Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91.692
Filtrar
1.
BMC Biol ; 22(1): 80, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609974

RESUMO

BACKGROUND: The nuclear lamina links the nuclear membrane to chromosomes and plays a crucial role in regulating chromatin states and gene expression. However, current knowledge of nuclear lamina in plants is limited compared to animals and humans. RESULTS: This study mainly focused on elucidating the mechanism through which the putative nuclear lamina component protein KAKU4 regulates chromatin states and gene expression in Arabidopsis leaves. Thus, we constructed a network using the association proteins of lamin-like proteins, revealing that KAKU4 is strongly associated with chromatin or epigenetic modifiers. Then, we conducted ChIP-seq technology to generate global epigenomic profiles of H3K4me3, H3K27me3, and H3K9me2 in Arabidopsis leaves for mutant (kaku4-2) and wild-type (WT) plants alongside RNA-seq method to generate gene expression profiles. The comprehensive chromatin state-based analyses indicate that the knockdown of KAKU4 has the strongest effect on H3K27me3, followed by H3K9me2, and the least impact on H3K4me3, leading to significant changes in chromatin states in the Arabidopsis genome. We discovered that the knockdown of the KAKU4 gene caused a transition between two types of repressive epigenetics marks, H3K9me2 and H3K27me3, in some specific PLAD regions. The combination analyses of epigenomic and transcriptomic data between the kaku4-2 mutant and WT suggested that KAKU4 may regulate key biological processes, such as programmed cell death and hormone signaling pathways, by affecting H3K27me3 modification in Arabidopsis leaves. CONCLUSIONS: In summary, our results indicated that KAKU4 is directly and/or indirectly associated with chromatin/epigenetic modifiers and demonstrated the essential roles of KAKU4 in regulating chromatin states, transcriptional regulation, and diverse biological processes in Arabidopsis.


Assuntos
Arabidopsis , Cromatina , Animais , Humanos , Cromatina/genética , Histonas , Arabidopsis/genética , Lâmina Nuclear , Regulação da Expressão Gênica , Proteínas Nucleares
2.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557488

RESUMO

While breast cancer 2 (BRCA2) loss of heterozygosity (LOH) promotes cancer initiation, it can also induce death in nontransformed cells. In contrast, mismatch repair gene mutL homolog 1 (MLH1) is a tumor-suppressor gene that protects cells from cancer development through repairing mismatched base pairs during DNA mismatch repair (MMR). Sengodan et al., in this issue of the JCI, reveal an interplay between the 2 genes: MLH1 promoted the survival of BRCA2-deficient cells independently of its MMR function. MLH1 protected replication forks from degradation, while also resolving R-loops, thereby reducing genomic instability. Moreover, MLH1 expression was regulated directly by estrogen, shedding light into the hormone-responsive nature of many BRCA2 mutant breast cancers. These results provide important insight into the genetics that drive the initiation of BRCA2-mutated breast cancers.


Assuntos
Neoplasias da Mama , Proteína 1 Homóloga a MutL , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Instabilidade Genômica , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo
3.
Blood ; 143(14): 1323-1324, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573606
4.
Cell Death Dis ; 15(4): 241, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561375

RESUMO

Soft-tissue sarcomas (STS) emerges as formidable challenges in clinics due to the complex genetic heterogeneity, high rates of local recurrence and metastasis. Exploring specific targets and biomarkers would benefit the prognosis and treatment of STS. Here, we identified RCC1, a guanine-nucleotide exchange factor for Ran, as an oncogene and a potential intervention target in STS. Bioinformatics analysis indicated that RCC1 is highly expressed and correlated with poor prognosis in STS. Functional studies showed that RCC1 knockdown significantly inhibited the cell cycle transition, proliferation and migration of STS cells in vitro, and the growth of STS xenografts in mice. Mechanistically, we identified Skp2 as a downstream target of RCC1 in STS. Loss of RCC1 substantially diminished Skp2 abundance by compromising its protein stability, resulting in the upregulation of p27Kip1 and G1/S transition arrest. Specifically, RCC1 might facilitate the nucleo-cytoplasmic trafficking of Skp2 via direct interaction. As a result, the cytoplasmic retention of Skp2 would further protect it from ubiquitination and degradation. Notably, recovery of Skp2 expression largely reversed the phenotypes induced by RCC1 knockdown in STS cells. Collectively, this study unveils a novel RCC1-Skp2-p27Kip1 axis in STS oncogenesis, which holds promise for improving prognosis and treatment of this formidable malignancy.


