Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 690
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 236, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407656

RESUMO

To elucidate the significant influence of microorganisms on geographically dependent flavor formation by analyzing microbial communities and volatile flavor compounds (VFCs) in cigar tobacco leaves (CTLs) obtained from China, Dominica, and Indonesia. Microbiome analysis revealed that the predominant bacteria in CTLs were Staphylococcus, Aerococcus, Pseudomonas, and Lactobacillus, while the predominant fungi were Aspergillus, Wallemia, and Sampaiozyma. The microbial communities of CTLs from different origins differed to some extent, and the diversity and abundance of bacteria were greater than fungi. Metabolomic analysis revealed that 64 VFCs were identified, mainly ketones, of which 23 VFCs could be utilized to identify the geographical origins of CTLs. Sixteen VFCs with OAV greater than 1, including cedrol, phenylacetaldehyde, damascone, beta-damascone, and beta-ionone, play important roles in shaping the flavor profile of CTLs from different origins. Combined with the correlation analysis, bacterial microorganisms were more closely related to key VFCs and favored a positive correlation. Bacillus, Vibrio, and Sphingomonas were the main flavor-related bacteria. The study demonstrated that the predominant microorganisms were essential for the formation of key flavor qualities in CTLs, which provided a theoretical reference for flavor control of CTLs by microbial technology. KEY POINTS: • It is the high OAV VFCs that determine the flavor profile of CTLs. • The methylerythritol phosphate (MEP) pathway and the carotenoid synthesis pathway are key metabolic pathways for the formation of VFCs in CTLs. • Microbial interactions influence tobacco flavor, with bacterial microorganisms contributing more to the flavor formation of CTLs.


Assuntos
Bacillus , Produtos do Tabaco , Norisoprenoides , Correlação de Dados
2.
Food Funct ; 15(4): 1884-1898, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38328833

RESUMO

Photoaging is widely regarded as the most significant contributor to skin aging damage. It is triggered by prolonged exposure to ultraviolet (UV) light and typically manifests as dryness and the formation of wrinkles. Nutritional intervention is a viable strategy for preventing and treating skin photoaging. In previous studies, we demonstrated that α-ionone had ameliorating effects on photoaging in both epidermal keratinocytes and dermal fibroblasts. Here, we investigated the potential anti-photoaging effects of dietary α-ionone using a UVB-irradiated male C57BL/6N mouse model. Our findings provided compelling evidence that dietary α-ionone alleviates wrinkle formation, skin dryness, and epidermal thickening in chronic UVB-exposed mice. α-Ionone accumulated in mouse skin after 14 weeks of dietary intake of α-ionone. α-Ionone increased collagen density and boosted the expression of collagen genes, while attenuating the UVB-induced increase of matrix metalloproteinase genes in the skin tissues. Furthermore, α-ionone suppressed the expression of senescence-associated secretory phenotypes and reduced the expression of the senescence marker p21 and DNA damage marker p53 in the skin of UVB-irradiated mice. Transcriptome sequencing results showed that α-ionone modifies gene expression profiles of skin. Multiple pathway enrichment analyses on both the differential genes and the entire genes revealed that α-ionone significantly affects multiple physiological processes and signaling pathways associated with skin health and diseases, of which the p53 signaling pathway may be the key signaling pathway. Taken together, our findings reveal that dietary α-ionone intervention holds promise in reducing the risks of skin photoaging, offering a potential strategy to address skin aging concerns.


