Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.214
Filtrar
1.
Bioresour Technol ; 395: 130395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301939

RESUMO

Currently, levan is attracting attention due to its promising applications in the food and biomedical fields. Levansucrase synthesizes levan by polymerizing the fructosyl unit in sucrose. However, a large amount of the byproduct glucose is produced during this process. In this paper, an engineered oleaginous yeast (Yarrowia lipolytica) strain was constructed using a surface display plasmid containing the LevS gene of Gluconobacter sp. MP2116. The levansucrase activity of the engineered yeast strain reached 327.8 U/g of cell dry weight. The maximal levan concentration (58.9 g/l) was achieved within 156 h in the 5-liter fermentation. Over 81.2 % of the sucrose was enzymolyzed by the levansucrase, and the byproduct glucose was converted to 21.8 g/l biomass with an intracellular oil content of 25.5 % (w/w). The obtained oil was comprised of 91.3 % long-chain fatty acids (C16-C18). This study provides new insight for levan production and comprehensive utilization of the byproduct in levan biosynthesis.


Assuntos
Hexosiltransferases , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Glucose , Frutanos/metabolismo , Sacarose/metabolismo
2.
Food Chem ; 441: 138336, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38183723

RESUMO

Inulin fructotransferase converts prebiotic polysaccharide inulin to difructose anhydride III, known for its numerous beneficial physiological effects. While previous studies focused on using inulin extracts under optimal conditions, this study delves into the enzyme's behavior when dealing with more complex food materials, inulin-rich burdock root, which possesses greater nutritional value but may influence the enzymatic reaction. An inulin fructotransferase from Arthrobacter sp. ISL-85 was identified and characterized, which has the highest activity of 783 U mg-1 at pH 6.5 and 65 °C and remains stable even up to 80 °C. When applied to inulin-rich burdock root (pH 4.7) at 80 °C for 2 h, the enzyme yielded 4.1 g of difructose anhydride III, concurrently increasing fructo-oligosaccharides. This study demonstrates the potential of this enzyme as a valuable tool for efficiently processing inulin within whole food materials under high temperatures. Such an approach could pave the way for enhancing nutrition and promoting health benefits.


Assuntos
Arctium , Arthrobacter , Hexosiltransferases , Inulina , Frutanos , Oligossacarídeos , Hexosiltransferases/química
3.
FEBS J ; 291(5): 884-896, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37997624

RESUMO

It is known that oligosaccharyltransferase (OST) has hydrolytic activity toward dolichol-linked oligosaccharides (DLO), which results in the formation of free N-glycans (FNGs), i.e. unconjugated oligosaccharides with structural features similar to N-glycans. The functional importance of this hydrolytic reaction, however, remains unknown. In this study, the hydrolytic activity of OST was characterized in yeast. It was shown that the hydrolytic activity of OST is enhanced in ubiquitin ligase mutants that are involved in endoplasmic reticulum-associated degradation. Interestingly, this enhanced hydrolysis activity is completely suppressed in asparagine-linked glycosylation (alg) mutants, bearing mutations related to the biosynthesis of DLO, indicating that the effect of ubiquitin ligase on OST-mediated hydrolysis is context-dependent. The enhanced hydrolysis activity in ubiquitin ligase mutants was also found to be canceled upon treatment of the cells with dithiothreitol, a reagent that potently induces protein unfolding in the endoplasmic reticulum (ER). Our results clearly suggest that the hydrolytic activity of OST is enhanced under conditions in which the formation of unfolded proteins is promoted in the ER in yeast. The possible role of FNGs on protein folding is discussed.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Hexosiltransferases , Proteínas de Membrana , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Hidrólise , Retículo Endoplasmático , Ubiquitina , Dolicóis , Ligases , Oligossacarídeos , Polissacarídeos
5.
Food Chem ; 440: 138250, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154282

RESUMO

Carbohydrate-active enzymes are accountable for the synthesis and degradation of glycosidic bonds among diverse carbohydrates. Fructosyl-transferases represent a subclass of these enzymes, employing sucrose as a substrate to generate fructooligosaccharides (FOS) and fructan polymers. This category primarily includes levansucrase (LS, EC 2.4.1.10), inulosucrase (IS, EC 2.4.1.9), and ß-fructofuranosidase (Ffase, EC 3.2.1.26). These three enzymes possess a similar five-bladed ß-propeller fold and employ an anomer-retaining reaction mechanism mediated by nucleophiles, transition state stabilizers, and general acids/bases. However, they exhibit distinct product profiles, characterized by variations in linkage specificity and molecular mass distribution. Consequently, this article comprehensively explores recent advancements in the catalytic characteristics, structural features, reaction mechanisms, and product specificity of levansucrase, inulosucrase, and ß-fructofuranosidase (abbreviated as LS, IS, and Ffase, respectively). Furthermore, it discusses the potential for modifying catalytic properties and product specificity through structure-based design, which enables the rational production of custom fructan and FOS.


