Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.188
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612759

RESUMO

As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas by mechanical ventilation, the dose-dependent effects of TRPV4 inhibitor GSK2798745 were evaluated. Pulmonary function and oxygenation were measured hourly; airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, and histopathology were assessed 24 h post-exposure. Exposure to 240 parts per million (ppm) chlorine gas for ≥50 min resulted in acute lung injury characterized by sustained changes in the ratio of partial pressure of oxygen in arterial blood to the fraction of inspiratory oxygen concentration (PaO2/FiO2), oxygenation index, peak inspiratory pressure, dynamic lung compliance, and respiratory system resistance over 24 h. Chlorine exposure also heightened airway response to methacholine and increased wet-to-dry lung weight ratios at 24 h. Following 55-min chlorine gas exposure, GSK2798745 marginally improved PaO2/FiO2, but did not impact lung function, airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, or histopathology. In summary, in this swine model of chlorine gas-induced acute lung injury, GSK2798745 did not demonstrate a clinically relevant improvement of key disease endpoints.


Assuntos
Lesão Pulmonar Aguda , Antineoplásicos , Benzimidazóis , Compostos de Espiro , Animais , Suínos , Cloro/toxicidade , Canais de Cátion TRPV , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação , Oxigênio
2.
Eur Rev Med Pharmacol Sci ; 28(6): 2522-2537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567612

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is identified by neuropathological symptoms, and there is now no effective treatment for the condition. A lack of the brain neurotransmitter acetylcholine has been related to the etiology of Alzheimer's disease. Acetylcholinesterase is an enzyme that breaks down acetylcholine to an inactive form and causes the death of cholinergic neurons. Conventional treatments were used but had less effectiveness. Therefore, there is a crucial need to identify alternative compounds with potential anti-cholinesterase agents and minimal undesirable effects. MATERIALS AND METHODS: Fluoroquinolones and benzimidazole-benzothiazole derivatives offer antimicrobial, anti-inflammatory, anti-oxidant, anti-diabetic, and anti-Alzheimer activities. To enhance the chemical portfolio of cholinesterase inhibitors, a variety of fluoroquinolones and benzimidazole-benzothiazole compounds were evaluated against acetylcholinesterase (AChE) butyrylcholinesterase (BChE) enzymes. For this purpose, molecular docking and adsorption, distribution, metabolism, excretion, and toxicology ADMET models were used for in-silico studies for both AChE and BChE enzymes to investigate possible binding mechanisms and drug-likeness of the compounds. The inhibitory effect of docked heterocyclic compounds was also verified in vitro against AChE and BChE enzymes. Fluoroquinolones (Z, Z3, Z4, Z6, Z8, Z12, Z15, and Z9) and benzimidazole-benzothiazole compounds (TBIS-16, TBAF-1 to 9) passed through the AChE inhibition assay and their IC50 values were calculated. RESULTS: The compound 1-ethyl-6-fluoro-7-(4-(2-(4-nitrophenylamino)-2-oxoethyl)piperazin-1-yl) -4-oxo-1,4 di-hydroquinoline-3-carboxylic acid and 2-((1H-benzo[d]imidazol-2-yl)methyl)-N'-(3-bromobenzyl)-4-hydroxy-2H-thiochromene-3-carbohydrazide 1,1-dioxide (Z-9 and TBAF-6) showed the lowest IC50 values against AChE/BChE (0.37±0.02/2.93±0.03 µM and 0.638±0.001/1.31±0.01 µM, respectively) than the standard drug, donepezil (3.9±0.01/4.9±0.05 µM). During the in-vivo investigation, behavioral trials were performed to analyze the neuroprotective impact of Z-9 and TBAF-6 compounds on AD mouse models. The groups treated with Z-9 and TBAF-6 compounds had better cognitive behavior than the standard drug. CONCLUSIONS: This study found that Z-9 (Fluoroquinolones) and TBAF-6 (benzimidazole-benzothiazole) compounds improve behavioral and biochemical parameters, thus treating neurodegenerative disorders effectively.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Camundongos , Animais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Acetilcolina , Simulação de Acoplamento Molecular , Benzotiazóis/uso terapêutico , Benzimidazóis/uso terapêutico , Fluoroquinolonas/uso terapêutico , Relação Estrutura-Atividade
3.
Drug Des Devel Ther ; 18: 1035-1052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585255

