Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 695
Filtrar
1.
Nutrients ; 16(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38613113

RESUMO

The implications of soy consumption on human health have been a subject of debate, largely due to the mixed evidence regarding its benefits and potential risks. The variability in responses to soy has been partly attributed to differences in the metabolism of soy isoflavones, compounds with structural similarities to estrogen. Approximately one-third of humans possess gut bacteria capable of converting soy isoflavone daidzein into equol, a metabolite produced exclusively by gut microbiota with significant estrogenic potency. In contrast, lab-raised rodents are efficient equol producers, except for those raised germ-free. This discrepancy raises concerns about the applicability of traditional rodent models to humans. Herein, we designed a gnotobiotic mouse model to differentiate between equol producers and non-producers by introducing synthetic bacterial communities with and without the equol-producing capacity into female and male germ-free mice. These gnotobiotic mice display equol-producing phenotypes consistent with the capacity of the gut microbiota received. Our findings confirm the model's efficacy in mimicking human equol production capacity, offering a promising tool for future studies to explore the relationship between endogenous equol production and health outcomes like cardiometabolic health and fertility. This approach aims to refine dietary guidelines by considering individual microbiome differences.


Assuntos
Equol , Isoflavonas , Humanos , Feminino , Masculino , Animais , Camundongos , Modelos Animais de Doenças , Cetonas , Fenótipo
2.
Appl Environ Microbiol ; 90(4): e0000724, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38501861

RESUMO

With its estrogenic activity, (S)-equol plays an important role in maintaining host health and preventing estrogen-related diseases. Exclusive production occurs through the transformation of soy isoflavones by intestinal bacteria, but the reasons for variations in (S)-equol production among different individuals and species remain unclear. Here, fecal samples from humans, pigs, chickens, mice, and rats were used as research objects. The concentrations of (S)-equol, along with the genetic homology and evolutionary relationships of (S)-equol production-related genes [daidzein reductase (DZNR), daidzein racemase (DDRC), dihydrodaidzein reductase (DHDR), tetrahydrodaidzein reductase (THDR)], were analyzed. Additionally, in vitro functional verification of the newly identified DDRC gene was conducted. It was found that approximately 40% of human samples contained (S)-equol, whereas 100% of samples from other species contained (S)-equol. However, there were significant variations in (S)-equol content among the different species: rats > pigs > chickens > mice > humans. The distributions of the four genes displayed species-specific patterns. High detection rates across various species were exhibited by DHDR, THDR, and DDRC. In contrast, substantial variations in detection rates among different species and individuals were observed with respect to DZNR. It appears that various types of DZNR may be associated with different concentrations of (S)-equol, which potentially correspond to the regulatory role during (S)-equol synthesis. This enhances our understanding of individual variations in (S)-equol production and their connection with functional genes in vitro. Moreover, the newly identified DDRC exhibits higher potential for (S)-equol synthesis compared to the known DDRC, providing valuable resources for advancing in vitro (S)-equol production. IMPORTANCE: (S)-equol ((S)-EQ) plays a crucial role in maintaining human health, along with its known capacity to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. However, factors affecting individual variations in (S)-EQ production and the underlying regulatory mechanisms remain elusive. This study examines the association between functional genes and (S)-EQ production, highlighting a potential correlation between the DZNR gene and (S)-EQ content. Various types of DZNR may be linked to the regulation of (S)-EQ synthesis. Furthermore, the identification of a new DDRC gene offers promising prospects for enhancing in vitro (S)-EQ production.


Assuntos
Equol , Isoflavonas , Animais , Humanos , Camundongos , Ratos , Suínos , Equol/genética , Equol/metabolismo , Racemases e Epimerases , Galinhas/metabolismo , Isoflavonas/metabolismo , Oxirredutases/metabolismo
3.
Clin Chim Acta ; 557: 117885, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527713