Assuntos
Sarcoma , Animais , Humanos , Camundongos , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Sarcoma/genética , Sarcoma/patologia , Ubiquitinação , Regulação para Cima
5.
BMJ Case Rep ; 17(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569728

RESUMO

We report a young pregnant woman with large midline thoracic mass and markedly elevated serum alpha-fetoprotein (AFP) levels. Initially suspected as a germ cell tumour (GCT) due to age, site, and high AFP levels, a biopsy unveiled a high-grade malignant tumour characterised by undifferentiated monotonous cells. Although tumour cells exhibited positive AFP, the overall immunoprofile did not provide additional evidence to support GCT. Further work-up showed positive for NUT (nuclear protein in testis) immunostaining and the presence of BRD4-NUT1 fusion, confirming the diagnosis of NUT carcinoma. On radiology, there were extensive metastases to lungs, liver, vertebrae, and placenta. Despite aggressive chemotherapy, radiotherapy and immunotherapy, she did not respond to the therapies. Fortunately, her child was not affected by the carcinoma. This is the first case highlighting that thoracic lung primary NUT carcinoma can spread to the placenta and manifest with elevated serum AFP levels, potentially leading to misdiagnosis as GCT both clinically and pathologically.


Assuntos
Carcinoma , alfa-Fetoproteínas , Masculino , Humanos , Feminino , Gravidez , alfa-Fetoproteínas/metabolismo , Proteínas Nucleares , Placenta/patologia , Fatores de Transcrição , Carcinoma/patologia , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular
6.
Clin Transl Med ; 14(4): e1628, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572589

RESUMO

BACKGROUND: Acute myeloid leukaemia (AML) is a haematological malignancy with unfavourable prognosis. Despite the effectiveness of chemotherapy and targeted therapy, relapse or drug resistance remains a major threat to AML patients. N6-methyladenosine (m6A) RNA methylation and super-enhancers (SEs) are extensively involved in the leukaemogenesis of AML. However, the potential relationship between m6A and SEs in AML has not been elaborated. METHODS: Chromatin immunoprecipitation (ChIP) sequencing data from Gene Expression Omnibus (GEO) cohort were analysed to search SE-related genes. The mechanisms of m6 A-binding proteins IGF2BP2 and IGF2BP3 on DDX21 were explored via methylated RNA immunoprecipitation (MeRIP) assays, RNA immunoprecipitation (RIP) assays and luciferase reporter assays. Then we elucidated the roles of DDX21 in AML through functional assays in vitro and in vivo. Finally, co-immunoprecipitation (Co-IP) assays, RNA sequencing and ChIP assays were performed to investigate the downstream mechanisms of DDX21. RESULTS: We identified two SE-associated transcripts IGF2BP2 and IGF2BP3 in AML. High enrichment of H3K27ac, H3K4me1 and BRD4 was observed in IGF2BP2 and IGF2BP3, whose expression were driven by SE machinery. Then IGF2BP2 and IGF2BP3 enhanced the stability of DDX21 mRNA in an m6A-dependent manner. DDX21 was highly expressed in AML patients, which indicated a poor survival. Functionally, knockdown of DDX21 inhibited cell proliferation, promoted cell apoptosis and led to cell cycle arrest. Mechanistically, DDX21 recruited transcription factor YBX1 to cooperatively trigger ULK1 expression. Moreover, silencing of ULK1 could reverse the promoting effects of DDX21 overexpression in AML cells. CONCLUSIONS: Dysregulation of SE-IGF2BP2/IGF2BP3-DDX21 axis facilitated the progression of AML. Our findings provide new insights into the link between SEs and m6A modification, elucidate the regulatory mechanisms of IGF2BP2 and IGF2BP3 on DDX21, and reveal the underlying roles of DDX21 in AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , RNA Helicases DEAD-box , Leucemia Mieloide Aguda/genética , Recidiva Local de Neoplasia , RNA , Proteínas de Ligação a RNA/genética , Fatores de Transcrição , Regulação para Cima/genética
7.
Sci Rep ; 14(1): 7941, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575639