RESUMO

Introduction: The paper presents the results of a study on the first synthesized benzimidazole derivatives obtained from labile nature carboxylic acids. The synthesis conditions of these substances were studied, their structure was proved, and some components were found to have sugar-reducing activity on the model of alloxan diabetes in rats. Methods: The study used molecular modeling methods such as docking based on the evolutionary model (igemdock), RP_HPLC method to monitor the synthesis reaction, and 1H NMR and 13C NMR, and other methods of organic chemistry to confirm the structures of synthesized substances. Results & Discussion: The docking showed that the ursodeoxycholic acid benzimidazole derivatives have high tropics to all imidazoline receptor carriers (PDB ID: 2XCG, 2bk3, 3p0c, 1QH4). The ursodeoxycholic acid benzimidazole derivative and arginine and histidine benzimidazole derivatives showed the highest sugar-lowering activity in the experiment on alloxan-diabetic rats. For these derivatives, the difference in glucose levels of treated rats was significant against untreated control. Therefore, the new derivatives of benzimidazole and labile natural organic acids can be used to create new classes of imidazoline receptor inhibitors for the treatment of diabetes mellitus and hypertension.


Assuntos
Diabetes Mellitus Experimental , Hipoglicemiantes , Ratos , Animais , Hipoglicemiantes/química , Relação Estrutura-Atividade , Receptores de Imidazolinas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Ácido Ursodesoxicólico , Benzimidazóis/química , Açúcares , Simulação de Acoplamento Molecular , Estrutura Molecular
4.
Parasit Vectors ; 17(1): 173, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570858

RESUMO

BACKGROUND: Control of the zoonotic food-borne parasite Fasciola hepatica remains a major challenge in humans and livestock. It is estimated that annual economic losses due to fasciolosis can reach US$3.2 billion in agriculture and livestock. Moreover, the wide distribution of drug-resistant parasite populations and the absence of a vaccine threaten sustainable control, reinforcing the need for novel flukicides. METHODS: The present work analyses the flukicidal activity of a total of 70 benzimidazole derivatives on different stages of F. hepatica. With the aim to select the most potent ones, and screenings were first performed on eggs at decreasing concentrations ranging from 50 to 5 µM and then on adult worms at 10 µM. Only the most effective compounds were also evaluated using a resistant isolate of the parasite. RESULTS: After the first screenings at 50 and 10 µM, four hit compounds (BZD31, BZD46, BZD56, and BZD59) were selected and progressed to the next assays. At 5 µM, all hit compounds showed ovicidal activities higher than 71% on the susceptible isolate, but only BZD31 remained considerably active (53%) when they were tested on an albendazol-resistant isolate, even with values superior to the reference drug, albendazole sulfoxide. On the other hand, BZD59 displayed a high motility inhibition when tested on adult worms from an albendazole-resistant isolate after 72 h of incubation. CONCLUSIONS: BZD31 and BZD59 compounds could be promising candidates for the development of fasciolicidal compounds or as starting point for the new synthesis of structure-related compounds.


Assuntos
Anti-Helmínticos , Fasciola hepatica , Fasciolíase , Animais , Humanos , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Fasciolíase/parasitologia , Antinematódeos/uso terapêutico
5.
Anal Methods ; 16(15): 2359-2367, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38567492