RESUMO

BACKGROUND AND AIMS: No studies have compared various definitions of "equol producers" until now. Therefore, we aimed to explore the accuracy of five different definitions of equol producers (EQP) and their associations with health benefits. METHODS: This is a cross-sectional study of 466 healthy Japanese men and women aged between 22 and 88 years. Equol producer proportions were calculated from their serum and urine isoflavone concentrations using five commonly used definitions. We then examined their accuracy, and associations with the blood parameters. RESULTS: Proportions of equol ranged from 29 % in the most stringent definition to 47.6 % in the most sensitive definition. EQP identified under all definitions had significantly low serum PSA1 levels compared to nonequol producers (NEQP). The most stringent definition, which is defined as the urinary equol level of 1.0 µM and above, corresponded to the highest median serum equol level and was associated with better health outcomes. Male EQP identified by this definition seemed to have reduced risk of LDL2-hypercholesterolemia by 50 %, and female EQP identified by this definition seemed to have lower risk of high hs-CRP,3 compared to NEQP. Both the first and second stringent definition, which is defined as the serum equol level of 1.0 ng/mL and above, was associated with lower thyroid stimulating hormone level. CONCLUSIONS: More stringent definitions were associated with better parameters in general. Combined with the dietary inquires, a reliable definition for equol producer is crucial to evaluate the health benefits of equol.


Assuntos
Equol , Isoflavonas , Feminino , Masculino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Equol/urina , Estudos Transversais , Isoflavonas/urina , Dieta
4.
Gut Microbes ; 16(1): 2329147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528729

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by immune-mediated, chronic inflammation of the intestinal tract. The occurrence of IBD is driven by the complex interactions of multiple factors. The objective of this study was to evaluate the therapeutic effects of IAA in colitis. METHOD: C57/BL6 mice were administered 2.5% DSS in drinking water to induce colitis. IAA, Bifidobacterium pseudolongum, and R-equol were administered by oral gavage and fed a regular diet. The Disease Activity Index was used to evaluate disease activity. The degree of colitis was evaluated using histological morphology, RNA, and inflammation marker proteins. CD45+ CD4+ FOXP3+ Treg and CD45+ CD4+ IL17A+ Th17 cells were detected by flow cytometry. Analysis of the gut microbiome in fecal content was performed using 16S rRNA gene sequencing. Gut microbiome metabolites were analyzed using Untargeted Metabolomics. RESULT: In our study, we found IAA alleviates DSS-induced colitis in mice by altering the gut microbiome. The abundance of Bifidobacterium pseudolongum significantly increased in the IAA treatment group. Bifidobacterium pseudolongum ATCC25526 alleviates DSS-induced colitis by increasing the ratio of Foxp3+T cells in colon tissue. R-equol alleviates DSS-induced colitis by increasing Foxp3+T cells, which may be the mechanism by which ATCC25526 alleviates DSS-induced colitis in mice. CONCLUSION: Our study demonstrates that IAA, an indole derivative, alleviates DSS-induced colitis by promoting the production of Equol from Bifidobacterium pseudolongum, which provides new insights into gut homeostasis regulated by indole metabolites other than the classic AHR pathway.


Assuntos
Bifidobacterium , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Equol/metabolismo , Equol/farmacologia , Equol/uso terapêutico , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Ácidos Indolacéticos/metabolismo , Doenças Inflamatórias Intestinais/patologia , Inflamação/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/farmacologia , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
5.
PLoS One ; 19(3): e0288946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536793

RESUMO

Equol is produced from daidzein by the action of gut bacteria on soy isoflavones. However, not all people can produce equol, and metabolism differs even among the producers. We aimed to examine the equol producer status in both men and women, and investigate the relationships among the serum and urinary isoflavones as well as to other biomedical parameters. In this study, we measured the equol and daidzein concentrations from the blood and urine of 292 men and 174 women aged between 22 and 88 years by liquid chromatography-tandem mass spectrometry (LC‒MS/MS). We then analysed the cut-off value for equol producers in both sexes, the relationship of serum and urinary equol concentrations, and other parameters, such as sex, age, endocrine function, glucose metabolism, lipid metabolism, and renal function with regards to equol-producing ability, among the different age groups. Equol producers were defined as those whose log ratio of urinary equol and daidzein concentration or log (equol/daidzein) was -1.42 or higher. Among 466 participants, 195 were equol producers (42%). The proportion of equol producers was larger in women. The cut-off value for equol producers was consistent in both sexes. Positive relationships were noted between serum and urinary equol levels in equol producers of both sexes; however, such a relationship was not detected in nonproducers. Lipid and uric acid abnormalities were more common with non equol producers in both men and women. Prostate specific antigen (PSA) levels in men were significantly lower in equol producers, especially in those in their 40 s. This study suggests a relationship between equol-producing ability and reduced risk of prostate disease as well as positive effects of equol on blood lipids and uric acid levels. However, lack of dietary information and disperse age groups were major drawbacks in generalizing the results of this study.