Assuntos
Hexosiltransferases , Transferases , Transferases/metabolismo , beta-Frutofuranosidase/metabolismo , Hexosiltransferases/metabolismo , Oligossacarídeos/metabolismo , Frutanos/metabolismo , Catálise , Sacarose/metabolismo , Especificidade por Substrato
6.
J Clin Invest ; 134(4)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113109

RESUMO

Although chronic low-grade inflammation does not cause immediate clinical symptoms, over the longer term, it can enhance other insults or age-dependent damage to organ systems and thereby contribute to age-related disorders, such as respiratory disorders, heart disease, metabolic disorders, autoimmunity, and cancer. However, the molecular mechanisms governing low-level inflammation are largely unknown. We discovered that Bcl-2-interacting killer (Bik) deficiency causes low-level inflammation even at baseline and the development of spontaneous emphysema in female but not male mice. Similarly, a single nucleotide polymorphism that reduced Bik levels was associated with increased inflammation and enhanced decline in lung function in humans. Transgenic expression of Bik in the airways of Bik-deficient mice inhibited allergen- or LPS-induced lung inflammation and reversed emphysema in female mice. Bik deficiency increased nuclear but not cytosolic p65 levels because Bik, by modifying the BH4 domain of Bcl-2, interacted with regulatory particle non-ATPase 1 (RPN1) and RPN2 and enhanced proteasomal degradation of nuclear proteins. Bik deficiency increased inflammation primarily in females because Bcl-2 and Bik levels were reduced in lung tissues and airway cells of female compared with male mice. Therefore, controlling low-grade inflammation by modifying the unappreciated role of Bik and Bcl-2 in facilitating proteasomal degradation of nuclear proteins may be crucial in treating chronic age-related diseases.


Assuntos
Enfisema , Hexosiltransferases , Masculino , Animais , Feminino , Humanos , Camundongos , Apoptose , Proteínas Mitocondriais , Proteínas Reguladoras de Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Inflamação/genética , Proteínas Nucleares , Complexo de Endopeptidases do Proteassoma/genética
8.
Oncogene ; 42(48): 3575-3588, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864032

RESUMO

Oncolytic viruses are emerging as promising anticancer agents. Although the essential biological function of N-glycosylation on viruses are widely accepted, roles of N-glycan and glycan-processing enzyme in oncolytic viral therapy are remain elusive. Here, via cryo-EM analysis, we identified three distinct N-glycans on the envelope of oncolytic virus M1 (OVM) as being necessary for efficient receptor binding. E1-N141-glycan has immediate impact on the binding of MXRA8 receptor, E2-N200-glycan mediates the maturation of E2 from its precursor PE2 which is unable to bind with MXRA8, and E2-N262-glycan slightly promotes receptor binding. The necessity of OVM N-glycans in receptor binding make them indispensable for oncolysis in vitro and in vivo. Further investigations identified STT3A, a key catalytic subunit of oligosaccharyltransferase (OST), as the determinant of OVM N-glycosylation, and STT3A expression in tumor cells is positively correlated with OVM-induced oncolysis. Increased STT3A expression was observed in various solid tumors, pointing to a broad-spectrum anticancer potential of OVM. Collectively, our research supports the importance of STT3A-mediated N-glycosylation in receptor binding and oncolysis of OVM, thus providing a novel predictive biomarker for OVM.