Assuntos
Norisoprenoides , Envelhecimento da Pele , Masculino , Camundongos , Animais , Proteína Supressora de Tumor p53/metabolismo , Camundongos Endogâmicos C57BL , Pele , Colágeno/metabolismo , Suplementos Nutricionais , Raios Ultravioleta/efeitos adversos , Camundongos Pelados , Fibroblastos
3.
Molecules ; 29(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338351

RESUMO

Sweet potato provides rich nutrients and bioactive substances for the human diet. In this study, the volatile organic compounds of five pigmented-fleshed sweet potato cultivars were determined, the characteristic aroma compounds were screened, and a correlation analysis was carried out with the aroma precursors. In total, 66 volatile organic compounds were identified. Terpenoids and aldehydes were the main volatile compounds, accounting for 59% and 17%, respectively. Fifteen compounds, including seven aldehydes, six terpenes, one furan, and phenol, were identified as key aromatic compounds for sweet potato using relative odor activity values (ROAVs) and contributed to flower, sweet, and fat flavors. The OR sample exhibited a significant presence of trans-ß-Ionone, while the Y sample showed high levels of benzaldehyde. Starch, soluble sugars, 20 amino acids, and 25 fatty acids were detected as volatile compounds precursors. Among them, total starch (57.2%), phenylalanine (126.82 ± 0.02 g/g), and fatty acids (6.45 µg/mg) were all most abundant in Y, and LY contained the most soluble sugar (14.65%). The results of the correlation analysis revealed the significant correlations were identified between seven carotenoids and trans-ß-Ionone, soluble sugar and nerol, two fatty acids and hexanal, phenylalanine and 10 fatty acids with benzaldehyde, respectively. In general, terpenoids and aldehydes were identified as the main key aromatic compounds in sweet potatoes, and carotenoids had more influence on the aroma of OR than other cultivars. Soluble sugars, amino acids, and fatty acids probably serve as important precursors for some key aroma compounds in sweet potatoes. These findings provide valuable insights for the formation of sweet potato aroma.


Assuntos
Ipomoea batatas , Norisoprenoides , Solanum tuberosum , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Benzaldeídos , Ipomoea batatas/química , Carotenoides , Odorantes/análise , Terpenos , Aldeídos/análise , Açúcares , Ácidos Graxos , Fenilalanina , Amido
4.
Int J Food Microbiol ; 415: 110644, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38417280

RESUMO

Fungal control strategies based on the use of Bacillus have emerged in agriculture as eco-friendly alternatives to replace/reduce the use of synthetic pesticides. Bacillus sp. P1 was reported as a new promising strain for control of Aspergillus carbonarius, a known producer of ochratoxin A, categorized as possible human carcinogen with high nephrotoxic potential. Grape quality can be influenced by vineyard management practices, including the use of fungal control agents. The aim of this study was to evaluate, for the first time, the quality parameters of Chardonnay grapes exposed to an antifungal Bacillus-based strategy for control of A. carbonarius, supporting findings by genomic investigations. Furthermore, genomic tools were used to confirm that the strain P1 belongs to the non-pathogenic species Bacillus velezensis and also to certify its biosafety. The genome of B. velezensis P1 harbors genes that are putatively involved in the production of volatiles and hydrolytic enzymes, which are responsible for releasing the free form of aroma compounds. In addition to promote biocontrol of phytopathogenic fungi and ochratoxins, the treatment with B. velezensis P1 did not change the texture (hardness and firmness), color and pH of the grapes. Heat map and hierarchical clustering analysis (HCA) of volatiles evaluated by GC/MS revealed that Bacillus-treated grapes showed higher levels of compounds with a pleasant odor descriptions such as 3-hydroxy-2-butanone, 2,3-butanediol, 3-methyl-1-butanol, 3,4-dihydro-ß-ionone, ß-ionone, dihydroactinidiolide, linalool oxide, and ß-terpineol. The results of this study indicate that B. velezensis P1 presents desirable properties to be used as a biocontrol agent.


Assuntos
Aspergillus , Bacillus , Norisoprenoides , Ocratoxinas , Vitis , Humanos , Vitis/microbiologia , Bacillus/genética , Bacillus/química , Genômica
5.
J Agric Food Chem ; 72(6): 3066-3076, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294193

