Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Plant Physiol Biochem ; 208: 108480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437751

RESUMO

It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.


Assuntos
Brassica , Brassica/genética , Citocromos f/metabolismo , Manose/metabolismo , Manose/farmacologia , Tabaco/genética , Apoptose , Clorofila/metabolismo
2.
Genetics ; 225(2)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595062

RESUMO

In plastids, conversion of light energy into ATP relies on cytochrome f, a key electron carrier with a heme covalently attached to a CXXCH motif. Covalent heme attachment requires reduction of the disulfide-bonded CXXCH by CCS5 and CCS4. CCS5 receives electrons from the oxidoreductase CCDA, while CCS4 is a protein of unknown function. In Chlamydomonas reinhardtii, loss of CCS4 or CCS5 yields a partial cytochrome f assembly defect. Here, we report that the ccs4ccs5 double mutant displays a synthetic photosynthetic defect characterized by a complete loss of holocytochrome f assembly. This defect is chemically corrected by reducing agents, confirming the placement of CCS4 and CCS5 in a reducing pathway. CCS4-like proteins occur in the green lineage, and we show that HCF153, a distant ortholog from Arabidopsis thaliana, can substitute for Chlamydomonas CCS4. Dominant suppressor mutations mapping to the CCS4 gene were identified in photosynthetic revertants of the ccs4ccs5 mutants. The suppressor mutations yield changes in the stroma-facing domain of CCS4 that restore holocytochrome f assembly above the residual levels detected in ccs5. Because the CCDA protein accumulation is decreased specifically in the ccs4 mutant, we hypothesize the suppressor mutations enhance the supply of reducing power through CCDA in the absence of CCS5. We discuss the operation of a CCS5-dependent and a CCS5-independent pathway controlling the redox status of the heme-binding cysteines of apocytochrome f.


Assuntos
Arabidopsis , Chlamydomonas reinhardtii , Citocromos f/genética , Citocromos f/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Dissulfetos , Citocromos/química , Citocromos/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Oxirredução , Heme/genética , Heme/metabolismo , Arabidopsis/metabolismo
3.
Phys Chem Chem Phys ; 24(36): 21588-21592, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069424

RESUMO

Proteins tune the reactivity of metal sites; less understood is the impact of association with a redox partner. We demonstrate the utility of carbon-deuterium labels for selective analysis of delicate metal sites. Introduced into plastocyanin, they reveal substantial strengthening of the key Cu-Cys89 bond upon association with cytochrome f.


Assuntos
Cobre , Plastocianina , Carbono , Cobre/química , Citocromos f/metabolismo , Deutério , Oxirredução , Plastocianina/química , Plastocianina/metabolismo
4.
Photosynth Res ; 149(1-2): 69-82, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33817762

RESUMO

When intact green leaves are exposed to the fluctuating light, in which high light (HL) and low light (LL) alternate, photosystem I (PSI) is readily damaged. This PSI inhibition is mostly alleviated by the addition of far-red (FR) light. Here, we grew Alocasia odora, a shade-tolerant species, at several light levels and examined their photosynthetic traits in relation to the fluctuating light-induced PSI inhibition. We found that, even in the absence of FR, PSI in LL-grown leaves was resistant to the fluctuating light. LL leaves showed higher chlorophyll (Chl) contents on leaf area basis, lower Chl a/b ratios, lower cytochrome f/P700 ratios, and lower PSII/PSI excitation ratios assessed by the 77 K fluorescence. Also, P700 in the HL phase of the fluctuating light was more oxidized. The results of the regression analyses of the PSI photoinhibition to these traits indicate that the lower electron flow rate to P700 and more excitation energy transfer to PSI protect PSI in LL-grown leaves. Both of these contribute oxidization of P700 to the efficient quencher form P700+. These features may be common in LL-grown shade-tolerant species, which are often exposed to strong sunflecks in their natural habitats.