Assuntos
Hexosiltransferases , Vírus Oncolíticos , Humanos , Glicosilação , Polissacarídeos/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo
9.
Int J Biol Macromol ; 253(Pt 3): 126804, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709216

RESUMO

Levan is a biopolymer with many different uses. Temperature is an important parameter in biopolymer synthesis. Herein, levan production was carried out from Bacillus haynesii, a thermophilic microorganism, in the temperature range of 4 °C-95 °C. The highest levan production was measured as 10.9 g/L at 37 °C. The synthesized samples were characterized by FTIR and NMR analysis. The particle size of the levan samples varied between 153 and 824.4 nm at different temperatures. In levan samples produced at high temperatures, the water absorption capacity is higher in accordance with the particle size. Irregularities were observed in the surface pores at temperatures of 60 °C and above. The highest emulsion capacity of 83.4 % was measured in the sample synthesized at 4 °C. The antioxidant activity of all levan samples synthesized at different temperatures was measured as 84 % on average. All synthesized levan samples showed antibacterial effect on pathogenic bacteria. In addition, levan synthesized at 45 °C showed the highest antimicrobial effect on E. coli ATCC 35218 with an inhibition zone of 21.3 ± 1.82 mm. Antimicrobial activity against yeast sample C. albicans, was measured only in levan samples synthesized at 80 °C, 90 °C, 95 °C temperatures. Levan synthesized from Bacillus haynesii at low and high temperatures showed differences in characterization and bioactivity.


Assuntos
Anti-Infecciosos , Hexosiltransferases , Temperatura , Escherichia coli , Hexosiltransferases/química , Frutanos/química , Biopolímeros
10.
Glycobiology ; 33(11): 861-872, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37399117

RESUMO

N-linked protein glycosylation is a post-translational modification that exists in all domains of life. It involves two consecutive steps: (i) biosynthesis of a lipid-linked oligosaccharide (LLO), and (ii) glycan transfer from the LLO to asparagine residues in secretory proteins, which is catalyzed by the integral membrane enzyme oligosaccharyltransferase (OST). In the last decade, structural and functional studies of the N-glycosylation machinery have increased our mechanistic understanding of the pathway. The structures of bacterial and eukaryotic glycosyltransferases involved in LLO elongation provided an insight into the mechanism of LLO biosynthesis, whereas structures of OST enzymes revealed the molecular basis of sequon recognition and catalysis. In this review, we will discuss approaches used and insight obtained from these studies with a special emphasis on the design and preparation of substrate analogs.


Assuntos
Hexosiltransferases , Glicosilação , Hexosiltransferases/metabolismo , Lipopolissacarídeos/metabolismo , Polissacarídeos , Glicosiltransferases/metabolismo
11.
Nat Commun ; 14(1): 4268, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460557

RESUMO

Penicillin-binding proteins (PBPs) are essential for the formation of the bacterial cell wall. They are also the targets of ß-lactam antibiotics. In Enterococcus faecium, high levels of resistance to ß-lactams are associated with the expression of PBP5, with higher levels of resistance associated with distinct PBP5 variants. To define the molecular mechanism of PBP5-mediated resistance we leveraged biomolecular NMR spectroscopy of PBP5 - due to its size (>70 kDa) a challenging NMR target. Our data show that resistant PBP5 variants show significantly increased dynamics either alone or upon formation of the acyl-enzyme inhibitor complex. Furthermore, these variants also exhibit increased acyl-enzyme hydrolysis. Thus, reducing sidechain bulkiness and expanding surface loops results in increased dynamics that facilitates acyl-enzyme hydrolysis and, via increased ß-lactam antibiotic turnover, facilitates ß-lactam resistance. Together, these data provide the molecular basis of resistance of clinical E. faecium PBP5 variants, results that are likely applicable to the PBP family.


Assuntos
Antibacterianos , Hexosiltransferases , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência beta-Lactâmica/genética , Monobactamas , beta-Lactamas/farmacologia , Testes de Sensibilidade Microbiana
12.
Biosci Biotechnol Biochem ; 87(9): 981-990, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37280168

RESUMO

The trisaccharide 1-kestose, a major constituent of fructooligosaccharide, has strong prebiotic effects. We used high-performance liquid chromatography and 1H nuclear magnetic resonance spectroscopy to show that BiBftA, a ß-fructosyltransferase belonging to glycoside hydrolase family 68, from Beijerinckia indica subsp. indica catalyzes transfructosylation of sucrose to produce mostly 1-kestose and levan polysaccharides. We substituted His395 and Phe473 in BiBftA with Arg and Tyr, respectively, and analyzed the reactions of the mutant enzymes with 180 g/L sucrose. The ratio of the molar concentrations of glucose and 1-kestose in the reaction mixture with wild-type BiBftA was 100:8.1, whereas that in the reaction mixture with the variant H395R/F473Y was 100:45.5, indicating that H395R/F473Y predominantly accumulated 1-kestose from sucrose. The X-ray crystal structure of H395R/F473Y suggests that its catalytic pocket is unfavorable for binding of sucrose while favorable for transfructosylation.