RESUMO

Traditional clinical modalities for diagnosing bladder urothelial carcinoma (BUC) remain limited due to their invasive nature, significant costs, discomfort associated with cystoscopy, and low sensitivity to urine cytology. Therefore, there is an urgent need to identify highly sensitive, specific, and noninvasive biomarkers for the early detection of this neoplasm. Hypermethylated TWIST1/Vimentin promoter may be a noninvasive biomarker using urine sample. We assessed the TWIST1/Vimentin promoter methylation status in urine samples using the Methylated Human TWIST1 and Vimentin Gene Detection Kit (Jiangsu MicroDiag Biomedicine Co., Ltd., China). The samples were collected from five groups: group 1 consisted of patients with BUC, group 2 contained other patients with urologic tumors, group 3 consisted of patients with benign diseases (e.g., urinary tract infections, lithiasis, and benign prostatic hyperplasia), Group 4 included UTUC (upper tract urothelial carcinoma) patients and group5 comprised healthy individuals. The study encompassed 77 BUC patients, and we evaluated the degree of methylation of the TWIST1/Vimentin gene in their urine samples. Notably, TWIST1/Vimentin positivity was significantly elevated in comparison to groups 2, 3 and 5 (all p < 0.001) at a rate of 77.9%, but no significant difference was observed when compared to group 4. In the relationship between TWIST1/Vimentin methylation and clinicopathological features of BC patients from our center, we found there was no significant association between TWIST1/Vimentin status and proteinuria and/or hematuria, and hypermethylation of TWIST1 / VIM genes was found in both high and low tumor grade and in both non-muscle invasive bladder cancer (stages Tis, Ta, or T1) and muscle-invasive bladder cancer (stage T2 or above). In the multivariable analysis for cancer detection, a positive TWIST1/Vimentin methylation were significantly linked to a heightened risk of BC. Moreover, TWIST1/Vimentin promoter methylation demonstrated an ability to detect BUC in urine samples with a sensitivity of 78% and a specificity of 83%. Our findings reveal that hypermethylation of the TWIST1/Vimentin promoter occurs in bladder urothelial carcinoma, and its high sensitivity and specificity suggest its potential as a screening and therapeutic biomarker for urothelial carcinoma of the bladder.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/patologia , Bexiga Urinária/patologia , Vimentina/genética , Biomarcadores Tumorais/metabolismo , Metilação de DNA/genética , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética
8.
Medicine (Baltimore) ; 103(14): e37590, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579085

RESUMO

BACKGROUND: 5-Methylcytidine (m5C) methylation is a recently emerging epigenetic modification that is closely related to tumor proliferation, occurrence, and metastasis. This study aimed to investigate the clinicopathological characteristics and prognostic value of m5C regulators in bladder cancer (BLCA), and their correlation with the tumor immune microenvironment. METHODS: Thirteen m5C RNA methylation regulators were analyzed using RNA-sequencing and corresponding clinical information obtained from the TCGA database. The Cluster Profiler package was used to analyze the gene ontology function of potential targets and enriched the Kyoto Encyclopedia of Genes and Genomes pathway. Kaplan-Meier survival analysis was used to compare survival differences using the log-rank test and univariate Cox proportional hazards regression. The correlation between signature prognostic m5C regulators and various immune cells was analyzed. Univariate and multivariate Cox regression analyses identified independence of the ALYREF gene signature. RESULTS: Nine out of the 13 m5C RNA methylation regulators were differentially expressed in BLCA and normal samples and were co-expressed. These 9 regulators were associated with clinicopathological tumor characteristics, particularly high or low tumor risk, pT or pTNM stage, and migration. Consensus clustering analysis divides the BLCA samples into 4 clusters. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment annotation and gene ontology function analysis identified 273 upregulated and 594 downregulated genes in BLCA. Notably, only ALYREF was significantly correlated with OS (P < .05). ALYREF exhibited significant infiltration levels in macrophage cells. Therefore, we constructed a nomogram for ALYREF as an independent prognostic factor. Additionally, we observed that both the mRNA and protein levels of ALYREF were upregulated, and immunofluorescence showed that ALYREF was mainly distributed in nuclear speckles. ALYREF overexpression was significantly associated with poor OS. CONCLUSION: Our findings demonstrated the potential of ALYREF to predict clinical prognostic risks in BLCA patients and regulate the tumor immune microenvironment. As such, ALYREF may serve as a novel prognostic indicator in BLCA patients.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária , Prognóstico , Nomogramas , Microambiente Tumoral/genética , Proteínas Nucleares , Fatores de Transcrição , Proteínas de Ligação a RNA
9.
Virol J ; 21(1): 80, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581045