RESUMO

Sartans, as a class of antihypertensive drugs, pose a threat to human health when illegally added to herbal beverages. It is crucial to detect sartans in herbal beverages. We have developed a highly sensitive monoclonal antibody against candesartan (CAN), olmesartan medoxomil (OLM), and irbesartan (IRB), with 50% inhibitory concentrations (IC50) that were obtained via indirect enzyme-linked immunosorbent assay (ic-ELISA) as 0.178 ng mL-1, 0.185 ng mL-1, and 0.262 ng mL-1 against CAN, OLM, and IRB, respectively. Based on this monoclonal antibody, we developed a rapid screening method for CAN, OLM, and IRB in herbal beverage samples using an immunochromatographic assay (ICA) strip. Test for 15 minutes after simple and rapid sample pre-treatment and the results of this method can be obtained through naked eye observation. The detection limits (LODs) of the ICA strip for CAN, OLM, and IRB in herbal beverage samples are lower than 0.15 ng mL-1, and the results of the ICA strip and ic-ELISA are consistent in spiked samples and recovery experiments. Therefore, this method can quickly, efficiently, and reliably achieve high-throughput on-site rapid detection of illegally added CAN, OLM, and IRB in herbal beverages.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II , Benzimidazóis , Bebidas , Compostos de Bifenilo , Tetrazóis , Humanos , Olmesartana Medoxomila , Irbesartana , Anticorpos Monoclonais/química
6.
BMC Cancer ; 24(1): 446, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600471

RESUMO

BACKGROUND: In patients with previously treated RAS-mutated microsatellite-stable (MSS) metastatic colorectal cancer (mCRC), a multicenter open-label phase 1b/2 trial was conducted to define the safety and efficacy of the MEK1/MEK2 inhibitor binimetinib in combination with the immune checkpoint inhibitor (ICI) nivolumab (anti-PD-1) or nivolumab and another ICI, ipilimumab (anti-CTLA4). METHODS: In phase 1b, participants were randomly assigned to Arm 1A (binimetinib 45 mg twice daily [BID] plus nivolumab 480 mg once every 4 weeks [Q4W]) or Arm 1B (binimetinib 45 mg BID plus nivolumab 480 mg Q4W and ipilimumab 1 mg/kg once every 8 weeks [Q8W]) to determine the maximum tolerable dose (MTD) and recommended phase 2 dose (RP2D) of binimetinib. The MTD/RP2D was defined as the highest dosage combination that did not cause medically unacceptable dose-limiting toxicities in more than 35% of treated participants in Cycle 1. During phase 2, participants were randomly assigned to Arm 2A (binimetinib MTD/RP2D plus nivolumab) or Arm 2B (binimetinib MTD/RP2D plus nivolumab and ipilimumab) to assess the safety and clinical activity of these combinations. RESULTS: In phase 1b, 21 participants were randomized to Arm 1A or Arm 1B; during phase 2, 54 participants were randomized to Arm 2A or Arm 2B. The binimetinib MTD/RP2D was determined to be 45 mg BID. In phase 2, no participants receiving binimetinib plus nivolumab achieved a response. Of the 27 participants receiving binimetinib, nivolumab, and ipilimumab, the overall response rate was 7.4% (90% CI: 1.3, 21.5). Out of 75 participants overall, 74 (98.7%) reported treatment-related adverse events (AEs), of whom 17 (22.7%) reported treatment-related serious AEs. CONCLUSIONS: The RP2D binimetinib regimen had a safety profile similar to previous binimetinib studies or nivolumab and ipilimumab combination studies. There was a lack of clinical benefit with either drug combination. Therefore, these data do not support further development of binimetinib in combination with nivolumab or nivolumab and ipilimumab in RAS-mutated MSS mCRC. TRIAL REGISTRATION: NCT03271047 (09/01/2017).


Assuntos
Benzimidazóis , Neoplasias Colorretais , Nivolumabe , Humanos , Nivolumabe/uso terapêutico , Ipilimumab , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Repetições de Microssatélites , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
7.
JCO Precis Oncol ; 8: e2300647, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635933