RESUMO

Dihydro-ß-ionone is a common type of ionone used in the flavor and fragrance industries because of its characteristic scent. The production of flavors in microbial cell factories offers a sustainable and environmentally friendly approach to accessing them, independent of extraction from natural sources. However, the native pathway of dihydro-ß-ionone remains unclear, hindering heterologous biosynthesis in microbial hosts. Herein, we devised a microbial platform for de novo syntheses of dihydro-ß-ionone from a simple carbon source with glycerol. The complete dihydro-ß-ionone pathway was reconstructed in Escherichia coli with multiple metabolic engineering strategies to generate a strain capable of producing 8 mg/L of dihydro-ß-ionone, although this was accompanied by a surplus precursor ß-ionone in culture. To overcome this issue, Saccharomyces cerevisiae was identified as having a conversion rate for transforming ß-ionone to dihydro-ß-ionone that was higher than that of E. coli via whole-cell catalysis. Consequently, the titer of dihydro-ß-ionone was increased using the E. coli-S. cerevisiae coculture to 27 mg/L. Our study offers an efficient platform for biobased dihydro-ß-ionone production and extends coculture engineering to overproducing target molecules in extended metabolic pathways.


Assuntos
Norisoprenoides , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Norisoprenoides/metabolismo , Engenharia Metabólica , Técnicas de Cocultura , Escherichia coli/genética , Escherichia coli/metabolismo
6.
Plant Physiol Biochem ; 207: 108366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244387

RESUMO

Carotenoids are susceptible to degrading processes initiated by oxidative cleavage reactions mediated by Carotenoid Cleavage Dioxygenases that break their backbone, leading to products called apocarotenoids. These carotenoid-derived metabolites include the phytohormones abscisic acid and strigolactones, and different signaling molecules and growth regulators, which are utilized by plants to coordinate many aspects of their life. Several apocarotenoids have been recruited for the communication between plants and arbuscular mycorrhizal (AM) fungi and as regulators of the establishment of AM symbiosis. However, our knowledge on their biosynthetic pathways and the regulation of their pattern during AM symbiosis is still limited. In this study, we generated a qualitative and quantitative profile of apocarotenoids in roots and shoots of rice plants exposed to high/low phosphate concentrations, and upon AM symbiosis in a time course experiment covering different stages of growth and AM development. To get deeper insights in the biology of apocarotenoids during this plant-fungal symbiosis, we complemented the metabolic profiles by determining the expression pattern of CCD genes, taking advantage of chemometric tools. This analysis revealed the specific profiles of CCD genes and apocarotenoids across different stages of AM symbiosis and phosphate supply conditions, identifying novel reliable markers at both local and systemic levels and indicating a promoting role of ß-ionone in AM symbiosis establishment.


Assuntos
Dioxigenases , Micorrizas , Norisoprenoides , Oryza , Oryza/genética , Oryza/metabolismo , Dioxigenases/genética , Carotenoides/metabolismo , Micorrizas/fisiologia , Plantas/metabolismo , Fosfatos/metabolismo
7.
Sci Adv ; 10(4): eadj0384, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266078

RESUMO

Proteorhodopsins are widely distributed photoreceptors from marine bacteria. Their discovery revealed a high degree of evolutionary adaptation to ambient light, resulting in blue- and green-absorbing variants that correlate with a conserved glutamine/leucine at position 105. On the basis of an integrated approach combining sensitivity-enhanced solid-state nuclear magnetic resonance (ssNMR) spectroscopy and linear-scaling quantum mechanics/molecular mechanics (QM/MM) methods, this single residue is shown to be responsible for a variety of synergistically coupled structural and electrostatic changes along the retinal polyene chain, ionone ring, and within the binding pocket. They collectively explain the observed color shift. Furthermore, analysis of the differences in chemical shift between nuclei within the same residues in green and blue proteorhodopsins also reveals a correlation with the respective degree of conservation. Our data show that the highly conserved color change mainly affects other highly conserved residues, illustrating a high degree of robustness of the color phenotype to sequence variation.