Assuntos
Equol , Isoflavonas , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Equol/metabolismo , Japão , Cromatografia Líquida , 60705 , Espectrometria de Massas em Tandem , Ácido Úrico , Isoflavonas/metabolismo
6.
Mol Nutr Food Res ; 68(6): e2300688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342595

RESUMO

The human gut microbiota regulates estrogen metabolism through the "estrobolome," the collection of bacterial genes that encode enzymes like ß-glucuronidases and ß-glucosidases. These enzymes deconjugate and reactivate estrogen, influencing circulating levels. The estrobolome mediates the enterohepatic circulation and bioavailability of estrogen. Alterations in gut microbiota composition and estrobolome function have been associated with estrogen-related diseases like breast cancer, enometrial cancer, and polycystic ovarian syndrome (PCOS). This is likely due to dysregulated estrogen signaling partly contributed by the microbial impacts on estrogen metabolism. Dietary phytoestrogens also undergo bacterial metabolism into active metabolites like equol, which binds estrogen receptors and exhibits higher estrogenic potency than its precursor daidzein. However, the ability to produce equol varies across populations, depending on the presence of specific gut microbes. Characterizing the estrobolome and equol-producing genes across populations can provide microbiome-based biomarkers. Further research is needed to investigate specific components of the estrobolome, phytoestrogen-microbiota interactions, and mechanisms linking dysbiosis to estrogen-related pathology. However, current evidence suggests that the gut microbiota is an integral regulator of estrogen status with clinical relevance to women's health and hormonal disorders.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Feminino , Humanos , Fitoestrógenos , Microbioma Gastrointestinal/fisiologia , Equol/metabolismo , Estrogênios/metabolismo , Neoplasias da Mama/metabolismo
7.
Food Funct ; 15(5): 2645-2654, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38362621

RESUMO

Daidzein, an isoflavone found abundantly in legumes, may benefit from bypassing upper gut absorption to reach the colon where it can be metabolized into the potent estrogen equol by the gut microbiome. To achieve this, we developed mucin coated protein-tannin multilayer microcarriers. Highly porous functionalized calcium carbonate (FCC) microparticles efficiently absorbed daidzein from a dimethyl sulfoxide solution, with a loading capacity of 21.6 ± 1.8 wt% as measured by ultra-high pressure liquid chromatography - mass spectrometry (UPLC-MS). Daidzein-containing FCC microparticles were then coated with a bovine serum albumin (BSA)-tannin n-layer film terminated with mucin ((BSA-TA)n-mucin) by layer-by-layer deposition from corresponding aqueous solutions followed by FCC decomposition with HCl. Raman spectroscopy confirmed mucin-tannin complexation involving both hydrophobic interactions and hydrogen bonding. The resulting multilayer microcarriers contained 54 wt% of nanocrystalline daidzein as confirmed by X-ray diffraction and UPLC-MS. Preliminary screening of several types of mucin coatings using an in vitro INFOGEST digestion model demonstrated that mucin type III from porcine stomach provided the highest protection against upper intestinal digestion. (BSA-TA)8-mucin and (BSA-TA)4-mucin microcarriers retained 71 ± 16.4% and 68 ± 4.6% of daidzein, respectively, at the end of the small intestinal phase. Mucin-free (BSA-TA)8 retained a lower daidzein amount of 46%. Daidzein release and further conversion into equol were observed during in vitro colonic studies with fecal microbiota from a healthy non-equol-producing donor and Slackia equolifaciens. The developed approach has potential for encapsulating other hydrophobic nutraceuticals or therapeutics, enhancing their bioaccessibility in the colon.


