Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.393
Filtrar
1.
Food Res Int ; 184: 114254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609232

RESUMO

Polysaccharides have a significant impact on the physicochemical properties of starch, and the objective of this study was to examine the effect of incorporating soluble soybean polysaccharide (SSPS) on the gelatinization and retrogradation of corn starches (CS) with varying amylose content. In contrast to high-amylose corn starch (HACS), the degree of gelatinization of waxy corn starch (WCS) and normal corn starch (NCS) decreased with the addition of SSPS. The inclusion of SSPS resulted in reduced swelling power in all CS, and led to a decrease in gel hardness of the starches. The intermolecular forces between SSPS and CS were primarily hydrogen bonding, and a gel network structure was formed, thereby retarding the short-term and long-term retrogradation of CS. Scanning electron microscopy results revealed that the addition of SSPS in starches led to a loose network structure with larger poles and a reduced ordered structure after retrogradation, as observed from the cross-section of formed gels. These findings suggested that SSPS has great potential for applications in starchy foods, as it can effectively retard both gelatinization and retrogradation of starches.


Assuntos
Amilose , Soja , Zea mays , Amido , Polissacarídeos , Amilopectina
2.
Sci Rep ; 14(1): 6743, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509120

RESUMO

In rice, grain filling is a crucial stage where asynchronous filling of the pollinated spikelet's of the panicle occurs. It can influence both grain quality and yield. In rice grain, starch is the dominant component and contains amylose and amylopectin. Amylose content is the chief cooking quality parameter, however, rice varieties having similar amylose content varied in other parameters. Hence, in this study, a set of varieties varying in yield (04) and another set (12) of varieties that are similar in amylose content with variation in gel consistency and alkali spreading value were used. Panicles were collected at various intervals and analysed for individual grain weight and quantities of amylose and amylopectin. Gas exchange parameters were measured in varieties varying in yield. Upper branches of the panicles were collected from rice varieties having similar amylose content and were subjected to gene expression analysis with fourteen gene specific primers of starch synthesis. Results indicate that grain filling was initiated simultaneously in multiple branches. Amylose and amylopectin quantities increased with the increase in individual grain weight. However, the pattern of regression lines of amylose and amylopectin percentages with increase in individual grain weight varied among the varieties. Gas exchange parameters like photosynthetic rate, stomatal conductance, intercellular CO2 and transpiration rate decreased with the increase in grain filling period in both good and poor yielding varieties. However, they decreased more in poor yielders. Expression of fourteen genes varied among the varieties and absence of SBE2b can be responsible for medium or soft gel consistency.


Assuntos
Amilose , Oryza , Amilose/metabolismo , Amilopectina/metabolismo , Amido/metabolismo , Grão Comestível/metabolismo , Oryza/genética , Oryza/metabolismo , Expressão Gênica
3.
Int J Biol Macromol ; 264(Pt 2): 130684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460647

RESUMO

The impact of recrystallization conditions and drying temperatures on the crystallization and digestibility of native waxy maize (Zea mays L.) starch (NWMS) was explored. This study involved subjecting NWMS to concurrent debranching and crystallization at 50 °C for up to 7 days. Samples were collected by oven-drying at 40, 60, and 80 °C for 24 h. This simultaneous debranching and crystallization process increased the resistant starch (RS) content by approximately 48 % compared to the native starch. The drying temperatures significantly influenced the RS content, with samples dried at 60 °C exhibiting the lowest digestibility. X-ray diffraction (XRD) analysis revealed that most crystals demonstrated a characteristic A-type arrangement. Debranching and crystallization processes enhanced the crystallinity of the samples. The specific crystal arrangement (A- or B-type) depended on the crystallization conditions. A 15 min heating of NWMS in a boiling water bath increased the digestible fraction to over 90 %, while the samples subjected to debranching and crystallization showed an increase to only about 45 %. A linear correlation between starch fractions and enthalpy was also observed.