Assuntos
Evolução Biológica , Núcleo Celular , Rodopsinas Microbianas , Glutamina , Norisoprenoides
8.
Food Chem ; 440: 138249, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183708

RESUMO

The present study aimed to explore the key volatile compounds (VCs) that lead to the formation of characteristic flavors in ripe Pu-erh tea (RIPT) fermented by Monascus purpureus (M. purpureus). Headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-GC-MS), orthogonal partial least square-discriminant analysis (OPLS-DA) were employed for a comprehensive analysis of the VCs present in RIPT fermented via different methods and were further identified by odor activity value (OAV). The VCs 1,2-dimethoxybenzene, 1,2,3-trimethoxybenzene, (E)-linalool oxide (pyranoid), methyl salicylate, linalool, ß-ionone, ß-damascenone were the key characteristic VCs of RIPT fermented by M. purpureus. OAV and Gas chromatography-olfactometry (GC-O) further indicated that ß-damascenone was the highest contribution VCs to the characteristic flavor of RIPT fermented by M. purpureus. This study reveals the specificities and contributions of VCs present in RIPT under different fermentation methods, thus providing new insights into the influence of microorganisms on RIPT flavor.


Assuntos
Monascus , Norisoprenoides , Compostos Orgânicos Voláteis , Chá/química , Fermentação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Compostos Orgânicos Voláteis/análise
9.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255929

RESUMO

Endophytic fungi in flowers influence plant health and reproduction. However, whether floral volatile organic compounds (VOCs) affect the composition and function of the endophytic fungal community remains unclear. Here, gas chromatography-mass spectrometry (GC-MS) and high-throughput sequencing were used to explore the relationship between floral VOCs and the endophytic fungal community during different flower development stages in Osmanthus fragrans 'Rixiang Gui'. The results showed that the composition of the endophytic fungal community and floral VOCs shifted along with flowering development. The highest and lowest α diversity of the endophytic fungal community occurred in the flower fading stage and full blooming stage, respectively. The dominant fungi, including Dothideomycetes (class), Pleosporales (order), and Neocladophialophora, Alternaria, and Setophoma (genera), were enriched in the flower fading stage and decreased in the full blooming stage, demonstrating the enrichment of the Pathotroph, Saprotroph, and Pathotroph-Saprotroph functions in the flower fading stage and their depletion in the full blooming stage. However, the total VOC and terpene contents were highest in the full blooming stage and lowest in the flower fading stage, which was opposite to the α diversity of the endophytic fungal community and the dominant fungi during flowering development. Linalool, dihydro-ß-ionone, and trans-linalool oxide(furan) were key factors affecting the endophytic fungal community composition. Furthermore, dihydro-ß-ionone played an extremely important role in inhibiting endophytic fungi in the full blooming stage. Based on the above results, it is believed that VOCs, especially terpenes, changed the endophytic fungal community composition in the flowers of O. fragrans 'Rixiang Gui'. These findings improve the understanding of the interaction between endophytic fungi and VOCs in flowers and provide new insight into the mechanism of flower development.


Assuntos
Micobioma , Oleaceae , Compostos Orgânicos Voláteis , Norisoprenoides , Flores , Terpenos
10.
J Agric Food Chem ; 72(4): 1949-1958, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37172217

RESUMO

Liquid chromatography/high-resolution mass spectrometry (LC/HRMS) can provide identification of grape metabolites which are variety markers. White grapes are poorer in polyphenolics, and the main secondary metabolites which contribute the sensorial characteristics of wines are the glycosidically bound volatile precursors and their aglycones. The profiles of three white grape juices (Pinot grigio, Garganega, and Trebbiano) were characterized by LC/HRMS, and 70 signals of putative glycosidic terpenols, norisoprenoids, and benzenoids were identified. Four signals found only in Pinot grigio corresponded to a norisoprenoid hexose-hexose, 3-oxo-α-ionol (or 3-hydroxy-ß-damascone) rhamnosyl-hexoside, monoterpene-diol hexosyl-pentosyl-hexoside, and hexose-norisoprenoid; three signals were found only in Garganega (putative isopropyl alcohol pentosyl-hexoside, phenylethanol rhamnosyl-hexoside, and norisoprenoid hexose-hexose isomers), and a monoterpenol pentosyl-hexoside isomer only in Trebbiano. These variety markers were then investigated in juice blends of the three varieties. This approach can be used to develop control methods to reveal not-allowed grape varieties and practices in white wines winemaking.