RESUMO

PURPOSE: To understand the mutational landscape of circulating tumor DNA (ctDNA) and tumor tissue of patients with hormone receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) metastatic breast cancer (MBC) treated with abemaciclib + endocrine therapy (ET). METHODS: Blood samples for ctDNA and/or tissue samples were collected from abemaciclib-treated patients with HR+/HER2- MBC enrolled in the SCRUM-Japan MONSTAR-SCREEN project. Blood samples were collected before abemaciclib initiation (baseline) and at disease progression/abemaciclib discontinuation (post abemaciclib treatment). Clinical and genomic characteristics including neoplastic burden (measured by shedding rate and maximum variant allele frequency [VAF]) were assessed at baseline. Genomic alterations in ctDNA were compared in paired baseline and post abemaciclib treatment samples. RESULTS: All patients (N = 97) were female (median age, 57 years [IQR, 50-67]). In baseline ctDNA (n = 77), PIK3CA (37%), TP53 (28%), ESR1 (16%), and GATA3 (11%) were the most frequently mutated genes. Baseline tissue samples (n = 79) showed similar alteration frequencies. Among patients with baseline ctDNA data, 30% had received previous ET. ESR1 alteration frequency (35% v 8%; P < .01), median shedding rate (3 v 2), and maximum somatic VAF (4 v 0.8; both P < .05) were significantly higher in ctDNA from patients with previous ET than those without previous ET. In paired ctDNA samples (n = 33), PIK3CA and ESR1 alteration frequencies were higher after abemaciclib treatment than at baseline, though not statistically significant. Among the post-treatment alterations, those newly acquired were detected most frequently in FGF3/4/19 (18%); PIK3CA, TP53, CCND1, and RB1 (all 15%); and ESR1 (12%). CONCLUSION: We summarized the ctDNA and cancer tissue mutational landscape, including overall neoplastic burden and PIK3CA and ESR1 hotspot mutations in abemaciclib-treated patients with HR+/HER2- MBC. The data provide insights that could help optimize treatment strategies in this population.


Assuntos
Aminopiridinas , Benzimidazóis , Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA Tumoral Circulante/genética , Japão , Detecção Precoce de Câncer , Genômica , Classe I de Fosfatidilinositol 3-Quinases/genética , Receptores ErbB
8.
PLoS One ; 19(3): e0297870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527060

RESUMO

The best biocontroller Bacillus subtilis produced silver nanoparticles (AgNPs) with a spherical form and a 62 nm size through green synthesis. Using UV-vis spectroscopy, PSA, and zeta potential analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy, the properties of synthesized silver nanoparticles were determined. Silver nanoparticles were tested for their antifungicidal efficacy against the most virulent isolate of the Aspergillus flavus fungus, JAM-JKB-BHA-GG20, and among the 10 different treatments, the treatment T6 [PDA + 1 ml of NP (19: 1)] + Pathogen was shown to be extremely significant (82.53%). TG-51 and GG-22 were found to be the most sensitive groundnut varieties after 5 and 10 days of LC-MS QTOF infection when 25 different groundnut varieties were screened using the most toxic Aspergillus flavus isolate JAM- JKB-BHA-GG20, respectively. In this research, the most susceptible groundnut cultivar, designated GG-22, was tested. Because less aflatoxin (1651.15 g.kg-1) was observed, treatment T8 (Seed + Pathogen + 2 ml silver nanoparticles) was determined to be much more effective. The treated samples were examined by Inductively Coupled Plasma Mass Spectrometry for the detection of metal ions and the fungicide carbendazim. Ag particles (0.8 g/g-1) and the fungicide carbendazim (0.025 g/g-1) were found during Inductively Coupled Plasma Mass Spectrometry analysis below detectable levels. To protect plants against the invasion of fungal pathogens, environmentally friendly green silver nanoparticle antagonists with antifungal properties were able to prevent the synthesis of mycotoxin by up to 82.53%.