RESUMO

BACKGROUND: Although macrophages are now recognized as an essential part of the HIV latent reservoir, whether and how viral latency is established and reactivated in these cell types is poorly understood. To understand the fundamental mechanisms of viral latency in macrophages, there is an urgent need to develop latency models amenable to genetic manipulations and screening for appropriate latency-reversing agents (LRAs). Given that differentiated THP-1 cells resemble monocyte-derived macrophages in HIV replication mechanisms, we set out to establish a macrophage cell model for HIV latency using THP-1 cells. METHODS: We created single-cell clones of THP-1 cells infected with a single copy of the dual-labeled HIVGKO in which a codon switched eGFP (csGFP) is under the control of the HIV-1 5' LTR promoter, and a monomeric Kusabira orange 2 (mKO2) under the control of cellular elongation factor one alpha promoter (EF1α). Latently infected cells are csGFP-, mKO2+, while cells with actively replicating HIV (or reactivated virus) are csGFP+,mKO2+. After sorting for latently infected cells, each of the THP-1 clones with unique integration sites for HIV was differentiated into macrophage-like cells with phorbol 12-myristate 13-acetate (PMA) and treated with established LRAs to stimulate HIV reactivation. Monocyte-derived macrophages (MDMs) harboring single copies of HIVGKO were used to confirm our findings. RESULTS: We obtained clones of THP-1 cells with latently infected HIV with unique integration sites. When the differentiated THP-1 or primary MDMs cells were treated with various LRAs, the bromodomain inhibitors JQ1 and I-BET151 were the most potent compounds. Knockdown of BRD4, the target of JQ1, resulted in increased reactivation, thus confirming the pharmacological effect. The DYRK1A inhibitor Harmine and lipopolysaccharide (LPS) also showed significant reactivation across all three MDM donors. Remarkably, LRAs like PMA/ionomycin, bryostatin-1, and histone deacetylase inhibitors known to potently reactivate latent HIV in CD4 + T cells showed little activity in macrophages. CONCLUSIONS: Our results indicate that this model could be used to screen for appropriate LRAs for macrophages and show that HIV latency and reactivation mechanisms in macrophages may be distinct from those of CD4 + T cells.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Latência Viral/genética , Ativação Viral , Fatores de Transcrição , Proteínas Nucleares , HIV-1/genética , Macrófagos , Linfócitos T CD4-Positivos , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular
10.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557192

RESUMO

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Assuntos
Adenosina Trifosfatases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Ratos , Camundongos , Animais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Linhagem Celular , Cromatina , Mamíferos/genética , Antagonistas de Receptores de Andrógenos , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
11.
J Am Chem Soc ; 146(14): 9779-9789, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561350

RESUMO

Protein O-linked ß-N-acetylglucosamine modification (O-GlcNAcylation) plays a crucial role in regulating essential cellular processes. The disruption of the homeostasis of O-GlcNAcylation has been linked to various human diseases, including cancer, diabetes, and neurodegeneration. However, there are limited chemical tools for protein- and site-specific O-GlcNAc modification, rendering the precise study of the O-GlcNAcylation challenging. To address this, we have developed heterobifunctional small molecules, named O-GlcNAcylation TArgeting Chimeras (OGTACs), which enable protein-specific O-GlcNAcylation in living cells. OGTACs promote O-GlcNAcylation of proteins such as BRD4, CK2α, and EZH2 in cellulo by recruiting FKBP12F36V-fused O-GlcNAc transferase (OGT), with temporal, magnitude, and reversible control. Overall, the OGTACs represent a promising approach for inducing protein-specific O-GlcNAcylation, thus enabling functional dissection and offering new directions for O-GlcNAc-targeting therapeutic development.