Assuntos
Equol , Isoflavonas , Cromatografia Líquida , Mucinas , Taninos , Espectrometria de Massas em Tandem , Isoflavonas/metabolismo , Polifenóis
8.
PLoS One ; 18(12): e0295185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38048315

RESUMO

Lignan polyphenols derived from plants are metabolized by bacteria in the gut to mammalian lignans, such as enterolactone (ENL) and enterodiol (END). Mammalian lignan intake has been reported to be associated with obesity and low blood glucose levels. However, the factors that are responsible for individual differences in the metabolic capacity for ENL and END are not well understood. In the present study, the effects of enterotypes of isoflavone metabolism, equol producers (EQP) and O-desmethylangolensin producers (O-DMAP), on lignan metabolism were examined. EQP was defined by urinary daidzein (DAI) and equol concentrations as log(equol/DAI) ≥ -1.42. O-DMAP was defined by urinary DAI and O-DMA concentrations as O-DMA/DAI > 0.018. Isoflavone and lignan concentrations in urine samples from 440 Japanese women were measured by gas chromatography-mass spectrometry. Metabolic enterotypes were determined from the urinary equol and O-DMA concentrations. Urinary END and ENL concentrations were compared in four groups, combinations of EQP (+/-) and O-DMAP (+/-). The urinary lignan concentration was significantly higher in the O-DMAP/EQP group (ENL: P<0.001, END: P<0.001), and this association remained significant after adjusting for several background variables (END: ß = 0.138, P = 0.00607 for EQP and ß = 0.147, P = 0.00328 for O-DMAP; ENL: ß = 0.312, P<0.001 for EQP and ß = 0.210, P<0.001 for O-DMAP). The ENL/END ratio was also highest in the O-DMAP/EQP group, indicating that equol and O-DMA metabolizing gut bacteria may be involved in lignan metabolism. In conclusion, urinary lignan concentrations were significantly higher in groups containing either EQP or O-DMAP than in the non-EQP/non-O-DMAP group. The variables and participants in this study were limited, which the possibility of confounding by other variables cannot be ruled out. However, there are no established determinants of lignan metabolism to date. Further research is needed to determine what factors should be considered, and to examine in different settings to confirm the external validity.


Assuntos
Isoflavonas , Lignanas , Animais , Humanos , Feminino , Equol , Estudos Transversais , Disponibilidade Biológica , Polifenóis , Isoflavonas/metabolismo , Bactérias/metabolismo , Mamíferos/metabolismo
9.
Nutrients ; 15(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068715

RESUMO

A possible link between diet and cancer has long been considered, with growing interest in phytochemicals. Soy isoflavones have been associated with a reduced risk of prostate cancer in Asian populations. Of the soy isoflavones, genistein and daidzein, in particular, have been studied, but recently, equol as a derivative has gained interest because it is more biologically potent. Different mechanisms of action have already been studied for the different isoflavones in multiple conditions, such as breast, gastrointestinal, and urogenital cancers. Many of these mechanisms of action could also be demonstrated in the prostate, both in vitro and in vivo. This review focuses on the known mechanisms of action at the cellular level and compares them between genistein, daidzein, and equol. These include androgen- and estrogen-mediated pathways, regulation of the cell cycle and cell proliferation, apoptosis, angiogenesis, and metastasis. In addition, antioxidant and anti-inflammatory effects and epigenetics are addressed.


Assuntos
Isoflavonas , Neoplasias da Próstata , Masculino , Humanos , Genisteína/farmacologia , Equol , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico
10.
Artigo em Inglês | MEDLINE | ID: mdl-37899210

RESUMO

BACKGROUND: Zinc absorption and competition among gut bacteria have been reported in animal studies. Thus, gut bacteria may modify zinc availability in humans. Metabolism of intestinal bacteria is known to be necessary for the activation of several phytoconstituents in the body. For example, equol, a typical substance of soybean isoflavone, is produced by intestinal bacteria metabolizing daidzein and the enterotype is one of distinct ones among Japanese population. The difference in the intestinal microflora can modify the bioavailability of zinc. In this study, we examined urinary zinc concentrations in adult female equol producers (EQPs). METHODS: Urine samples from women participating in health examinations in Miyagi, Okinawa, Kyoto, Kochi, and Hokkaido prefectures were used; from total 17,484 samples, approximately 25 samples were randomly selected for each age group from 30 to 60 years per region (subsample: n = 520), and 520 samples with available urinary zinc concentration (determined by flame atomic absorption analysis) and enterobacterial type were analyzed. EQP was defined as log(equol/daidzein) ≥ -1.42, and urinary concentrations were corrected for creatinine concentration. Urinary zinc concentrations were compared by Student's t-test and multiple regression analyses. RESULTS: The geometric mean urinary zinc concentration (µg/g-Cr) was lower in EQP than in non-EQP (p = 0.0136 by t-test after logarithm transformation). On the other hand, there was no correlation between urinary zinc concentration with daidzein (r = -0.0495, P = 0.436) and equol concentrations (r = -0.0721, P = 0.256). There was a significant negative association between urinary zinc concentration and EQP (ß = -0.392, P = 0.0311) after adjusting with other potential confounding variables, such as daidzein intake. CONCLUSIONS: The results suggest that gut bacteria that produce equol are involved in the metabolism of zinc. Based on previous studies, the bacteria that affect the metabolism of both substances are thought to be Enterococcus. Future studies are expected to identify specific intestinal bacteria for zinc availability and understand individual differences in the effects of micronutrients.