Assuntos
Amilopectina , Zea mays , Temperatura , Zea mays/química , Cristalização , Difração de Raios X , Amilopectina/química , Amido/química , Amido Resistente
4.
Food Res Int ; 182: 114178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519192

RESUMO

To explore the feasibility of substituting waxy rice with waxy or sweet-waxy corn, eight varieties of waxy and sweet-waxy corns were selected, including three self-cultivated varieties (Feng nuo 168, Feng nuo 211, and Feng nuo 10). Their starches were isolated and used as research objects, and commercially available waxy rice starch (CAWR) and waxy corn starch (CAWC) were used as controls. X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, rapid viscosity analyzer, and rotational rheometer were used to analyze their physicochemical and structural characteristics. The morphologies of all corn starch granules were generally oval or round, with significant differences in particle size distributions. All ten starches exhibited a typical A-type crystal structure; however, their relative crystallinity varied from 20.08% to 31.43%. Chain length distribution analysis showed that the A/B ratio of Jing cai tian nuo 18 and Feng nuo 168 was similar to that of CAWR. Peak viscosities of corn starches were higher than that of CAWR, except for Feng nuo 10, while their setback values were lower than that of CAWR. Except for Feng nuo 10, the paste transparency of corn starches was higher than that of CAWR (10.77%), especially for Jing cai tian nuo 18 (up to 24%). In summary, Jing cai tian nuo 18 and Feng nuo 168 are promising candidates to replace CAWR in developing various rice-based products.


Assuntos
Oryza , Zea mays , Zea mays/química , Oryza/química , Ceras/química , Estudos de Viabilidade , Amido/química , Amilopectina/química
5.
Carbohydr Polym ; 330: 121785, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368080

RESUMO

The relationship between the fine structure of starch and its gelatinization properties is not well studied, particularly in relation to the influence of sugar or sugar alcohol. In this study, seven starches with distinct molecular structures were investigated to determine how different sugars and sugar alcohols affect their gelatinization properties. The inclusion of sugars and sugar alcohols resulted in a significant elevation of starch gelatinization temperatures (∼ 8 °C), especially with sucrose, isomaltose and isomalt. Nevertheless, the influence of these sugars/ sugar alcohols on the gelatinization temperature range and enthalpy change varied depending on the particular starch varieties. According to the correlation analysis, sugars and sugar alcohols mainly exert their impact on the starch gelatinization temperature range and enthalpy change by possibly interacting with amylose chains possessing a degree of polymerization ranging from 100 to 1000 (p < 0.05) and inhibiting the amylose leaching during gelatinization. These findings help a better understanding of the complex relationship between starch fine structure and gelatinization properties under the influence of sugars and sugar alcohols.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Estrutura Molecular , Álcoois Açúcares , Açúcares , Amilopectina/química
6.
Carbohydr Polym ; 330: 121791, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368094

RESUMO

This work aimed to evaluate the structure and functional characteristics of starch from ten hulled oat cultivars grown in different locations in China. The protein, phosphorus, amylose, and starch contents were 0.2-0.4 %, 475.7-691.8 ppm, 16.2-23.0 %, and 93.6-96.7 %, respectively. All the starches showed irregular polygonal shapes and A-type crystallization with molecular weights ranging from 7.2 × 107 to 4.5 × 108 g/mol. The amounts of amylopectin A (DP 6-12), B1 (DP 13-24), B2 (DP 25-36), and B3 (DP > 36) chains were in the ranges of 10.3-16.0 %, 54.5-64.8 %, 16.5-21.1 %, and 4.9-13.1 %, respectively. The starches differed significantly in gelatinization temperatures, pasting viscosity, solubility, swelling power, rheological properties, and digestion parameters. The results revealed that the larger particle size could increase the peak viscosity of the starch paste. The presence of phosphorus increased the gelatinization temperature and enhanced the resistant starch content. The starch granules with higher crystallinity contained a higher proportion of phosphate, which increased final viscosity and setback viscosity but decreased rapidly digestible starch. Overall, oat starch with a high phosphorus content could be used to prepare low-glycemic-index food for diabetes patients.


Assuntos
Avena , Amido , Humanos , Amido/química , Avena/metabolismo , Amilopectina/química , Amilose/química , Viscosidade , Grão Comestível/metabolismo , Fósforo
7.
Carbohydr Polym ; 330: 121826, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368105

RESUMO

Zinc deficiency is a serious risk to human health and growth, especially in children. The development of zinc supplements can effectively reduce this harm. Here, a series of debranched starch­zinc complexes (DS-Zn) were prepared, whose zinc complexation was inversely proportional to the amylopectin content in the debranched starch (DS). The physicochemical properties of DS-Zn were characterized using the conductivity, XRD, iodine staining and thermogravimetry. Combined with XPS, solid-state 13C NMR and IR, it was elucidated that the structure of DS-Zn is endoconcave structure with 2-O and 3-O of DS on the inner side and 6-O of DS on the outer side, where zinc is located. The DS-Zn exhibits good biosafety including blood, cellular and mutagenicity. In vitro simulations of digestion and zinc-deficient cellular models showed that DS-Zn was more tolerant to the gastrointestinal environment and more effective in zinc supplementation (increased by 33 %) than inorganic zinc supplements. Utilizing the compressibility of starch, DS-Zn was prepared as a more palatable oral cartoon tablet for children. This study will provide important support to advance the development and application of novel starch-based zinc nutritional supplements.