Assuntos
Adaptação Ocular/fisiologia , Alocasia/metabolismo , Arabidopsis/metabolismo , Citocromos f/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo , Luz Solar/efeitos adversos
5.
Plant Cell Physiol ; 62(7): 1082-1093, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33772595

RESUMO

In cyanobacteria and most green algae of the eukaryotic green lineage, the copper-protein plastocyanin (Pc) alternatively replaces the heme-protein cytochrome c6 (Cc6) as the soluble electron carrier from cytochrome f (Cf) to photosystem I (PSI). The functional and structural equivalence of 'green' Pc and Cc6 has been well established, representing an example of convergent evolution of two unrelated proteins. However, plants only produce Pc, despite having evolved from green algae. On the other hand, Cc6 is the only soluble donor available in most species of the red lineage of photosynthetic organisms, which includes, among others, red algae and diatoms. Interestingly, Pc genes have been identified in oceanic diatoms, probably acquired by horizontal gene transfer from green algae. However, the mechanisms that regulate the expression of a functional Pc in diatoms are still unclear. In the green eukaryotic lineage, the transfer of electrons from Cf to PSI has been characterized in depth. The conclusion is that in the green lineage, this process involves strong electrostatic interactions between partners, which ensure a high affinity and an efficient electron transfer (ET) at the cost of limiting the turnover of the process. In the red lineage, recent kinetic and structural modeling data suggest a different strategy, based on weaker electrostatic interactions between partners, with lower affinity and less efficient ET, but favoring instead the protein exchange and the turnover of the process. Finally, in diatoms the interaction of the acquired green-type Pc with both Cf and PSI may not yet be optimized.


Assuntos
Clorófitas/metabolismo , Cianobactérias/metabolismo , Citocromos f/metabolismo , Transporte de Elétrons , Evolução Molecular , Complexo de Proteína do Fotossistema I/metabolismo , Citocromos f/química , Cinética , Simulação de Acoplamento Molecular , Complexo de Proteína do Fotossistema I/química , Estrutura Terciária de Proteína
6.
Plant Cell Physiol ; 62(1): 156-165, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33289530

RESUMO

Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) limits the regeneration of ribulose 1,5-bisphosphate (RuBP) in the Calvin-Benson cycle. However, it does not always limit the rate of CO2 assimilation. In the present study, the effects of overproduction of GAPDH on the rate of CO2 assimilation under elevated [CO2] conditions, where the capacity for RuBP regeneration limits photosynthesis, were examined in transgenic rice (Oryza sativa). GAPDH activity was increased to 3.2- and 4.5-fold of the wild-type levels by co-overexpression of the GAPDH genes, GAPA and GAPB, respectively. In the transgenic rice plants, the rate of CO2 assimilation under elevated [CO2] conditions increased by approximately 10%, whereas that under normal and low [CO2] conditions was not affected. These results indicate that overproduction of GAPDH is effective in improving photosynthesis under elevated [CO2] conditions, although its magnitude is relatively small. By contrast, biomass production of the transgenic rice plants was not greater than that of wild-type plants under elevated [CO2] conditions, although starch content tended to increase marginally.


Assuntos
Cloroplastos/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Oryza/metabolismo , Fotossíntese , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Citocromos f/metabolismo , Regulação da Expressão Gênica de Plantas , Gliceraldeído-3-Fosfato Desidrogenases/fisiologia , Oryza/enzimologia , Oryza/fisiologia , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
7.
J Phys Chem B ; 123(17): 3551-3566, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30848912