Assuntos
Vitis , Vinho , Frutas/química , Hexoses , Norisoprenoides/análise , Vitis/química , Vinho/análise , Monoterpenos/análise , Monoterpenos/química
11.
Environ Pollut ; 342: 123059, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042469

RESUMO

ß-Ionone and ß-cyclocitral are two typical components in cyanobacterial volatiles, which can poison aquatic plants and even cause death. To reveal the toxic mechanisms of the two compounds on aquatic plants through programmed cell death (PCD), the photosynthetic capacities, caspase-3-like activity, DNA fragmentation and ladders, as well as expression of the genes associated with PCD in Lemna turionifera were investigated in exposure to ß-ionone (0.2 mM) and ß-cyclocitral (0.4 mM) at lethal concentration. With prolonging the treatment time, L. turionifera fronds gradually died, and photosynthetic capacities gradually reduced and even disappeared at the 96th h. This demonstrated that the death process might be a PCD rather than a necrosis, due to the gradual loss of physiological activities. When L. turionifera underwent the death, caspase-3-like was activated after 3 h, and reached to the strongest activity at the 24th h. TUNEL-positive nuclei were detected after 12 h, and appeared in large numbers at the 48th h. The DNA was cleaved by Ca2+-dependent endonucleases and showed obviously ladders. In addition, the expression of 5 genes (TSPO, ERN1, CTSB, CYC, and ATR) positively related with PCD initiation was up-regulated, while the expression of 2 genes (RRM2 and TUBA) negatively related with PCD initiation was down-regulated. Therefore, ß-ionone and ß-cyclocitral can poison L. turionifera by adjusting related gene expression to trigger PCD.


Assuntos
Aldeídos , Araceae , Cianobactérias , Diterpenos , Norisoprenoides , Venenos , Caspase 3 , Apoptose
12.
Phytochemistry ; 218: 113937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38035972

RESUMO

The evolution of flowers that offer oils as rewards and are pollinated by specialized bees represents a distinctive theme in plant-pollinator co-diversification. Some plants that offer acetylated glycerols as floral oils emit diacetin, a volatile by-product of oil metabolism, which is utilized by oil-collecting bees as an index signal for the presence of floral oil. However, floral oils in the genus Krameria (Krameriaceae) contain ß-acetoxy-substituted fatty acids instead of acetylated glycerols, making them unlikely to emit diacetin as an oil-bee attractant. We analyzed floral headspace composition from K. bicolor and K. erecta, native to the Sonoran Desert of southwestern North America, in search of alternative candidates for volatile index signals. Using solid-phase microextraction, combined with gas chromatography-mass spectrometry, we identified 26 and 45 floral volatiles, respectively, from whole flowers and dissected flower parts of these two Krameria species. As expected, diacetin was not detected. Instead, ß-ionone emerged as a strong candidate for an index signal, as it was uniquely present in dissected oil-producing floral tissues (elaiophores) of K. bicolor, as well as the larval cells and provisions from its oil-bee pollinator, Centris cockerelli. This finding suggests that the floral oil of K. bicolor is perfused with ß-ionone in its tissue of origin and retains the distinctive raspberry-like scent of this volatile after being harvested by C. cockerelli bees. In contrast, the elaiophores of K. erecta, which are not thought to be pollinated by C. cockerelli, produced a blend of anise-related oxygenated aromatics not found in the elaiophores of K. bicolor. Our findings suggest that ß-ionone has the potential to impact oil-foraging by C. cockerelli bees through several potential mechanisms, including larval imprinting on scented provisions or innate or learned preferences by foraging adults.