Assuntos
Benzimidazóis , Carbamatos , Fungicidas Industriais , Nanopartículas Metálicas , Antifúngicos/farmacologia , Aspergillus flavus , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Aspergillus , Bactérias , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Testes de Sensibilidade Microbiana
9.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542855

RESUMO

Benzimidazole fungicides are a class of highly effective, low-toxicity, systemic broad-spectrum fungicides developed in the 1960s and 1970s, based on the fungicidal activity of the benzimidazole ring structure. They exhibit biological activities including anticancer, antibacterial, and antiparasitic effects. Due to their particularly outstanding antibacterial properties, they are widely used in agriculture to prevent and control various plant diseases caused by fungi. The main products of benzimidazole fungicides include benomyl, carbendazim, thiabendazole, albendazole, thiophanate, thiophanate-methyl, fuberidazole, methyl (1-{[(5-cyanopentyl)amino]carbonyl}-1H-benzimidazol-2-yl) carbamate, and carbendazim salicylate. This article mainly reviews the physicochemical properties, toxicological properties, disease control efficacy, and pesticide residue and detection technologies of the aforementioned nine benzimidazole fungicides and their main metabolite (2-aminobenzimidazole). On this basis, a brief outlook on the future research directions of benzimidazole fungicides is presented.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Benzimidazóis/farmacologia , Benzimidazóis/metabolismo , Carbamatos/farmacologia , Tiofanato , Antibacterianos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38522711

RESUMO

Carbendazim is a widely used fungicide to protect agricultural and horticultural crops against a wide array of fungal species. Published reports have shown that the wide usage of carbendazim resulted in reprotoxicity, carcinogenicity, immunotoxicity, and developmental toxicity in mammalian models. However, studies related to the developmental toxicity of carbendazim in aquatic organisms are not clear. To address this gap, an attempt was made by exposing zebrafish embryos to carbendazim (800 µg/L) and assessing the phenotypic and transcriptomic profile at different developmental stages [24 hour post fertilization (hpf), 48 hpf, 72 hpf and 96 hpf). At 48 hpf, phenotypic abnormalities such as delay in hatching rate, deformed spinal axial curvature, and pericardial edema were observed in zebrafish larvae over its respective controls. At 72 hpf, exposure of zebrafish embryos exposed to carbendazim resulted in scoliosis; however, unexposed larvae did not exhibit signs of scoliosis. Interestingly, the transcriptomic analysis revealed a total of 1253 DEGs were observed at selected time points, while unique genes at 24 hpf, 48 hpf, 72 hpf and 96 hpf was found to be 76.54 %, 61.14 %, 92.98 %, and 68.28 %, respectively. Functional profiling of downregulated genes revealed altered transcriptomic markers associated with phototransduction (24 hpf and 72 hpf), immune system (48 hpf), and SNARE interactions in the vesicular pathway (96 hpf). Whereas functional profiling of upregulated genes revealed altered transcriptomic markers associated with riboflavin metabolism (24 hpf), basal transcription factors (48 hpf), insulin signaling pathway (72 hpf), and primary bile acid biosynthesis (96 hpf). Taken together, carbendazim-induced developmental toxicity could be ascribed to pleiotropic responses at the molecular level, which in turn might reflect phenotypic abnormalities.


Assuntos
Benzimidazóis , Carbamatos , Escoliose , Poluentes Químicos da Água , Animais , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Larva , Escoliose/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Chembiochem ; 25(8): e202400127, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451872

RESUMO

The development of novel therapeutic approaches is crucial in the fight against multi-drug resistant (MDR) bacteria, particularly gram-negative species. Small molecule adjuvants that enhance the activity of otherwise gram-positive selective antibiotics against gram-negative bacteria have the potential to expand current treatment options. We have previously reported adjuvants based upon a 2-aminoimidazole (2-AI) scaffold that potentiate macrolide antibiotics against several gram-negative pathogens. Herein, we report the discovery and structure-activity relationship (SAR) investigation of an additional class of macrolide adjuvants based upon a 2-aminobenzimidazole (2-ABI) scaffold. The lead compound lowers the minimum inhibitory concentration (MIC) of clarithromycin (CLR) from 512 to 2 µg/mL at 30 µM against Klebsiella pneumoniae 2146, and from 32 to 2 µg/mL at 5 µM, against Acinetobacter baumannii 5075. Preliminary investigation into the mechanism of action suggests that the compounds are binding to lipopolysaccharide (LPS) in K. pneumoniae, and modulating lipooligosaccharide (LOS) biosynthesis, assembly, or transport in A. baumannii.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Benzimidazóis/farmacologia , Macrolídeos , Testes de Sensibilidade Microbiana
13.
Chemosphere ; 355: 141744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522669

RESUMO

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 µA µM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 µM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.