RESUMO

Proteins exist as ensembles of interconverting states on a complex energy landscape. A complete, molecular-level understanding of their function requires knowledge of the populated states and thus the experimental tools to characterize them. Infrared (IR) spectroscopy has an inherently fast time scale that can capture all states and their dynamics with, in principle, bond-specific spatial resolution, and 2D IR methods that provide richer information are becoming more routine. Although application of IR spectroscopy for investigation of proteins is challenged by spectral congestion, the issue can be overcome by site-specific introduction of amino acid side chains that have IR probe groups with frequency-resolved absorptions, which furthermore enables selective characterization of different locations in proteins. Here, we briefly introduce the biophysical methods and summarize the current progress toward the study of proteins. We then describe our efforts to apply site-specific 1D and 2D IR spectroscopy toward elucidation of protein conformations and dynamics to investigate their involvement in protein molecular recognition, in particular mediated by dynamic complexes: plastocyanin and its binding partner cytochrome f, cytochrome P450s and substrates or redox partners, and Src homology 3 domains and proline-rich peptide motifs. We highlight the advantages of frequency-resolved probes to characterize specific, local sites in proteins and uncover variation among different locations, as well as the advantage of the fast time scale of IR spectroscopy to detect rapidly interconverting states. In addition, we illustrate the greater insight provided by 2D methods and discuss potential routes for further advancement of the field of biomolecular 2D IR spectroscopy.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Citocromos f/química , Simulação de Dinâmica Molecular , Plastocianina/química , Modelos Moleculares , Conformação Proteica , Espectrofotometria Infravermelho
8.
Physiol Plant ; 166(1): 320-335, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30740703

RESUMO

Mechanisms of the complex formation between plastocyanin and cytochrome f in higher plants (Spinacia oleracea and Brassica rapa), green microalgae Chlamydomonas reinhardtii and two species of cyanobacteria (Phormidium laminosum and Nostoc sp.) were investigated using combined Brownian and molecular dynamics simulations and hierarchical cluster analysis. In higher plants and green algae, electrostatic interactions force plastocyanin molecule close to the heme of cytochrome f. In the subsequent rotation of plastocyanin molecule around the point of electrostatic contact in the vicinity of cytochrome f, copper (Cu) atom approaches cytochrome heme forming a stable configuration where cytochrome f molecule behaves as a rather rigid body without conformational changes. In Nostoc plastocyanin molecule approaches cytochrome f in a different orientation (head-on) where the stabilization of the plastocyanin-cytochrome f complex is accompanied by the conformational changes of the G188E189D190 loop that stabilizes the whole complex. In cyanobacterium P. laminosum, electrostatic preorientation of the approaching molecules was not detected, thus indicating that random motions rather than long-range electrostatic interactions are responsible for the proper mutual orientation. We demonstrated that despite the structural similarity of the investigated electron transport proteins in different photosynthetic organisms, the complexity of molecular mechanisms of the complex formation increases in the following sequence: non-heterocystous cyanobacteria - heterocystous cyanobacteria - green algae - flowering plants.


Assuntos
Clorófitas/metabolismo , Cianobactérias/metabolismo , Citocromos f/metabolismo , Plastocianina/metabolismo , Transporte de Elétrons , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Espectrometria de Fluorescência
9.
J Phys Chem B ; 123(9): 2114-2122, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30742428

RESUMO

Transient protein complexes are crucial for sustaining dynamic cellular processes. The complexes of electron-transfer proteins are a notable example, such as those formed by plastocyanin (Pc) and cytochrome f (cyt f) in the photosynthetic apparatus. The dynamic and heterogeneous nature of these complexes, however, makes their study challenging. To better elucidate the complex of Nostoc Pc and cyt f, 2D-IR spectroscopy coupled to site-specific labeling with cyanophenylalanine infrared (IR) probes was employed to characterize how the local environments at sites along the surface of Pc were impacted by cyt f binding. The results indicate that Pc most substantially engages with cyt f via the hydrophobic patch around the copper redox site. Complexation with cyt f led to an increase in inhomogeneous broadening of the probe absorptions, reflective of increased heterogeneity of interactions with their environment. Notably, most of the underlying states interconverted very rapidly (1 to 2 ps), suggesting a complex with a highly mobile interface. The data support a model of the complex consisting of a large population of an encounter complex. Additionally, the study demonstrates the application of 2D-IR spectroscopy with site-specifically introduced probes to reveal new quantitative insight about dynamic biochemical systems.