Assuntos
Flores , Krameriaceae , Abelhas , Animais , Flores/química , Norisoprenoides/análise , Norisoprenoides/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Polinização
13.
Plant J ; 117(2): 541-560, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37932864

RESUMO

Carotenoids are isoprenoid pigments indispensable for photosynthesis. Moreover, they are the precursor of apocarotenoids, which include the phytohormones abscisic acid (ABA) and strigolactones (SLs) as well as retrograde signaling molecules and growth regulators, such as ß-cyclocitral and zaxinone. Here, we show that the application of the volatile apocarotenoid ß-ionone (ß-I) to Arabidopsis plants at micromolar concentrations caused a global reprogramming of gene expression, affecting thousands of transcripts involved in stress tolerance, growth, hormone metabolism, pathogen defense, and photosynthesis. This transcriptional reprogramming changes, along with induced changes in the level of the phytohormones ABA, jasmonic acid, and salicylic acid, led to enhanced Arabidopsis resistance to the widespread necrotrophic fungus Botrytis cinerea (B.c.) that causes the gray mold disease in many crop species and spoilage of harvested fruits. Pre-treatment of tobacco and tomato plants with ß-I followed by inoculation with B.c. confirmed the effect of ß-I in increasing the resistance to this pathogen in crop plants. Moreover, we observed reduced susceptibility to B.c. in fruits of transgenic tomato plants overexpressing LYCOPENE ß-CYCLASE, which contains elevated levels of endogenous ß-I, providing a further evidence for its effect on B.c. infestation. Our work unraveled ß-I as a further carotenoid-derived regulatory metabolite and indicates the possibility of establishing this natural volatile as an environmentally friendly bio-fungicide to control B.c.


Assuntos
Arabidopsis , Norisoprenoides , Solanum lycopersicum , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/metabolismo , Resistência à Doença/genética , Transcriptoma , Ácido Abscísico , Botrytis/metabolismo , Plantas Geneticamente Modificadas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
14.
Fitoterapia ; 172: 105736, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939735

RESUMO

Four rare compounds (1-4), including one 1,4-epoxy-benzoxepane derivative and one ringed prenylated naphthoquinoid skeleton, as well as one isopimarane-type diterpenoid and one megastigmane-type glycoside, along with three known megastigmane-type glycosides (5-7) were isolated from the ethanol extracts of C. chinense. Their structures were determined on the basis of 1D, 2D NMR, HR-ESI-MS and DP4+ analysis. Meanwhile, the in vitro evaluation indicated that compound 2 and 6 exhibited excellent procoagulant activities, which can significantly shorten prothrombin time (PT) and activated partial thromboplastin time (APTT), respectively.


Assuntos
Lamiaceae , Norisoprenoides , Estrutura Molecular , Lamiaceae/química , Glicosídeos/química
15.
Int J Biol Macromol ; 258(Pt 2): 129039, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154704

RESUMO

Compared with traditional tedious organic solvent-assisted separation process in natural medicinal chemistry, cytomembrane (CM) fishing technique became a more appealing and greener choice for screening bioactive components from natural products. However, its large-scale practical value was greatly weakened by the easy fall-off of CMs from magnetic supports, rooted in the instability of common Fe3O4 particles and their insufficient interaction with CMs. In this research, a new green biostable platform was developed for drug screening through the integration of hyperbranched quaternized hydrothermal magnetic carbon spheres (HQ-HMCSs) and CMs. The positive-charged HQ-HMCSs were constructed by chitosan-based hydrothermal carbonization onto Fe3O4 nanospheres and subsequent aqueous hyperbranching quaternization with 1,4-butanediol diglycidyl ether and methylamine. The strong interaction between HQ-HMCSs and CMs was formed via electrostatic attraction of HQ-HMCSs to negative-charged CMs and covalent linkage derived from the epoxy-amine addition reactions. The chemically stable HMCSs and its integration with CMs contributed to dramatically higher stability and recyclability of bionic nanocomposites. With the fishing of osteoblast CMs integrated HQ-HMCSs, two novel potential anti-osteoporosis compounds, narcissoside and beta-ionone, were discovered from Hippophae rhamnoides L. Enhanced osteoblast proliferation, alkaline phosphatase, and mineralization levels proved their positive osteogenesis effects. Preliminary pharmacological investigation demonstrated their potential action on membrane proteins of estrogen receptor alpha and insulin-like growth factor 1. Furthermore, beta-ionone showed apparent therapeutic effects on osteogenic lesions in zebrafish. These results provide a green, stable, cost-efficient, and reliable access to rapid discovery of drug leads, which verifiably benefits the design of nanocarbon-based biocomposites with increasingly advanced functionality.