Assuntos
Equol , Microbioma Gastrointestinal , Isoflavonas , Zinco , Adulto , Animais , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Transversais , População do Leste Asiático , Equol/metabolismo , Isoflavonas/metabolismo , Zinco/metabolismo , Zinco/urina , Microbioma Gastrointestinal/fisiologia , Distribuição Aleatória
11.
Sci Rep ; 13(1): 16282, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770535

RESUMO

Puerarin, daidzein C-glucoside, was known to be biotransformed to daidzein by human intestinal bacteria, which is eventually converted to (S)-equol. The metabolic pathway of puerarin to daidzein by DgpABC of Dorea sp. PUE strain was reported as puerarin (1) → 3''-oxo-puerarin (2) → daidzein (3) + hexose enediolone (C). The second reaction is the cleavage of the glycosidic C-C bond, supposedly through the quinoid intermediate (4). In this work, the glycosidic C-C bond cleavage reaction of 3''-oxo-puerarin (2) was theoretically studied by means of DFT calculation to elucidate chemical reaction mechanism, along with biochemical energetics of puerarin metabolism. It was found that bioenergetics of puerarin metabolism is slightly endergonic by 4.99 kcal/mol, mainly due to the reaction step of hexose enediolone (C) to 3''-oxo-glucose (A). The result implied that there could be additional biochemical reactions for the metabolism of hexose enediolone (C) to overcome the thermodynamic energy barrier of 4.59 kcal/mol. The computational study focused on the C-C bond cleavage of 3''-oxo-puerarin (2) found that formation of the quinoid intermediate (4) was not accessible thermodynamically, rather the reaction was initiated by the deprotonation of 2''C-H proton of 3''-oxo-puerarin (2). The 2''C-dehydro-3''-oxo-puerarin (2a2C) anionic species produced hexose enediolone (C) and 8-dehydro-daidzein anion (3a8), and the latter quickly converted to daidzein through the daidzein anion (3a7). Our study also explains why the reverse reaction of C-glycoside formation from daidzein (3) and hexose enediolone (C) is not feasible.


Assuntos
Glicosídeos Cardíacos , Isoflavonas , Humanos , Isoflavonas/química , Glucosídeos/metabolismo , Equol , Glucose/metabolismo , Modelos Teóricos
12.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764503

RESUMO

Dietary isoflavones, a type of phytoestrogens, have gained importance owing to their health-promoting benefits. However, the beneficial effects of isoflavones are mediated by smaller metabolites produced with the help of gut bacteria that are known to metabolize these phytoestrogenic compounds into Daidzein and Genistein and biologically active molecules such as S-Equol. Identifying and measuring these phytoestrogens and their metabolites is an important step towards understanding the significance of diet and gut microbiota in human health and diseases. We have overcome the reported difficulties in quantitation of these isoflavones and developed a simplified, sensitive, non-enzymatic, and sulfatases-free extraction methodology. We have subsequently used this method to quantify these metabolites in the urine of mice using UPLC-MS/MS. The extraction and quantitation method was validated for precision, linearity, accuracy, recoveries, limit of detection (LOD), and limit of quantification (LOQ). Linear calibration curves for Daidzein, Genistein, and S-Equol were set up by performing linear regression analysis and checked using the correlation coefficient (r2 > 0.995). LOQs for Daidzein, Genistein, and S-Equol were 2, 4, and 2 ng/mL, respectively. This UPLC-MS/MS swift method is suitable for quantifying isoflavones and the microbial-derived metabolite S-Equol in mice urine and is particularly useful for large numbers of samples.