Assuntos
Proteínas de Bactérias , Hexosiltransferases , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Sacarose/metabolismo
13.
Int J Biol Macromol ; 244: 125442, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37330087

RESUMO

The catalytic product of levansucrase from Bacillus subtilis (SacB) is mainly composed of 10 % high molecular weight levan (HMW, ~2000 kDa) and 90 % low molecular weight levan (LMW, ~7000 Da). In order to achieve efficient production of food hydrocolloid, high molecular weight levan (HMW), with the help of molecular dynamics simulation software, a protein self-assembly element, Dex-GBD, was found and fused with the C-terminus of SacB to construct a novel fusion enzyme, SacB-GBD. The product distribution of SacB-GBD was reversed compared with SacB, and the proportion of HMW in the total polysaccharide was significantly increased to >95 %. We then confirmed that the self-assembly was responsible for the reversal of the SacB-GBD product distribution by the simultaneous modulation of SacB-GBD particle size and product distribution by SDS. The hydrophobic effect may be the main driver of self-assembly as analyzed by molecular simulations and hydrophobicity determination. Our study provides an enzyme source for the industrial production of HMW and provides a new theoretical basis for guiding the molecular modification of levansucrase towards the size of the catalytic product.


Assuntos
Hexosiltransferases , Sacarose , Sacarose/química , Oligossacarídeos/metabolismo , Peso Molecular , Hexosiltransferases/química , Frutanos/química , Bacillus subtilis
14.
Clin Genet ; 104(2): 245-250, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37125481

RESUMO

Glycosylphosphatidylinositol-anchored proteins are involved in multiple physiological processes and the initial stage of their biosynthesis is mediated by PIGA, PIGC, PIGH, PIGP, PIGQ, PIGY, and DMP2 genes, which have been linked to a wide spectrum of phenotypes depending on the gene damaged. To date, the PIGP gene has only been related to Developmental and Epileptic Encephalopathy 55 (MIM#617599) in just seven patients. A detailed medical history was performed in two affected siblings with a multiple malformation syndrome. Genetic testing was performed using whole-exome sequencing. One patient presented dysmorphic features, congenital anomalies, hypotonia and epileptic encephalopathy as described in PIGA, PIGQ and PIGY deficiencies. The other one was a fetus with a severe malformation disorder at 17 weeks of gestation whose pregnancy was interrupted. Both were compound heterozygous of pathogenic variants in PIGP gene: NM_153682.3:c.2 T > C(p.?) and a 136 Kb deletion (GRCh37/hg19 21q22.13(chr21:38329939-38 466 066)×1) affecting the entire PIGP gene. Our results extend the clinical phenotype associated to PIGP gene and propose to include it as a novel cause of Multiple Congenital Anomalies-Hypotonia-Seizures syndrome.


Assuntos
Anormalidades Múltiplas , Epilepsia Generalizada , Epilepsia , Hexosiltransferases , Anormalidades Musculoesqueléticas , Humanos , Convulsões/genética , Convulsões/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Mutação , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Fenótipo , Proteínas de Membrana/genética , Hexosiltransferases/genética
15.
Methods Mol Biol ; 2670: 127-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37184702

RESUMO

Penicillin-binding protein-type thioesterases (PBP-type TEs) are an emerging family of non-ribosomal peptide cyclases. PBP-type TEs exhibit distinct substrate scopes from the well-exploited ribosomal peptide cyclases and traditional non-ribosomal peptide cyclases. Their unique properties, as well as their stand-alone nature, highlight PBP-type TEs as valuable candidates for development as biocatalysts for peptide macrocyclization. Here in this chapter, we describe the scheme for the chemoenzymatic synthesis of non-ribosomal macrolactam by SurE, a representative member of PBP-type TEs.


Assuntos
Hexosiltransferases , Peptídeos , Proteínas de Ligação às Penicilinas , Proteínas de Bactérias/química , Hexosiltransferases/química
16.
Nat Commun ; 14(1): 2241, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193694

RESUMO

The "death cap", Amanita phalloides, is the world's most poisonous mushroom, responsible for 90% of mushroom-related fatalities. The most fatal component of the death cap is α-amanitin. Despite its lethal effect, the exact mechanisms of how α-amanitin poisons humans remain unclear, leading to no specific antidote available for treatment. Here we show that STT3B is required for α-amanitin toxicity and its inhibitor, indocyanine green (ICG), can be used as a specific antidote. By combining a genome-wide CRISPR screen with an in silico drug screening and in vivo functional validation, we discover that N-glycan biosynthesis pathway and its key component, STT3B, play a crucial role in α-amanitin toxicity and that ICG is a STT3B inhibitor. Furthermore, we demonstrate that ICG is effective in blocking the toxic effect of α-amanitin in cells, liver organoids, and male mice, resulting in an overall increase in animal survival. Together, by combining a genome-wide CRISPR screen for α-amanitin toxicity with an in silico drug screen and functional validation in vivo, our study highlights ICG as a STT3B inhibitor against the mushroom toxin.