Assuntos
Amido , Zinco , Criança , Humanos , Amido/química , Zinco/química , Amilopectina , Espectroscopia de Ressonância Magnética
8.
Int J Biol Macromol ; 265(Pt 1): 130422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423429

RESUMO

The evolution of the starch fine structure during growth and its impact on the gelatinization behavior of cassava starch (CS) was investigated by isolating starch from South China 6068 (SC6068) cassava harvested from the 4th to 9th growth period. During growth, the short-range ordered structure, crystallinity as well as particle size distribution of starch were increased. Meanwhile, the starch molecular size and amylopectin (AP) proportion increased, while the proportion of amylose (AM) exhibited a decreasing tendency. The chains of short-AM (X ~ 100-1000) were mainly significantly reduced, whereas the short and medium-AP chains (X ~ 6-24) had the most increment in AP. The solubility, thermal stability, shear resistance, and retrogradation resistance of starch were enhanced after gelatinized under the influence of the results mentioned above. This study presented a deeper insight into the variation of starch fine structure during growth and its influence on gelatinization behavior, which would provide a theoretical basis for starch industrial applications.


Assuntos
Manihot , Manihot/química , Amido/química , Amilopectina/química , Amilose/química , Solubilidade
9.
Food Chem ; 444: 138622, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38310779

RESUMO

Three cultivars of waxy rice starch with different multi-scale structures were subjected to α-amylase hydrolysis to determine amylopectin fine structure, production of oligosaccharides, morphology, and crystallinity of the partially hydrolyzed starch granules. α-amylases hydrolyzed the amylopectin B2 chain during the initial stage of hydrolysis, suggesting that it is primarily located in the outer shell of the granules. For waxy rice starch with loose structure, α-amylases attacked the crystalline and amorphous regions simultaneously in the initial stage, while for starch granules with compact structure, the outer shell blocklet (crystalline structure) can be a hurdle for α-amylases to proceed to hydrolysis of the internal granule structure. The ability of α-amylases from porcine pancreatic α-amylases to attack the outer shell crystalline structure was lower than that of α-amylases from Bacillus amyloliquefaciens and Aspergillus oryzae. These results show that α-amylase source and rice cultivar combinations can be used to generate diverse structures in degraded waxy rice starch.


Assuntos
Oryza , Amido , Amido/química , Amilopectina/química , alfa-Amilases/metabolismo , Hidrólise , Oryza/química
10.
Carbohydr Polym ; 331: 121860, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388056

RESUMO

Potato starch with mutations in starch branching enzyme genes (SBEI, SBEII) and granule-bound starch synthase gene (GBSS) was characterized for molecular and thermal properties. Mutations in GBSS were here stacked to a previously developed SBEI and SBEII mutation line. Additionally, mutations in the GBSS gene alone were induced in the wild-type variety for comparison. The parental line with mutations in the SBE genes showed a âˆ¼ 40 % increase in amylose content compared with the wild-type. Mutations in GBSS-SBEI-SBEII produced non-waxy, low-amylose lines compared with the wild-type. An exception was a line with one remaining GBSS wild-type allele, which displayed ∼80 % higher amylose content than wild-type. Stacked mutations in GBSS in the SBEI-SBEII parental line caused alterations in amylopectin chain length distribution and building block size categories of whole starch. Correlations between size categories of building blocks and unit chains of amylopectin were observed. Starch in GBSS-SBEI-SBEII mutational lines had elevated peak temperature of gelatinization, which was positively correlated with large building blocks.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Solanum tuberosum , Sintase do Amido , Amilopectina/química , Sintase do Amido/genética , Sintase do Amido/metabolismo , Amilose , Solanum tuberosum/metabolismo , Estrutura Molecular , Amido/química , Mutação , Enzima Ramificadora de 1,4-alfa-Glucana/química
11.
Int J Biol Macromol ; 261(Pt 2): 129918, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309388