Assuntos
Benzimidazóis , Bismuto , Carbamatos , Carbono , Nanofibras , Compostos de Selênio , Carbono/química , Nanofibras/química , Ecossistema , Água , Técnicas Eletroquímicas/métodos , Eletrodos
14.
Toxicol In Vitro ; 97: 105812, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522494

RESUMO

Carbendazim (CBZ) is a benzimidazole fungicide widely used worldwide in industrial, agricultural, and veterinary practices. Although, CBZ was found in all brain tissues causing serious neurotoxicity, its impact on brain immune cells remain scarcely understood. Our study investigated the in vitro effects of CBZ on activated microglial BV-2 cells. Lipopolysaccharide (LPS)-stimulated BV-2 cells were exposed to increasing concentrations of CBZ and cytokine release was measured by ELISA, and Cytometric Bead Array (CBA) assays. Mitochondrial superoxide anion (O2·-) generation was evaluated by Dihydroethidium (DHE) and nitric oxide (NO) was assessed by Griess reagent. Lipid peroxidation was evaluated by measuring the malonaldehyde (MDA) levels. The transmembrane mitochondrial potential (ΔΨm) was detected by cytometry analysis with dihexyloxacarbocyanine iodide (DiOC6(3)) assay. CBZ concentration-dependently increased IL-1ß, IL-6, TNF-α and MCP-1 by LPS-activated BV-2 cells. CBZ significantly promoted oxidative stress by increasing NO, O2·- generation, and MDA levels. In contrast, CBZ significantly decreased ΔΨm. Pre-treatment of BV-2 cells with N-acetylcysteine (NAC) reversed all the above mentioned immunotoxic parameters, suggesting a potential protective role of NAC against CBZ-induced immunotoxicity via its antioxidant and anti-inflammatory effects on activated BV-2 cells. Therefore, microglial proinflammatory over-activation by CBZ may be a potential mechanism by which CBZ could induce neurotoxicity and neurodegenerative disorders.


Assuntos
Acetilcisteína , Carbamatos , Microglia , Acetilcisteína/farmacologia , Lipopolissacarídeos/toxicidade , Benzimidazóis/toxicidade , Óxido Nítrico
15.
Sci Rep ; 14(1): 7408, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548784

RESUMO

α-Glucosidase inhibitors have emerged as crucial agents in the management of type 2 diabetes mellitus. In the present study, a new series of coumarin-linked 2-phenylbenzimidazole derivatives 5a-m was designed, synthesized, and evaluated as anti-α-glucosidase agents. Among these derivatives, compound 5k (IC50 = 10.8 µM) exhibited a significant inhibitory activity in comparison to the positive control acarbose (IC50 = 750.0 µM). Through kinetic analysis, it was revealed that compound 5k exhibited a competitive inhibition pattern against α-glucosidase. To gain insights into the interactions between the title compounds and α-glucosidase molecular docking was employed. The obtained results highlighted crucial interactions that contribute to the inhibitory activities of the compounds against α-glucosidase. These derivatives show immense potential as promising starting points for developing novel α-glucosidase inhibitors.


Assuntos
Benzimidazóis , Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Humanos , Inibidores de Glicosídeo Hidrolases/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Diabetes Mellitus Tipo 2/tratamento farmacológico , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Cinética , Cumarínicos/farmacologia
16.
J Med Chem ; 67(7): 5902-5923, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38520399