Assuntos
Hexosiltransferases , Micotoxinas , Humanos , Masculino , Animais , Camundongos , Alfa-Amanitina/farmacologia , Verde de Indocianina/farmacologia , Antídotos , Amanita , Proteínas de Membrana
17.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108067

RESUMO

N6-methyladenosine (m6A) is the most common mRNA modification and it plays a critical role in tumor progression, prognoses and therapeutic response. In recent years, more and more studies have shown that m6A modifications play an important role in bladder carcinogenesis and development. However, the regulatory mechanisms of m6A modifications are complex. Whether the m6A reading protein YTHDF1 is involved in the development of bladder cancer remains to be elucidated. The aims of this study were to determine the association between METTL3/YTHDF1 and bladder cancer cell proliferation and cisplatin resistance to explore the downstream target genes of METTL3/YTHDF1 and to explore the therapeutic implications for bladder cancer patients. The results showed that the reduced expression of METTL3/YTHDF1 could lead to decreased bladder cancer cell proliferation and cisplatin sensitivity. Meanwhile, overexpression of the downstream target gene, RPN2, could rescue the effect of reduced METTL3/YTHDF1 expression on bladder cancer cells. In conclusion, this study proposes a novel METTL3/YTHDF1-RPN2-PI3K/AKT/mTOR regulatory axis that affects bladder cancer cell proliferation and cisplatin sensitivity.


Assuntos
Hexosiltransferases , Neoplasias da Bexiga Urinária , Humanos , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/metabolismo , Hexosiltransferases/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
19.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725334

RESUMO

Phagocytosis, the process by which cells engulf large particles, plays a vital role in driving tissue clearance and host defense. Its dysregulation is connected to autoimmunity, toxic accumulation of proteins, and increased risks for infections. Despite its importance, we lack full understanding of all molecular components involved in the process. To create a functional map in human cells, we performed a genome-wide CRISPRko FACS screen that identified 716 genes. Mapping those hits to a comprehensive protein-protein interaction network annotated for functional cellular processes allowed retrieval of protein complexes identified multiple times and detection of missing phagocytosis regulators. In addition to known components, such as the Arp2/3 complex, the vacuolar-ATPase-Rag machinery, and the Wave-2 complex, we identified and validated new phagocytosis-relevant functions, including the oligosaccharyltransferase complex (MAGT1/SLC58A1, DDOST, STT3B, and RPN2) and the hypusine pathway (eIF5A, DHPS, and DOHH). Overall, our phagocytosis network comprises elements of cargo uptake, shuffling, and biotransformation through the cell, providing a resource for the identification of potential novel drivers for diseases of the endo-lysosomal system. Our approach of integrating protein-protein interaction offers a broadly applicable way to functionally interpret genome-wide screens.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Hexosiltransferases , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas , Fagocitose/genética , Hexosiltransferases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
20.
Gene ; 857: 147168, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36621657

RESUMO

Oncogenes together with tumor suppresser genes are confirmed to regulate tumor phenotype in human cancers. RPN2, widely verified as an oncogene, encodes a protein that is part of an N-oligosaccharyl transferase, and is observed to be aberrantly expressed in human malignancies. Accumulating evidence unveils the vital functions of RPN2, contributing to tumorigenicity, metastasis, progression, and multi-drug resistance. Furthermore, previous studies partly indicated that RPN2 was involved in tumor progression via contributing to N-glycosylation and regulating multiple signaling pathways. In addition, RPN2 was also confirmed as a downstream target involved in tumor progression. Moreover, with demonstrated prognosis value and therapeutic target, RPN2 was also determined as a promising biomarker for forecasting patients' prognostic and therapy efficacy. In the present review, we aimed to summarize the present studies of RPN2 in cancer, and enhance the understanding of RPN2's extensive functions and clinical significances.


Assuntos
Hexosiltransferases , Neoplasias , Humanos , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Transdução de Sinais , Neoplasias/genética , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...