Assuntos
Neoplasias , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Processamento de Proteína Pós-Traducional , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(15): e2321502121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564636

RESUMO

The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulação da Expressão Gênica , Quinases Ciclina-Dependentes/metabolismo , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fosforilação , Hipóxia , Transcrição Gênica , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
13.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 325-331, 2024 Apr 12.
Artigo em Chinês | MEDLINE | ID: mdl-38599807

RESUMO

Objective: To analyze the clinical characteristics and prognosis of 17 patients with pathologically confirmed SMARCA4-deficient chest tumors. Methods: Seventeen patients with SMARCA4-deficient thoracic tumors diagnosed by pathology in the Affiliated Hospital of Jining Medical University from September 2021 to January 2023 were collected through Results Query System of Pathology Department, and the patients' general conditions, clinical symptoms, tumor markers, imaging features, treatment and regression were retrospectively analyzed, and literature review was performed. Results: A total of 17 patients were included in this study. Their clinical characteristics were characterized as follows: male/female=16/1, age 42-74 years, mean (64.0±5.7)years. Only 1 female had no clear smoking history, and 16 males had a smoking history, of whom 1 had 5 smoking pack-years, and the remaining 15 case had a smoking history of 20-100 smoking pack-years, with a mean of (68.5±44.5) smoking pack-years. Clinical symptoms were mainly cough and sputum, followed by chest tightness, hemoptysis and chest pain. Tumor markers CYFRA19-9 was elevated in 9 cases (3.79-16.61 ng/ml), CEA was elevated in 8 cases (5.37-295.93 ng/ml), and NSE was elevated in 6 cases (17.18-70.37 ng/ml). Imaging manifestations were intrapulmonary or mediastinal mass shadows, and the tumor involved the mediastinum in 9 cases, the upper lobe of the right lung in 6 cases, the upper lobe of the left lung in 5 cases, the lower lobe of the right lung in 3 cases, the lower lobe of the left lung in 3 cases; cervical or supraclavicular lymph node metastasis in 8 cases, pleural metastasis in 4 cases, hepatic metastasis in 3 cases, cerebral metastasis in 3 cases, bone metastasis in 2 cases, and subcutaneous metastasis in 1 case. Combining immuno-histochemistry and pathology, there were 6 cases of SMARCA4-deficient NSCLC and 11 cases of SMARCA4-deficient undifferentiated tumor. Eight patients were treated with platinum-contained chemotherapy agents, four of which were combined with immune checkpoint inhibitors, and one was treated with enzatinib; only one of the 9 patients achieved partial remission after treatment, and the remaining eight had progression of the tumors on chest CT after treatment. Five patients abandoned the treatment, and died in 6-month of follow-up. Three patients underwent surgery for resection, and there was no significant progression in the three patients in the 6 months of follow-up. Conclusions: Clinically, middle-aged and elderly men with a history of heavy smoking should be given high priority, especially in patients whose imaging mostly showed intrapulmonary, especially in upper lobes, and/or mediastinal masses, rapid lesion progression, and early distant metastasis, and who should be alerted to the possibility of SMARCA4-deficient thoracic tumors. Late clinical stage is a high risk factor for poor overall patient survival, and platinum-containing chemotherapy agents combined with immune checkpoint inhibitor therapy may be effective, and early surgery may improve patient prognosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Torácicas , Pessoa de Meia-Idade , Idoso , Humanos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Platina , Prognóstico , Neoplasias Torácicas/patologia , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
14.
Front Immunol ; 15: 1366235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601157