RESUMO

Nuclear factor kappa beta (NF-κB) plays a pivotal role in breast cancer, particularly triple-negative breast cancer, by promoting inflammation, proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance. Upregulation of NF-κB boosts vascular endothelial growth factor (VEGF) expression, assisting angiogenesis. The Ru(II) complexes of methyl- and dimethylpyrazolyl-benzimidazole N,N donors inhibit phosphorylation of ser536 in p65 and translocation of the NF-κB heterodimer (p50/p65) to the nucleus, disabling transcription to upregulate inflammatory signaling. The methyl- and dimethylpyrazolyl-benzimidazole inhibit VEGFR2 phosphorylation at Y1175, disrupting downstream signaling through PLC-γ and ERK1/2, ultimately suppressing Ca(II)-signaling. Partial release of the antiangiogenic ligand in a reactive oxygen species-rich environment is possible as per our observation to inhibit both NF-κB and VEGFR2 by the complexes. The complexes are nontoxic to zebrafish embryos up to 50 µM, but the ligands show strong in vivo antiangiogenic activity at 3 µM during embryonic growth in Tg(fli1:GFP) zebrafish but no visible effect on the adult phase.


Assuntos
NF-kappa B , Neoplasias de Mama Triplo Negativas , Humanos , Animais , NF-kappa B/metabolismo , Peixe-Zebra/metabolismo , Fator de Transcrição RelA/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Ligantes , Benzimidazóis/farmacologia
17.
Mol Pharm ; 21(4): 1942-1951, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447198

RESUMO

The stimulator of interferon genes (STING) is pivotal in mediating STING-dependent type I interferon production, which is crucial for enhancing tumor rejection. Visualizing STING within the tumor microenvironment is valuable for STING-related treatments, yet the availability of suitable STING imaging probes is limited. In this study, we developed [18F]AlF-ABI, a novel 18F-labeled agent featuring an amidobenzimidazole core structure, for positron emission tomography (PET) imaging of STING in B16F10 and CT26 tumors. [18F]AlF-ABI was synthesized with a decay-corrected radiochemical yield of 38.0 ± 7.9% and radiochemical purity exceeding 97%. The probe exhibited a nanomolar STING binding affinity (KD = 35.6 nM). Upon administration, [18F]AlF-ABI rapidly accumulated at tumor sites, demonstrating significantly higher uptake in B16F10 tumors compared to CT26 tumors, consistent with STING immunofluorescence patterns. Specificity was further validated through in vitro cell experiments and in vivo blocking PET imaging. These findings suggest that [18F]AlF-ABI holds promise as an effective agent for visualizing STING in the tumor microenvironment.


Assuntos
Benzimidazóis , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Microambiente Tumoral , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Benzimidazóis/química , Benzimidazóis/farmacologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Humanos
18.
Int J Gynecol Cancer ; 34(4): 627-630, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453176

RESUMO

BACKGROUND: Low-grade serous and endometrioid ovarian cancers and adult-type granulosa cell tumors are rare ovarian malignancies that show high estrogen receptor positivity. Recurrences of these subtypes of ovarian cancer are often treated with conventional chemotherapy, although response rates are disappointing. PRIMARY OBJECTIVE: To determine the overall response rate of the combination therapy of abemaciclib and letrozole in patients with estrogen receptor-positive rare ovarian cancers. STUDY HYPOTHESIS: The combination therapy of abemaciclib and letrozole will provide a clinically meaningful therapeutic benefit, with an overall response rate of >25%. TRIAL DESIGN: This is a phase II, international, multicenter, open-label, single-arm study to evaluate the efficacy and safety of abemaciclib and letrozole in patients with advanced, recurrent, and/or metastatic estrogen receptor-positive, rare ovarian cancer. The study will follow a tandem two-stage design. MAJOR INCLUSION/EXCLUSION CRITERIA: Patients must have histologically confirmed low-grade serous/endometrioid ovarian cancer or adult-type granulosa cell tumor with estrogen receptor positivity on immunohistochemistry. Patients need to have recurrent and measurable disease according to Radiologic Evaluation Criteria in Solid Tumors (RECIST) version 1.1. A maximum of two prior lines of endocrine therapy are allowed, and patients cannot have previously received a cyclin-dependent kinase inhibitor. Patients with platinum-refractory disease are not allowed in any stage of the study. PRIMARY ENDPOINT: Investigator-assessed confirmed overall response rate, defined as the proportion of patients with a complete or partial response according to RECIST v1.1. SAMPLE SIZE: 40 to 100 patients will be included, depending on the results of the interim analysis. Patients will be included in Belgium, France and the Netherlands. ESTIMATED DATES FOR COMPLETING ACCRUAL AND PRESENTING RESULTS: Patient recruitment will be completed by the end of 2025 and reporting of the final study results will be done by the end of 2027. TRIAL REGISTRATION NUMBER: NCT05872204.