Assuntos
Produtos Biológicos , Quitosana , Nanosferas , Norisoprenoides , Animais , Quitosana/química , Nanosferas/química , Peixe-Zebra , Carbono/química , Fenômenos Magnéticos
16.
Nat Prod Res ; 38(1): 146-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-35879853

RESUMO

A new megastigmane glycoside, (1R,5R,6S,7E)-megastigman-3,9-dione-7-en-6,11-diol 11-O-ß-D-glucopyranoside (1), and a new organic acid glycoside, methyl (4 R)-4-O-ß-D-glucopyranosyl-decanoate (2), together with eight known compounds (3-10), were isolated from the aerial parts of Artemisia halodendron Turcz. ex Bess. (Asteraceae). Their chemical structures were elucidated by 1 D and 2 D NMR and HR-ESI-MS spectra and DP4+ probability analysis. Among the identified compounds, compounds 5, 6 and 10 were isolated from the family Asteraceae, and compounds 3, 4 and 7-9 were identified from the genus Artemisia for the first time. All of the compounds were evaluated for their anticomplementary activity against the classical pathway (CP) and the alternative pathway (AP). Compounds 7 and 9 showed anticomplementary activity with the CH50 values of 0.31 ± 0.08 and 0.50 ± 0.09 mM, respectively.


Assuntos
Artemisia , Glicosídeos Cardíacos , Glicosídeos/farmacologia , Glicosídeos/química , Artemisia/química , Norisoprenoides/farmacologia , Norisoprenoides/química , Glucosídeos/química , Estrutura Molecular
17.
J Oleo Sci ; 72(11): 1049-1054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914266

RESUMO

The aim of this study was to characterize aroma compounds from Moso bamboo (Phyllostachys edulis Mazel ex Houz. De ehaie) stem powders with a headspace solid phase microextraction - gas chromatography/mass spectrometry method and reconstruct the fresh stem aroma. A total of 32 aroma compounds were identified from the powders, comprising monoterpene hydrocarbons (40.03%), hydrocarbons (26.27%), aliphatic aldehydes (13.82%), norisoprenoids (7.93%), sesquiterpene hydrocarbons (3.40%), aliphatic ketones (2.47%), an aromatic alcohol (1.34%) and an acid (1.30%). The most abundant aroma compound was limonene (32.95%) and the absolute configuration and optical purities were determined as (R)-form with 98.17 ± 0.27% enantiomeric excess. The odor active values (OAVs) showed thirteen aroma active compounds (OAVs > 1.00) were determined, including seven aliphatic aldehydes, three monoterpene hydrocarbons, two norisoprenoids and one aliphatic ketone. We have compared the aroma profiles between the Moso bamboo stem powders and a reconstructed one on the basis of quantitative data and characterized the active compounds that can be responsible for the fresh stem aroma by sensory evaluation.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Microextração em Fase Sólida/métodos , Pós , Norisoprenoides , Aldeídos/análise , Cetonas , Monoterpenos , Compostos Orgânicos Voláteis/análise
18.
Physiol Plant ; 175(5): e14016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882258