RESUMO

This study examined four types of japonica rice from Yangtze River Delta, categorized based on amylose content (AC) and protein content (PC): high AC with high PC, high AC with low PC, low AC with high PC, and low AC with low PC. It systematically explored the effect of starch, protein and their interactions on eating quality of japonica rice. Rheological analysis revealed that increased amylose, long chains amylopectin or protein levels during cooking strengthen starch-protein interactions (hydrogen bonding), forming a firm gel network. Scanning electron microscopy showed that increased amylose, long chains amylopectin or protein levels made protein and starch more stable in combination during cooking, limiting starch structure cleavage. Therefore, the eating quality of high AC in similar PC japonica rice and high PC in similar AC japonica rice were poor. Further, correlation and random-forest analysis (RFA) identified amylose as the most influential factor in starch-protein interactions affecting rice eating quality, followed by amylopectin and protein. RFA also revealed that in high AC japonica rice, the interactions of Fb3 and albumin with amylose were more conducive to forming good eating quality. In low AC japonica rice, the interactions of Fb2 and prolamin with amylose were more beneficial.


Assuntos
Oryza , Amido , Amido/química , Amilopectina/química , Amilose/química , Oryza/química , Rios
12.
Int J Biol Macromol ; 264(Pt 1): 130462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423435

RESUMO

Banana starch has attracted significant attention due to its abundant content of resistant starch. This study aims to compare the multiscale structure and functional properties of banana starch obtained from five cultivated varieties and investigate the impact of dielectric barrier discharge cold plasma (DBD) treatment on these starch characteristics. All five types of natural banana starch exhibited an elliptical and irregular shape, conforming to the CB crystal structure, with a bimodal distribution of branch chain lengths. The resistant starch content ranged from 88.9 % to 94.1 %. Variations in the amylose content, amylopectin branch chain length distribution, and structural characteristics resulted in differences in properties such as gelatinization behavior and sensitivity to DBD treatment. The DBD treatment inflicted surface damage on starch granules, reduced the amylose content, shortened the amylopectin branch chain length, and changed the relative crystallinity to varying degrees. The DBD treatment significantly increased starch solubility and light transmittance. Simultaneously, it resulted in a noteworthy decrease in peak viscosity and gelatinization enthalpy of starch paste. The in vitro digestibility test showed that 76.2 %-86.5 % of resistant starch was retained after DBD treatment. The DBD treatment renders banana starch with reduced viscosity, increased paste transparency, enhanced solubility, and broadens its potential application.


Assuntos
Musa , Gases em Plasma , Amido/química , Amilopectina/química , Amilose/química , Musa/química , Gases em Plasma/química , Amido Resistente , Viscosidade
13.
Carbohydr Polym ; 329: 121770, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286545

RESUMO

The complete dissolution of starch without degradation are necessary prerequisites for starch fractionation to obtain amylose or amylopectin (AP). With the recent, continuous progress in finding efficient and eco-friendly starch-dissolving solutions, applying new solvents for starch fractionation is important. In this study, the effects of dimethyl sulfoxide (DMSO), NaOH, and CaCl2 solutions on starch structure and AP product parameters during starch fractionation were compared with respect to the starch deconstruction effect. This study proved that the CaCl2 solution could effectively dissolve corn starch (50 °C, solubility of 98.96 %), and promote the regeneration of starch into uniform and fine particles. Furthermore, the three solvents (DMSO, NaOH, and CaCl2) changed the crystal structure of corn starch, but they were all non-derivatizing solvents. The effect of the CaCl2 solution on the molecular structure of corn starch was the least significant of the three solvents. Finally, the extraction rate of AP from the CaCl2 solution reached 69.45 %. In conclusion, this study presents a novel and effective method for AP extraction.


Assuntos
Amilopectina , Amido , Amido/química , Amilopectina/química , Zea mays/química , Dimetil Sulfóxido/química , Cloreto de Cálcio , Hidróxido de Sódio , Amilose/química , Solventes
14.
Int J Biol Macromol ; 254(Pt 1): 127765, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287575

RESUMO

Waxy maize starch serves as a pivotal component in global food processing and industrial applications, while high temperature (HT) during the grain-filling stage seriously affects its quality. Salicylic acid (SA) has been recognized for its role in enhancing plant heat resistance. Nonetheless, its regulatory effect on the quality of waxy maize starch under HT conditions remains unclear. In this study, two waxy maize varieties, JKN2000 (heat-tolerant) and SYN5 (heat-sensitive) were treated with SA after pollination and then subjected to HT during the grain-filling stage to explore the effect of SA on grain yield and starch quality. The results indicate that exogenous SA under HT treatment led to an increase in kernel weight and starch content in both varieties. Moreover, SA reduced the HT-induced holes on the surfaces of starch granules, enlarged the starch granule size, elevated the amylopectin branching degree, and reduced amylopectin average chain length. Consequently, improvements of pasting viscosity and the decrease of retrogradation percentage of starch were observed with SA under HT. Exogenous SA reduced HT-induced rapidly digestible starch content in SYN5, but had no significant effect on that in JKN2000. In summary, SA pretreatment effectively alleviated the detrimental effects of HT on starch pasting and thermal properties of waxy maize.