Assuntos
Genisteína , Isoflavonas , Humanos , Camundongos , Animais , Genisteína/análise , Fitoestrógenos/urina , Equol , Cromatografia Líquida , Espectrometria de Massas em Tandem , Isoflavonas/análise , Dieta
13.
Front Biosci (Landmark Ed) ; 28(7): 154, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37525926

RESUMO

BACKGROUND: While cannabidiol (CBD) and 4',7-isoflavandiol (Equol) have been examined individually in various skin studies, the present investigation tested whether topically applied CBD with Equol may yield enhanced effects on human skin biomarkers. METHODS: After 24 hours exposure human skin gene expression was measured by quantitative polymerase chain reaction-messenger ribonucleic acid (qPCR-mRNA) analysis across 9 functional skin categories covering 97 biomarkers. RESULTS: In general, among the biomarkers analyzed the CBD with Equol treatment displayed greater efficacy compared to CBD only or the Equol treatment alone (e.g., 4 out 5 for anti-acne, 15 out of 17 for anti-aging [e.g., collagen, elastin, calcium binding protein A7, tissue inhibitor of matrix metalloproteinase 1 (TIMP 1), etc.], 19 out of 21 for anti-inflammatory (pain), 10 out of 11 for antioxidants to protect against oxidative stress, 6 out of 6 for circadian rhythm regulation for cell repair/restoration, 10 out of 15 for anti-pigmentation properties, 4 out of 5 for skin hydration, 6 out of 6 for tissue integrity, and 11 out of 12 for wound healing properties). CONCLUSIONS: CBD with Equol displayed synergistic effects that may be an effective topical treatment for dermatology and cosmetic applications to improve human skin health and reduce photo-aging.


Assuntos
Canabidiol , Equol , Humanos , Equol/farmacologia , Equol/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Pele , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Perfilação da Expressão Gênica , Inibidor Tecidual de Metaloproteinase-1/metabolismo
14.
J Gastroenterol Hepatol ; 38(11): 1958-1962, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37565591

RESUMO

BACKGROUND AND AIM: Equol is a metabolite of soy isoflavone and has estrogenic activity. The incidence of non-alcoholic fatty liver disease (NAFLD) increases after menopause in women, which is thought to result in a decrease in estrogen. This study aimed to evaluate the association between equol and NAFLD. METHODS: We evaluated 1185 women aged 50-69 years who underwent health check-ups at four health centers in Fukushima, Japan. Equol producers were defined by a urinary equol concentration of 1.0 µM or more. In addition to comparison between equol producers and non-producers, the association between equol and NAFLD was estimated using logistic regression analysis adjusting for fast walking and eating habits. RESULTS: Of the 1185 participants, 345 (29.1%) women were equol producers. The proportions of women who had NAFLD (34.8% vs 45.2%) were significantly lower in the equol-producing group than in the non-producing group. Multivariable logistic regression analysis showed that equol production was significantly associated with NAFLD (odds ratio = 0.66, 95% confidence interval: 0.51-0.86). CONCLUSIONS: Equol production was significantly associated with NAFLD in women in their 50s and 60s.


Assuntos
Equol , Isoflavonas , Hepatopatia Gordurosa não Alcoólica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , População do Leste Asiático , Equol/metabolismo , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fitoestrógenos/metabolismo , Pós-Menopausa , Idoso
15.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569440

RESUMO

Estrogen deficiency is a major cause of loss of postmenopausal bone mineral density (BMD). This study aimed to evaluate the effects of equol and resveratrol on bone turnover biomarkers in postmenopausal women. Sixty healthy postmenopausal women were randomly assigned to receive 200 mg fermented soy containing 10 mg equol and 25 mg resveratrol or a placebo for 12 months. Whole-body BMD and bone turnover biomarkers, such as deoxypyridinoline (DPD), tartrate-resistant acid phosphatase 5b (TRACP-5b), osteocalcin, and bone-specific alkaline phosphatase (BAP), were measured at baseline and after 12 months of treatment. At the end of treatment, DPD, osteocalcin, and BAP significantly improved in the active group (p < 0.0001 for all) compared to the placebo group. Conversely, TRACP-5b levels were unaffected by supplementation (p = 0.051). Statistically significant changes in the concentrations of DPD (p < 0.0001), osteocalcin (p = 0.0001), and BAP (p < 0.0001) compared to baseline were also identified. Overall, the intervention significantly increased BMD measured in the whole body (p = 0.0220) compared with the placebo. These data indicate that the combination of equol and resveratrol may positively modulate bone turnover biomarkers and BMD, representing a potential approach to prevent age-related bone loss in postmenopausal women.