RESUMO

Iris lactea var. chinensis (Fisch.) Koidz has a unique floral fragrance that differs from that of other Iris spp.; however, its characteristic aroma composition remains unknown. This study aimed to identify the floral fragrance components of I. lactea var. chinensis during different flowering stages using headspace solid-phase microextraction in conjunction with gas chromatography mass spectrometry, electronic nose, and sensory evaluation. During the three flowering phases (bud stage, bloom stage, and decay stage), 70 volatile organic compounds (VOCs), including 13 aldehydes, 13 esters, 11 alcohols, 10 alkanes, 8 ketones, 7 terpenes, 7 benzenoids, and 1 nitrogenous compound, were identified. According to principal component analysis, the primary VOCs were (-)-pinene, ß-irone, methyl heptenone, phenylethanol, hexanol, and 2-pinene. A comparison of the differential VOCs across the different flowering stages using orthogonal partial least squares discriminant analysis and hierarchical clustering analysis revealed that 3-carene appeared only in the bud stage, whereas hexanol, ethyl caprate, ethyl caproate, linalool, (-)-pinene, and 2-pinene appeared or were present at significantly increased levels during the bloom stage. The phenylethanol, methyl heptenone, 3-methylheptane, and ß-irone reached a peak in the decay stage. The odor activity value and sensory evaluation suggested that "spicy" is the most typical odor of I. lactea var. chinensis, mainly due to 2-methoxy-3-sec-butylpyrazine, which is rare in floral fragrances.


Assuntos
Iris (Planta) , Álcool Feniletílico , Compostos Orgânicos Voláteis , Iris (Planta)/química , Odorantes/análise , Norisoprenoides , Hexanóis
19.
Front Biosci (Elite Ed) ; 15(3): 18, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37743229

RESUMO

BACKGROUND: In the search of tools to deal with climate change-related effects along with the aim of avoiding the loss of aromatic typicity in wine, two native yeasts strains of Saccharomyces cerevisiae (CLI 271 and CLI 889) were evaluated to determine their influence on white Malvasia aromatica wines aroma composition and sensory characteristics. METHODS: The strains were tested versus a commercial yeast strain (LSA). The fermentations were performed on grape must of the Malvasia aromatica variety previously macerated. Wine quality was studied by analysis of oenological parameters together with volatile aroma components using gas chromatography coupled to flame ionization detector (GC-FID) to quantify major volatiles compounds and headspace-solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) to determine terpenoids and C13-norisoprenoids. Sensorial analysis was also realized by an experienced taster panel. RESULTS: Wines from locally-selected yeasts strains used had lower volatile acidity levels and higher concentration of aromatic compounds compared to the commercial strain ones. The yeast strain S. cerevisiae CLI 271 provided wines with a higher concentration of esters related to fruity attributes, especially isoamyl acetate. The tasting panel highlighted the strong floral character of wines from S. cerevisiae CLI 889 fermentation. CONCLUSIONS: The use of microorganisms well adapted to climatic conditions can be used to produce quality wines of the Malvasia aromatica variety.


Assuntos
Saccharomyces cerevisiae , Vinho , Ésteres , Fermentação , Norisoprenoides
20.
J Agric Food Chem ; 71(35): 13066-13078, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37625117

RESUMO

To determine the concentrations of aroma compounds involved in the fruity aroma of red wines, an analytical method was developed and optimized using liquid-liquid extraction and gas chromatography coupled to mass spectrometry (GC/MS). The aim was to reduce sample preparation and analysis time, with a single sample preparation and a single injection being needed to quantify 43 compounds. 19 esters, 13 monoterpenes, 5 C13-norisoprenoids, and 6 C6-aldehyde and alcohol compounds were quantified in 14 red wines made from different grape varieties grown in the Mediterranean basin. Samples were selected based on typical varietal aroma by a panel of experts, who produced 7 olfactory descriptors linked to desirable or non-desirable wine aromas. The instrumental analysis showed variations in concentrations of the quantified compounds among the wines. The wines described using positive fruity descriptors had higher mean total concentrations of esters, C6-alcohols, monoterpenes, and C13-norisoprenoids. Some non-ester compounds were positively correlated with the fruity descriptors. Sensory profile results obtained by a panel of 16 trained judges revealed that the addition of non-ester compounds (including 2 cyclic esters) to a red wine initially described as having cooked fruit aromas had a positive contribution to some fresh fruity notes. This study opens up new avenues for research on the potential involvement of non-ester compounds in the fruity expression of red wines.


Assuntos
Vinho , Odorantes , Frutas , Norisoprenoides , Ésteres , Monoterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...