Assuntos
Amilopectina , Amido , Amido/química , Amilopectina/química , Zea mays/química , Ceras/química , Grão Comestível , Resposta ao Choque Térmico , Digestão
15.
Carbohydr Polym ; 328: 121701, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220338

RESUMO

To illustrate the action mechanism of screw speed on the performance of starch-based straws during the extrusion process, starch-based straws at different screw speeds were prepared using a twin-screw extruder and the structures and characteristics were compared. The results indicated that as screw speeds improved from 3 Hz to 13 Hz, the A chain of amylopectin increased from 25.47 % to 28.87 %, and the B3 chain decreased from 6.34 % to 3.47 %. The absorption peak of hydroxyl group shifted from 3296 cm-1 to 3280 cm-1. The relative crystallinity reduced from 13.49 % to 9.89 % and the gelatinization enthalpy decreased from 3.5 J/g to 0.2 J/g. The performance of starch straws did not increase linearly with increasing screw speeds. The starch straw produced at screw speed of 7 Hz had the largest amylose content, the highest gelatinization temperature, the minimum bending strength, and the lowest water absorption rate in hot water (80 °C). Screw speed had a remarkable impact on the mechanical strength, toughness and hydrophobicity of starch-based straws. This study revealed the mechanism of screw speed on the mechanical strength and water resistance of starch straws in the thermoplastic extrusion process and created the theoretical basis for the industrial production of starch-based straws.


Assuntos
Amilopectina , Amido , Amido/química , Amilopectina/química , Temperatura Alta , Amilose/química , Água/química
16.
Carbohydr Polym ; 327: 121702, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171666

RESUMO

The chain structure of starch affects its interaction with polyphenol molecules which in turn determines the nutritional function of starch. In this study, starch with different amylose content including waxy maize starch (WMS), normal maize starch (NMS) and G50 high-amylose maize starch (G50) were selected to complex with resveratrol (RA) in high-pressure homogenization (HPH) environment, and structural changes of the complexes, together with their effects on in vitro digestibility and gut microbiota were discussed. The results showed that with increasing amylose content, RA could form more inclusion complex with starch through non-covalent bonds accompanied by the increased single helix structure, V-type crystalline structure, compact nano-aggregates and total ordered structure content, which thus endowed the complex lower digestibility and intestinal probiotic function. Notably, when RA addition reached 3 %, the resistant starch (RS) content of HP-G50-3 % rose to 29.2 %, correspondingly increased the relative abundance of beneficial gut microbiota such as Megamonas and Bifidobacterium, as well as the total short-chain fatty acids (SCFAs) content. Correlation analysis showed that V-type crystalline structure positively correlated with the growth of Pediococcu and Blautia (p < 0.05) for producing SCFAs. These findings provided feasible ideas for the development of personalized nutritional starch-based foods.


Assuntos
Amilose , Microbioma Gastrointestinal , Humanos , Amilose/química , Zea mays/química , Resveratrol , Amido/química , Amilopectina/química , Ácidos Graxos Voláteis
17.
Nat Struct Mol Biol ; 31(2): 255-265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177679

RESUMO

Resistant starch is a prebiotic accessed by gut bacteria with specialized amylases and starch-binding proteins. The human gut symbiont Ruminococcus bromii expresses Sas6 (Starch Adherence System member 6), which consists of two starch-specific carbohydrate-binding modules from family 26 (RbCBM26) and family 74 (RbCBM74). Here, we present the crystal structures of Sas6 and of RbCBM74 bound with a double helical dimer of maltodecaose. The RbCBM74 starch-binding groove complements the double helical α-glucan geometry of amylopectin, suggesting that this module selects this feature in starch granules. Isothermal titration calorimetry and native mass spectrometry demonstrate that RbCBM74 recognizes longer single and double helical α-glucans, while RbCBM26 binds short maltooligosaccharides. Bioinformatic analysis supports the conservation of the amylopectin-targeting platform in CBM74s from resistant-starch degrading bacteria. Our results suggest that RbCBM74 and RbCBM26 within Sas6 recognize discrete aspects of the starch granule, providing molecular insight into how this structure is accommodated by gut bacteria.