Assuntos
Citocromos f/metabolismo , Plastocianina/metabolismo , Alanina/análogos & derivados , Alanina/química , Sítios de Ligação , Citocromos f/química , Interações Hidrofóbicas e Hidrofílicas , Sondas Moleculares/química , Nitrilas/química , Nostoc/química , Plastocianina/química , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Dokl Biochem Biophys ; 468(1): 183-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27417715

RESUMO

Electrostatic interaction of plastocyanin and cytochrome f in the process of protein-protein complex formation was investigated by computer simulation methods. It was shown that long-range electrostatic interaction promotes energetically favorable mutual orientation of protein molecules at distances between their cofactors shorter than 5 nm. At distances shorter than 3 nm, these electrostatic interactions lead to a significantly detectable increase in the rate of convergence of the cofactors.


Assuntos
Citocromos f/química , Difusão , Proteínas de Plantas/química , Plastocianina/química , Eletricidade Estática , Brassica napus , Simulação por Computador , Cobre/química , Modelos Químicos , Oxirredução , Software , Soluções , Solventes/química , Spinacia oleracea
11.
Biochim Biophys Acta ; 1857(6): 819-30, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27056771

RESUMO

Electrochromic shift measurements confirmed that the Q-cycle operated in sunflower leaves. The slow temporarily increasing post-pulse phase was recorded, when ATP synthase was inactivated in the dark and plastoquinol (PQH(2)) oxidation was initiated by a short pulse of far-red light (FRL). During illumination by red light, the Q-cycle-supported proton arrival at the lumen and departure via ATP synthase were simultaneous, precluding extreme build-up of the membrane potential. To investigate the kinetics of the Q-cycle, less than one PQH(2) per cytochrome b(6)f (Cyt b(6)f) were reduced by illuminating the leaf with strong light pulses or single-turnover Xe flashes. The post-pulse rate of oxidation of these PQH2 molecules was recorded via the rate of reduction of plastocyanin (PC(+)) and P700(+), monitored at 810 and 950 nm. The PSII-reduced PQH(2) molecules were oxidized with multi-phase overall kinetics, τ(d)=1, τ(p)=5.6 and τ(s)=16 ms (22 °C). We conclude that τ(d) characterizes PSII processes and diffusion, τ(p) is the bifurcated oxidation of the primary quinol and τ(s) is the Q-cycle-involving reduction of the secondary quinol at the n-site, its transport to the p-site, and bifurcated oxidation there. The extraordinary slow kinetics of the Q-cycle may be related to the still unsolved mechanism of the "photosynthetic control."


Assuntos
Complexo Citocromos b6f/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plastocianina/metabolismo , Plastoquinona/análogos & derivados , Algoritmos , Clorofila/metabolismo , Citocromos f/metabolismo , Transporte de Elétrons , Helianthus/metabolismo , Helianthus/efeitos da radiação , Cinética , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Biológicos , Oxirredução , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/efeitos da radiação , Plastoquinona/metabolismo
12.
Biofizika ; 60(4): 629-38, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26394461

RESUMO

The Brownian dynamics method is used for qualitative analysis of events leading to formation of a functionally active plastocyanin-cytochrome f complex. Intermediate states of this process are identified by density-based hierarchical clustering. Diffusive entrapment of plastocyanin by cytochrome f is a key point of the suggested putative scenario of protein-protein approaching. Mobility of plastocyanin is characterized for different values of protein-protein electrostatic interaction energy.


