.e. myotonia congenita caused by CLCN1 gene mutations, as well as paramyotonia congenita and sodium channel myotonia caused by SCN4A gene mutations. Herein, we describe the clinical features of five relatives affected by clinical and neurophysiological myotonia, with an aspecific and mixed phenotype. Next-generation sequencing identified the novel p.K1302R variant in SCN4A and the p.H838P variant in CLCN1. Segregation of the two mutations with the disease was confirmed by genotyping affected and non-affected family members. Patch-clamp experiments showed that sodium currents generated by p.K1302R and WT hNav1.4 were very similar. Mutant channel showed a small negative shift (5 mV) in the voltage-dependence of activation, which increased the likelihood of the channel to open at more negative voltages. The p.H838P mutation caused a reduction in chloride current density and a small voltage-dependence shift towards less negative potentials, in agreement with its position into the CBS2 domain of the C-terminus. Our results demonstrated that the mild functional alterations induced by p.K1302R and p.H838P in combination may be responsible for the mixed myotonic phenotypes. The K1302R mutant was sensitive to mexiletine and lamotrigine, suggesting that both drugs might be useful for the K1302R carriers.


Assuntos
Miotonia Congênita , Miotonia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.4 , Mutação , Miotonia/genética , Fenótipo , Canais de Cloreto/genética
17.
Exp Neurol ; 361: 114303, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563835

RESUMO

It has long been accepted that myotonia (muscle stiffness) in patients with muscle channelopathies is due to myotonic discharges (involuntary firing of action potentials). In a previous study, we identified a novel phenomenon in myotonic muscle: development of plateau potentials, transient depolarizations to near -35 mV lasting for seconds to minutes. In the current study we examined whether plateau potentials contribute to myotonia. A recessive genetic model (ClCadr mice) with complete loss of muscle chloride channel (ClC-1) function was used to model severe myotonia congenita with complete loss of ClC-1 function and a pharmacologic model using anthracene-9-carboxylic acid (9 AC) was used to model milder myotonia congenita with incomplete loss of ClC-1 function. Simultaneous measurements of action potentials and myoplasmic Ca2+ from individual muscle fibers were compared to recordings of whole muscle force generation. In ClCadr muscle both myotonia and plateau potentials lasted 10s of seconds to minutes. During plateau potentials lasting 1-2 min, there was a gradual transition from high to low intracellular Ca2+, suggesting a transition in individual fibers from myotonia to flaccid paralysis in severe myotonia congenita. In 9 AC-treated muscles, both myotonia and plateau potentials lasted only a few seconds and Ca2+ remained elevated during the plateau potentials, suggesting plateau potentials contribute to myotonia without causing weakness. We propose, that in myotonic muscle, there is a novel state in which there is contraction in the absence of action potentials. This discovery provides a mechanism to explain reports of patients with myotonia who suffer from electrically silent muscle contraction lasting minutes.


Assuntos
Miotonia Congênita , Miotonia , Camundongos , Animais , Miotonia/genética , Miotonia Congênita/genética , Miotonia Congênita/tratamento farmacológico , Contração Muscular , Potenciais de Ação/fisiologia , Fibras Musculares Esqueléticas , Canais de Cloreto/genética , Modelos Animais de Doenças
18.
Brain ; 146(4): 1316-1321, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36382348

RESUMO

Accurate determination of the pathogenicity of missense genetic variants of uncertain significance is a huge challenge for implementing genetic data in clinical practice. In silico predictive tools are used to score variants' pathogenicity. However, their value in clinical settings is often unclear, as they have not usually been validated against robust functional assays. We compared nine widely used in silico predictive tools, including more recently developed tools (EVE and REVEL) with detailed cell-based electrophysiology, for 126 CLCN1 variants discovered in patients with the skeletal muscle channelopathy myotonia congenita. We found poor accuracy for most tools. The highest accuracy was obtained with MutationTaster (84.58%) and REVEL (82.54%). Both of these scores showed poor specificity, although specificity was better using EVE. Combining methods based on concordance improved performance overall but still lacked specificity. Our calculated statistics for the predictive tools were different to reported values for other genes in the literature, suggesting that the utility of the tools varies between genes. Overall, current predictive tools for this chloride channel are not reliable for clinical use, and tools with better specificity are urgently required. Improving the accuracy of predictive tools is a wider issue and a huge challenge for effective clinical implementation of genetic data.


Assuntos
Canalopatias , Miotonia Congênita , Humanos , Canalopatias/genética , Músculo Esquelético , Canais de Cloreto/genética , Miotonia Congênita/genética , Mutação
19.
Acta Myol ; 41(3): 111-116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36349186

RESUMO

Early-onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD) is caused by homozygous or compound heterozygous mutation in the MEGF10 gene (OMIM #614399). Phenotypic spectrum of EMARDD is variable, ranging from severe infantile forms in which patients are ventilator-dependent and die in childhood, to milder chronic disorders with a more favorable course (mild variant, mvEMARDD). Here we describe a 22 years old boy, offspring of consanguineous parents, presenting a congenital myopathic phenotype since infancy with elbow contractures and scoliosis. The patient developed a slowly progressive muscle weakness with impaired walking, rhinolalia, dysphagia, and respiratory involvement, which required noninvasive ventilation therapy since the age of 16 years. First muscle biopsy revealed unspecific muscle damage, with fiber size variation, internal nuclei and fibrosis. Myofibrillar alterations were noted at a second muscle biopsy including whorled fibres, cytoplasmic inclusion and minicores. Exome sequencing identified a homozygous mutation in MEGF10 gene, c.2096G > C (p.Cys699Ser), inherited by both parents. This variant, not reported in public databases of mutations, is expected to alter the structure of the protein and is therefore predicted to be probably damaging according to ACMG classification. In conclusion, we found a new likely pathogenic mutation in MEGF10, which is responsible for a progressive form of mvEMARDD with myofibrillar alterations at muscle biopsy. Interestingly, the presence of MEGF10 mutations has not been reported in Italian population. Early diagnosis of MEGF10 myopathy is essential in light of recent results from in vivo testing demonstrating a potential therapeutic effect of SSRIs compounds.


Assuntos
Transtornos de Deglutição , Doenças Musculares , Miotonia Congênita , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Doenças Musculares/diagnóstico , Mutação , Músculo Esquelético/patologia
20.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233295

RESUMO

Nemaline myopathy (NM), a structural congenital myopathy, presents a significant clinical and genetic heterogeneity. Here, we compiled molecular and clinical data of 30 Brazilian patients from 25 unrelated families. Next-generation sequencing was able to genetically classify all patients: sixteen families (64%) with mutation in NEB, five (20%) in ACTA1, two (8%) in KLHL40, and one in TPM2 (4%) and TPM3 (4%). In the NEB-related families, 25 different variants, 11 of them novel, were identified; splice site (10/25) and frame shift (9/25) mutations were the most common. Mutation c.24579 G>C was recurrent in three unrelated patients from the same region, suggesting a common ancestor. Clinically, the "typical" form was the more frequent and caused by mutations in the different NM genes. Phenotypic heterogeneity was observed among patients with mutations in the same gene. Respiratory involvement was very common and often out of proportion with limb weakness. Muscle MRI patterns showed variability within the forms and genes, which was related to the severity of the weakness. Considering the high frequency of NEB mutations and the complexity of this gene, NGS tools should be combined with CNV identification, especially in patients with a likely non-identified second mutation.


Assuntos
Miopatias da Nemalina , Miotonia Congênita , Brasil , Humanos , Proteínas Musculares/genética , Músculo Esquelético , Mutação , Miopatias da Nemalina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...