Assuntos
Glucanos , Amido , Humanos , Amido/química , Amido/metabolismo , Glucanos/química , Glucanos/metabolismo , Amilopectina/metabolismo , Ruminococcus/metabolismo , Bactérias/metabolismo
18.
Food Funct ; 15(4): 1923-1937, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38261274

RESUMO

The effects of fermentation on barley starch were studied using Lactiplantibacillus plantarum dy-1. Changes in multi-scale structure and physicochemical properties of barley starch were studied. The chain structure results revealed that fermentation could increase the content of short chain and medium short chain by breaking down long amylopectin side chains in barley and increase amylose content by debranching amylopectin. Also, fermentation promoted the arrangement of short chains into short order structure, leading to the enhancement of hydrogen bond interaction. Furthermore, it improved the helical structure content and relative crystallinity of barley starch by degrading the amorphous structure of barley starch. In terms of physicochemical properties, fermentation inhibited the hydration characteristics of barley starch, thus improving its thermal stability. It also enhanced shear stability, resistance to short-term aging and digestion, and improved gel texture properties. These findings offer potential for the processing and nutritional regulation of fermented barley products.


Assuntos
Hordeum , Amido , Amido/química , Amilopectina/química , Hordeum/química , Fermentação , Amilose/química
19.
Int J Biol Macromol ; 259(Pt 1): 129247, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199530

RESUMO

The molecular motion of starch at different glycerol concentrations (0, 20, 50, and 80 %) was investigated using Electron Paramagnetic Resonance (EPR) spectroscopy. Fourier-transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance (1H NMR) spectroscopy confirmed that hydroxyl groups at the C2 and C3 positions of glucose units in corn starch (CS), waxy corn starch (WCS), and high amylose corn starch (HCS) were labeled with 4-amino-TEMPO. The crystallinities of CS, WCS, and HCS after spin-labeling decreased from 30.68 % to 3.21 %, 39.36 % to 1.65 %, and 28.54 % to 8.08 %, respectively. The pseudoplastic fluid properties of the spin-labeled starch remained shear-thin at different glycerol concentrations. EPR revealed the fast- and slow-motion components of the spin-labeled starch molecules dispersed in water. At a glycerol concentration of 20 %, the slow-motion component disappeared, indicating a faster rotational motion of the starch chain segments. As the glycerol concentration increased to 50 and 80 %, the rotational motion slowed because of high viscosity. In particular, the mobility of the spin-labeled WCS chains increased owing to easier access of glycerol and water to the branched structure. This study directly observed the dynamics of the molecular behavior of starch in glycerol-water systems.


Assuntos
Glicerol , Amido , Amido/química , Água , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Amilose/química , Marcadores de Spin , Amilopectina
20.
Int J Biol Macromol ; 259(Pt 2): 129280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211911

RESUMO

The retrogradation of wheat amylopectin during cold storage is the main reason for the increasing hardness of flour products such as steamed bread, bread and pastries, etc. Addition of gluten protein components is a green, safe, cheap and efficient method to inhibit the retrogradation of wheat amylopectin. In this paper, as being stored at 4 °C for 7 d, retrogradation rate of wheat amylopectin decreased from 55.02 % to 14.37 % after it was mixed with 20 % alkali-soluble glutenin (ASG) at 30 °C for 90 min, a 73.8 % reduction. The infrared results showed that the intensity of bending vibration of water molecules and intra-molecular ß-sheet content of ASG decreased during the interaction between amylopectin and ASG. Meanwhile, intermolecular ß-sheet and random coil contents of ASG increased. The results of 13C Solid-state NMR indicated that Qß, Pγ and Lγ of ASG involved in interaction of wheat amylopectin, ASG and molecule of water. Under the optimal conditions, the interaction of wheat amylopectin and ASG began to form spheres containing disulfide bonds, resulting in the attenuation or disappearance of the diffraction peak at 2θ 19.7°, which may be marked as the criterion for the best mixing time of wheat amylopectin and ASG. The retrogradation kinetic index (n) of wheat amylopectin decreased significantly with the addition of ASG and formation of disulfide bond was the key factor. ASG could be potentially used as an anti-retrogradation agent for amylopectin.


Assuntos
Amilopectina , Amido , Amilopectina/química , Amido/química , Triticum/química , Glutens/química , Água/química , Dissulfetos , Pão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...