Assuntos
Citocromos f/química , Elétrons , Simulação de Dinâmica Molecular , Plastocianina/química , Sítios de Ligação , Brassica rapa/química , Análise por Conglomerados , Difusão , Transporte de Elétrons , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Spinacia oleracea/química , Eletricidade Estática , Termodinâmica
13.
Biofizika ; 60(2): 270-92, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26016024

RESUMO

The application of Brownian dynamics for simulation of transient protein-protein interactions is reviewed. The review focuses on theoretical basics of Brownian dynamics method, its particular implementations, advantages and drawbacks of the method. The outlook for future development of Brownian dynamics-based simulation techniques is discussed. Special attention is given to analysis of Brownian dynamics trajectories. The second part of the review is dedicated to the role of Brownian dynamics simulations in studying photosynthetic electron transport. Interactions of mobile electron carriers (plastocyanin, cytochrome c6, and ferredoxin) with their reaction partners (cytochrome b6f complex, photosystem I, ferredoxin:NADP-reductase, and hydrogenase) are considered.


Assuntos
Fenômenos Biofísicos , Citocromos c6/química , Fotossíntese , Plastocianina/química , Citocromos f , Transporte de Elétrons , Ferredoxinas/química , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Complexo de Proteína do Fotossistema I , Conformação Proteica
14.
Proc Natl Acad Sci U S A ; 112(13): E1678-87, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775549

RESUMO

Chloroplast genomes encode ∼ 37 proteins that integrate into the thylakoid membrane. The mechanisms that target these proteins to the membrane are largely unexplored. We used ribosome profiling to provide a comprehensive, high-resolution map of ribosome positions on chloroplast mRNAs in separated membrane and soluble fractions in maize seedlings. The results show that translation invariably initiates off the thylakoid membrane and that ribosomes synthesizing a subset of membrane proteins subsequently become attached to the membrane in a nuclease-resistant fashion. The transition from soluble to membrane-attached ribosomes occurs shortly after the first transmembrane segment in the nascent peptide has emerged from the ribosome. Membrane proteins whose translation terminates before emergence of a transmembrane segment are translated in the stroma and targeted to the membrane posttranslationally. These results indicate that the first transmembrane segment generally comprises the signal that links ribosomes to thylakoid membranes for cotranslational integration. The sole exception is cytochrome f, whose cleavable N-terminal cpSecA-dependent signal sequence engages the thylakoid membrane cotranslationally. The distinct behavior of ribosomes synthesizing the inner envelope protein CemA indicates that sorting signals for the thylakoid and envelope membranes are distinguished cotranslationally. In addition, the fractionation behavior of ribosomes in polycistronic transcription units encoding both membrane and soluble proteins adds to the evidence that the removal of upstream ORFs by RNA processing is not typically required for the translation of internal genes in polycistronic chloroplast mRNAs.


Assuntos
Cloroplastos/metabolismo , Ribossomos/metabolismo , Tilacoides/metabolismo , Zea mays/genética , Núcleo Celular/metabolismo , Citocromos f/metabolismo , Genoma de Cloroplastos , Proteínas de Membrana/metabolismo , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Proteínas de Plantas/genética , Plastídeos/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , RNA Mensageiro/metabolismo , Solubilidade , Zea mays/metabolismo
15.
Sci Rep ; 4: 5989, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25103621

RESUMO

It has been known that the process of leaf senescence is accompanied by programmed cell death (PCD), and the previous study indicated that dark-induced senescence in detached leaves from rice led to the release of cytochrome f (Cyt f) from chloroplast into the cytoplasm. In this study, the effects of Cyt f on PCD were studied both in vitro and in vivo. In a cell-free system, purified Cyt f activated caspase-3-like protease and endonuclease OsNuc37, and induced DNA fragmentation. Furthermore, Cyt f-induced caspase-3-like activity could be inhibited by MG132, which suggests that the activity was attributed to the 26S proteasome. Conditional expression of Cyt f in the cytoplasm could also activate caspase-3-like activity and DNA fragmentation. Fluorescein diacetate staining and annexin V-FITC/PI double staining demonstrated that Cyt f expression in cytoplasm significantly increased the percentage of PCD protoplasts. Yeast two-hybrid screening showed that Cyt f might interact with E3-ubiquitin ligase and RPN9b, the subunits of the ubiquitin proteasome system (UPS), and other PCD-related proteins. Taken together, these results suggest that the released Cyt f from the chloroplast into the cytoplasm might activate or rescue caspase-3-like activity by interacting with the UPS, ultimately leading to the induction of PCD.