Assuntos
Benzimidazóis , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas , Adulto , Feminino , Humanos , Aminopiridinas/uso terapêutico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Letrozol/uso terapêutico , Neoplasias Ovarianas/patologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
19.
Bioorg Chem ; 146: 107243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457953

RESUMO

In the current study, a series of benzimidazole-oxindole conjugates 8a-t were designed and synthesized as type II multi-kinase inhibitors. They exhibited moderate to potent inhibitory activity against BRAFWT up to 99.61 % at 10 µM. Notably, compounds 8e, 8k, 8n and 8s demonstrated the most promising activity, with 99.44 to 99.61 % inhibition. Further evaluation revealed that 8e, 8k, 8n and 8s exhibit moderate to potent inhibitory effects on the kinases BRAFV600E, VEGFR-2, and FGFR-1. Additionally, compounds 8a-t were screened for their cytotoxicity by the NCI, and several compounds showed significant growth inhibition in diverse cancer cell lines. Compound 8e stood out with a GI50 range of 1.23 - 3.38 µM on melanoma cell lines. Encouraged by its efficacy, it was further investigated for its antitumor activity and mechanism of action, using sorafenib as a reference standard. The hybrid compound 8e exhibited potent cellular-level suppression of BRAFWT, VEGFR-2, and FGFR-1 in A375 cell line, surpassing the effects of sorafenib. In vivo studies demonstrate that 8e significantly inhibits the growth of B16F10 tumors in mice, leading to increased survival rates and histopathological tumor regression. Furthermore, 8e reduces angiogenesis markers, mRNA expression levels of VEGFR-2 and FGFR-1, and production of growth factors. It also downregulated Notch1 protein expression and decreased TGF-ß1 production. Molecular docking simulations suggest that 8e binds as a promising type II kinase inhibitor in the target kinases interacting with the key regions in their kinase domain.


Assuntos
Antineoplásicos , Melanoma , Animais , Camundongos , Sorafenibe/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf , Proliferação de Células , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Benzimidazóis/farmacologia , Oxindóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais
20.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474202

RESUMO

BCR-ABL tyrosine kinase inhibitors are commonly employed for the treatment of chronic myeloid leukemia, yet their impact on human malignant melanoma remains uncertain. In this study, we delved into the underlying mechanisms of specific BCR-ABL tyrosine kinase inhibitors (imatinib, nilotinib, ZM-306416, and AT-9283) in human melanoma A375P cells. We first evaluated the influence of these inhibitors on cell growth using cell proliferation and wound-healing assays. Subsequently, we scrutinized cell cycle regulation in drug-treated A375P cells using flow cytometry and Western blot assays. Notably, imatinib, nilotinib, ZM-306416, and AT-9283 significantly reduced cell proliferation and migration in A375P cells. In particular, nilotinib and AT-9283 impeded the G1/S transition of the cell cycle by down-regulating cell cycle-associated proteins, including cyclin E, cyclin A, and CDK2. Moreover, these inhibitors reduced RB phosphorylation, subsequently inhibiting E2F transcriptional activity. Consequently, the expression of the E2F target genes (CCNA2, CCNE1, POLA1, and TK-1) was markedly suppressed in nilotinib and AT9283-treated A375P cells. In summary, our findings suggest that BCR-ABL tyrosine kinase inhibitors may regulate the G1-to-S transition in human melanoma A375P cells by modulating the RB-E2F complex.


Assuntos
Benzimidazóis , Melanoma , Ureia/análogos & derivados , Humanos , Mesilato de Imatinib , Fosforilação , Proteínas de Fusão bcr-abl/genética , Pirimidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Divisão Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...