Assuntos
Osteoporose Pós-Menopausa , Pós-Menopausa , Humanos , Feminino , Equol/farmacologia , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Fosfatase Ácida Resistente a Tartarato , Osteocalcina , Densidade Óssea , Fosfatase Alcalina/uso terapêutico , Biomarcadores , Remodelação Óssea , Osteoporose Pós-Menopausa/tratamento farmacológico
16.
Sci Rep ; 13(1): 11225, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433869

RESUMO

Depression is a common mental disease, with some patients exhibiting ideas and behaviors such as self-harm and suicide. The drugs currently used to treat depression have not achieved good results. It has been reported that metabolites produced by intestinal microbiota affect the development of depression. In this study, core targets and core compounds were screened by specific algorithms in the database, and three-dimensional structures of these compounds and proteins were simulated by molecular docking and molecular dynamics software to further study the influence of intestinal microbiota metabolites on the pathogenesis of depression. By analyzing the RMSD gyration radius and RMSF, it was finally determined that NR1H4 had the best binding effect with genistein. Finally, according to Lipinski's five rules, equol, genistein, quercetin and glycocholic acid were identified as effective drugs for the treatment of depression. In conclusion, the intestinal microbiota can affect the development of depression through the metabolites equol, genistein and quercetin, which act on the critical targets of DPP4, CYP3A4, EP300, MGAM and NR1H4.


Assuntos
Microbioma Gastrointestinal , Biologia de Sistemas , Humanos , Depressão/tratamento farmacológico , Equol , Genisteína/farmacologia , Genisteína/uso terapêutico , Simulação de Acoplamento Molecular , Quercetina/farmacologia , Quercetina/uso terapêutico
17.
BMC Womens Health ; 23(1): 261, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179289

RESUMO

BACKGROUND: Uterine leiomyomata (UL) is a common gynecological disease in women. Studied on the relationship between single metabolites of urinary phytoestrogens and UL, especially for the combined effects of mixed metabolites on UL still are insufficient. METHODS: In this cross-sectional study, we included 1,579 participants from the National Health and Nutrition Examination Survey. Urinary phytoestrogens were assessed by measuring urinary excretion of daidzein, genistein, equol, O-desmethylangolensin, enterodiol and enterolactone. The outcome was defined as UL. Weighted logistic regression was used to analyze the association between single metabolites of urinary phytoestrogens and UL. Notably, we adopted the weighted quantile sum (WQS) regression, Bayesian kernel machine regression (BKMR), and quantile g-computation (qgcomp) models, to investigate the combined effects of six mixed metabolites on UL. RESULTS: The prevalence of UL was approximately 12.92%. After adjusting age, race/ethnicity, marital status, drinking status, body mass index, waist circumference, menopausal status, ovary removed status, use of female hormones, hormones/hormone modifiers, total energy, daidzein, genistein, O-desmethylangolensin, enterodiol, and enterolactone, the association of equol with UL was significant [Odds ratio (OR) = 1.92, 95% confidence interval (CI): 1.09-3.38]. In the WQS model, mixed metabolites of urinary phytoestrogen had a positive association with UL (OR = 1.68, 95%CI: 1.12-2.51), with the highest weighted chemical of equol. In the gpcomp model, equol had the largest positive weight, followed by genistein and enterodiol. In the BKMR model, equol and enterodiol have positive correlation on UL risk, while enterolactone has negative correlation. CONCLUSION: Our results implied a positive association between the mixed metabolites of urinary phytoestrogen and UL. This study provides evidence that urinary phytoestrogen-metabolite mixture was closely related to the risk of female UL.