Assuntos
Caspase 3/metabolismo , Citocromos f/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/química , Sistema Livre de Células , Cloroplastos/metabolismo , Citoplasma/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Desoxirribonuclease I/metabolismo , Leupeptinas/farmacologia , Células Vegetais/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Hipoclorito de Sódio/toxicidade
16.
Biochim Biophys Acta ; 1837(8): 1305-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24685428

RESUMO

The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge-charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process.


Assuntos
Citocromos c6/química , Citocromos f/química , Complexos Multiproteicos/química , Fotossíntese , Cianobactérias/química , Cianobactérias/metabolismo , Citocromos c6/metabolismo , Citocromos f/metabolismo , Transporte de Elétrons , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Método de Monte Carlo , Complexos Multiproteicos/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas , Difração de Raios X
17.
Biochemistry ; 52(38): 6615-26, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23984801

RESUMO

Recent studies on the electron transfer complex formed by cytochrome f and plastocyanin from Nostoc revealed that both hydrophobic and electrostatic interactions play a role in the process of complex formation. To study the balance between these two types of interactions in the encounter and the final state, the complex between plastocyanin from Phormidium laminosum and cytochrome f from Nostoc sp. PCC 7119 was investigated using NMR spectroscopy and Monte Carlo docking. Cytochrome f has a highly negative charge. Phormidium plastocyanin is similar to that from Nostoc, but the net charge of the protein is negative rather than positive. NMR titrations of Zn-substituted Phormidium plastocyanin and Nostoc cytochrome f indicated that a complex with an affinity intermediate between those of the Nostoc and Phormidium complexes is formed. Plastocyanin was found in a head-on orientation, as determined using pseudocontact shifts, similar to that in the Phormidium complex, in which the hydrophobic patch represents the main site of interaction on plastocyanin. However, the interaction in the cross-complex is dependent on electrostatics, similar to that in the Nostoc complex. The negative charge of plastocyanin decreases, but not abolishes, the attraction to cytochrome f, resulting in the formation of a more diffuse encounter complex than in the Nostoc case, as could be determined using paramagnetic relaxation spectroscopy. This work illustrates the subtle interplay of electrostatic and hydrophobic interactions in the formation of transient protein complexes. The results are discussed in the context of a model for association on the basis of hydrophobic contacts in the encounter state.


Assuntos
Citocromos f/química , Plastocianina/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Método de Monte Carlo , Nostoc/química , Ressonância Magnética Nuclear Biomolecular , Eletricidade Estática
18.
J Am Chem Soc ; 135(20): 7681-92, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23627316

RESUMO

Protein complex formation is thought to be at least a two-step process, in which the active complex is preceded by the formation of an encounter complex. The interactions in the encounter complex are usually dominated by electrostatic forces, whereas the active complex is also stabilized by noncovalent short-range forces. Here, the complex of cytochrome f and plastocyanin, electron-transfer proteins involved in photosynthesis, was studied using paramagnetic relaxation NMR spectroscopy. Spin labels were attached to cytochrome f, and the relaxation enhancements of plastocyanin nuclei were measured, demonstrating that a large part of the cytochrome f surface area is sampled by plastocyanin. In contrast, plastocyanin is always oriented with its hydrophobic patch toward cytochrome f. The complex was visualized using ensemble docking, showing that the encounter complex is stabilized by hydrophobic as well as electrostatic interactions. The results suggest a model of electrostatic preorientation before the proteins make contact, followed by the formation of an encounter complex that rapidly leads to electron-transfer active conformations by gradual increase of the overlap of nonpolar surface areas on cytochrome f and plastocyanin. In this model the distinction between the encounter and active complexes vanishes, at least in the case of electron-transfer complexes, which do not require a high degree of specificity.


Assuntos
Citocromos f/química , Ressonância Magnética Nuclear Biomolecular , Plastocianina/química , Citocromos f/isolamento & purificação , Citocromos f/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Método de Monte Carlo , Plastocianina/metabolismo
19.
J Biol Chem ; 288(10): 7024-36, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23303190

RESUMO

Based on previous comparative genomic analyses, a set of nearly 600 polypeptides was identified that is present in green algae and flowering and nonflowering plants but is not present (or is highly diverged) in nonphotosynthetic organisms. The gene encoding one of these "GreenCut" proteins, CPLD38, is in the same operon as ndhL in most cyanobacteria; the NdhL protein is part of a complex essential for cyanobacterial respiration. A cpld38 mutant of Chlamydomonas reinhardtii does not grow on minimal medium, is high light-sensitive under photoheterotrophic conditions, has lower accumulation of photosynthetic complexes, reduced photosynthetic electron flow to P700(+), and reduced photochemical efficiency of photosystem II (ΦPSII); these phenotypes are rescued by a wild-type copy of CPLD38. Single turnover flash experiments and biochemical analyses demonstrated that cytochrome b6f function was severely compromised, and the levels of transcripts and polypeptide subunits of the cytochrome b6f complex were also significantly lower in the cpld38 mutant. Furthermore, subunits of the cytochrome b6f complex in mutant cells turned over much more rapidly than in wild-type cells. Interestingly, PTOX2 and NDA2, two major proteins involved in chlororespiration, were more than 5-fold higher in mutants relative to wild-type cells, suggesting a shift in the cpld38 mutant from photosynthesis toward chlororespiratory metabolism, which is supported by experiments that quantify the reduction state of the plastoquinone pool. Together, these findings support the hypothesis that CPLD38 impacts the stability of the cytochrome b6f complex and possibly plays a role in balancing redox inputs to the quinone pool from photosynthesis and chlororespiration.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Complexo Citocromos b6f/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas das Membranas dos Tilacoides/metabolismo , Chlamydomonas reinhardtii/genética , Clorofila/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/genética , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Complexo Citocromos b6f/genética , Citocromos b6/genética , Citocromos b6/metabolismo , Citocromos f/genética , Citocromos f/metabolismo , Transporte de Elétrons , Expressão Gênica , Immunoblotting , Luz , Mutação , Oxirredução , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas das Membranas dos Tilacoides/genética , Tilacoides/metabolismo
20.
J Inorg Biochem ; 115: 174-81, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22883960

RESUMO

Plastocyanin (PC) from poplar leaves is present in two isoforms, PCa and PCb, which differ in sequence by amino acid replacements at locations remote from the copper center and simultaneously act in the photosynthetic electron-transport chain. We describe ultra-high resolution structures of PCa and high-resolution structures of PCb, both under oxidizing and reducing conditions at pH 4, 6 and 8. The docking on cytochrome f and photosystem I, respectively, has been modeled for both isoforms. PCa and PCb exhibit closely similar overall and active-site structures, except for a difference in the relative orientation of the acidic patches. The isoforms exhibit substantial differences in the dependence of the reduced (Cu(I)) geometry on pH. In PCa, the decrease in pH causes a gradual dissociation of His87 from Cu(I) at low pH, probably adopting a neutral tautomeric state. In PCb, the histidine remains covalently bound to Cu(I) and may adopt a doubly protonated state at low pH. The fact that both isoforms have similar although not identical functions in photosynthetic electron flows suggests that the His87 imidazole does not play a crucial role for the pathway of electron transport from cytochrome f to oxidized PC.


Assuntos
Cobre , Fotossíntese/fisiologia , Plastocianina , Populus , Cobre/química , Cobre/metabolismo , Citocromos f/química , Citocromos f/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Populus/química , Populus/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...