Assuntos
Leiomioma , Fitoestrógenos , Humanos , Feminino , Fitoestrógenos/urina , Genisteína , Equol , Estudos Transversais , Inquéritos Nutricionais , Teorema de Bayes , Leiomioma/epidemiologia
18.
Nutrients ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111176

RESUMO

Soybean is the most economically important legume globally, providing a major source of plant protein for millions of people; it offers a high-quality, cost-competitive and versatile base-protein ingredient for plant-based meat alternatives. The health benefits of soybean and its constituents have largely been attributed to the actions of phytoestrogens, which are present at high levels. Additionally, consumption of soy-based foods may also modulate gastrointestinal (GI) health, in particular colorectal cancer risk, via effects on the composition and metabolic activity of the GI microbiome. The aim of this narrative review was to critically evaluate the emerging evidence from clinical trials, observational studies and animal trials relating to the effects of consuming soybeans, soy-based products and the key constituents of soybeans (isoflavones, soy proteins and oligosaccharides) on measures of GI health. Our review suggests that there are consistent favourable changes in measures of GI health for some soy foods, such as fermented rather than unfermented soy milk, and for those individuals with a microbiome that can metabolise equol. However, as consumption of foods containing soy protein isolates and textured soy proteins increases, further clinical evidence is needed to understand whether these foods elicit similar or additional functional effects on GI health.


Assuntos
Isoflavonas , Proteínas de Soja , Animais , Proteínas de Soja/farmacologia , Isoflavonas/farmacologia , Equol/metabolismo , Fitoestrógenos/farmacologia , /metabolismo
19.
J Diabetes Investig ; 14(5): 707-715, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36852538

RESUMO

AIMS/INTRODUCTION: Equol, which is produced by enteric bacteria from soybean isoflavones, has a chemical structure similar to estrogen. Both in vivo and in vitro studies have shown the beneficial metabolic effects of equol. However, its effects on type 2 diabetes remain unclear. We investigated the association between the equol producers/non-producers and type 2 diabetes. MATERIALS AND METHODS: The participants included 147 patients with type diabetes mellitus aged 70-89 years, and 147 age- and sex-matched controls. To ascertain the equol producers or non-producers, we used the comparative logarithm between the urinary equol and daidzein concentrations (cut-off value -1.75). RESULTS: The urinary equol concentration was significantly lower in the diabetes group compared with the non-diabetes group (P = 0.01). A significant difference in the proportion of equol producers was observed among all participants (38.8% in the diabetes group and 53.1% in the non-diabetes group; P = 0.01). The proportion of equol producers among women was significantly lower in the diabetes group (31.4%) than in the non-diabetes group (52.8%; P < 0.01). Additionally, the frequency of dyslipidemia in female equol producers was significantly lower than that in female non-equol producers (P < 0.01). Among men, no such differences were observed. We found a significant positive correlation between the urinary equol and daidzein concentrations among equol producers (r = 0.55, P < 0.01). CONCLUSIONS: Our study findings showed that postmenopausal women had a low proportion of equol producers with diabetes and dyslipidemia.


Assuntos
Diabetes Mellitus Tipo 2 , Equol , Microbioma Gastrointestinal , Isoflavonas , Idoso , Feminino , Humanos , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/urina , População do Leste Asiático , Equol/metabolismo , Equol/urina , Isoflavonas/metabolismo , Isoflavonas/urina , Idoso de 80 Anos ou mais , Microbioma Gastrointestinal/fisiologia , Fitoestrógenos/metabolismo , Fatores Sexuais , Pós-Menopausa/metabolismo , Pós-Menopausa/urina , Dislipidemias/metabolismo , Dislipidemias/microbiologia , Dislipidemias/urina
20.
Crit Rev Food Sci Nutr ; 63(14): 2203-2215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34470513

RESUMO

The benefits to health attributed to the intake of phytoestrogens (PEs) have been demonstrated in previous studies with significant physiological concentrations of bioactive PEs, such as genistein, equol, enterolignans and urolithins in plasma. However, the achievement of high bioactive PE levels in plasma is restricted to a select population group, mainly due to the low intake of plant PEs and/or the absence, or inhibition, of the microbiota capable of producing these bioactive forms. In this study, the intake of plant PEs, the concentration of bioactive PEs in plasma, the ability of the intestinal microbiota to produce bioactive PEs, as well as the different mechanisms used by GRAS bacteria to increase the level of bioactive PEs were evaluated concluding that the use of GRAS bacteria bioactive PE producers and the development of fermented foods enriched in bioactive PEs in addition to a high intake of plant PEs and taking care of the intestinal microbiota, are some of the different strategies to achieve significant physiological concentrations of bioactive PEs in the intestine and, subsequently, in plasma and targets organs which are essential to improve menopausal symptoms or reduce the risk of some pathologies such as breast and colon cancer, or cardiovascular disease.


Assuntos
Genisteína , Fitoestrógenos , Equol , Intestinos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...