RESUMO

Introduction: The human orthopneumovirus, Respiratory Syncytial Virus (RSV), is the causative agent of severe lower respiratory tract infections (LRTI) and exacerbations of chronic lung diseases. In immune competent hosts, RSV productively infects highly differentiated epithelial cells, where it elicits robust anti-viral, cytokine and remodeling programs. By contrast, basal cells are relatively resistant to RSV infection, in part, because of constitutive expression of an intrinsic innate immune response (IIR) consisting of a subgroup of interferon (IFN) responsive genes. The mechanisms controlling the intrinsic IIR are not known. Methods: Here, we use human small airway epithelial cell hSAECs as a multipotent airway stem cell model to examine regulatory control of an intrinsic IIR pathway. Results: We find hSAECs express patterns of intrinsic IIRs, highly conserved with pluri- and multi-potent stem cells. We demonstrate a core intrinsic IIR network consisting of Bone Marrow Stromal Cell Antigen 2 (Bst2), Interferon Induced Transmembrane Protein 1 (IFITM1) and Toll-like receptor (TLR3) expression are directly under IRF1 control. Moreover, expression of this intrinsic core is rate-limited by ambient IRF1• phospho-Ser 2 CTD RNA Polymerase II (pSer2 Pol II) complexes binding to their proximal promoters. In response to RSV infection, the abundance of IRF1 and pSer2 Pol II binding is dramatically increased, with IRF1 complexing to the BRD4 chromatin remodeling complex (CRC). Using chromatin immunoprecipitation in IRF1 KD cells, we find that the binding of BRD4 is IRF1 independent. Using a small molecule inhibitor of the BRD4 acetyl lysine binding bromodomain (BRD4i), we further find that BRD4 bromodomain interactions are required for stable BRD4 promoter binding to the intrinsic IIR core promoters, as well as for RSV-inducible pSer2 Pol II recruitment. Surprisingly, BRD4i does not disrupt IRF1-BRD4 interactions, but disrupts both RSV-induced BRD4 and IRF1 interactions with pSer2 Pol II. Conclusions: We conclude that the IRF1 functions in two modes- in absence of infection, ambient IRF1 mediates constitutive expression of the intrinsic IIR, whereas in response to RSV infection, the BRD4 CRC independently activates pSer2 Pol II to mediates robust expression of the intrinsic IIR. These data provide insight into molecular control of anti-viral defenses of airway basal cells.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Proteínas Nucleares/metabolismo , Imunidade Inata , RNA Polimerase II/genética , Antivirais , Proteínas que Contêm Bromodomínio , Fatores de Transcrição , Proteínas de Ciclo Celular
15.
Oncoimmunology ; 13(1): 2340154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601319

RESUMO

Metabolism reprogramming within the tumor microenvironment (TME) can have a profound impact on immune cells. Identifying the association between metabolic phenotypes and immune cells in lung adenocarcinoma (LUAD) may reveal mechanisms of resistance to immune checkpoint inhibitors (ICIs). Metabolic phenotypes were classified by expression of metabolic genes. Somatic mutations and transcriptomic features were compared across the different metabolic phenotypes. The metabolic phenotype of LUAD is predominantly determined by reductase-oxidative activity and is divided into two categories: redoxhigh LUAD and redoxlow LUAD. Genetically, redoxhigh LUAD is mainly driven by mutations in KEAP1, STK11, NRF2, or SMARCA4. These mutations are more prevalent in redoxhigh LUAD (72.5%) compared to redoxlow LUAD (17.4%), whereas EGFR mutations are more common in redoxlow LUAD (19.0% vs. 0.7%). Single-cell RNA profiling of pre-treatment and post-treatment samples from patients receiving neoadjuvant chemoimmunotherapy revealed that tissue-resident memory CD8+ T cells are responders to ICIs. However, these cells are significantly reduced in redoxhigh LUAD. The redoxhigh phenotype is primarily attributed to tumor cells and is positively associated with mTORC1 signaling. LUAD with the redoxhigh phenotype demonstrates a lower response rate (39.1% vs. 70.8%, p = 0.001), shorter progression-free survival (3.3 vs. 14.6 months, p = 0.004), and overall survival (12.1 vs. 31.2 months, p = 0.022) when treated with ICIs. The redoxhigh phenotype in LUAD is predominantly driven by mutations in KEAP1, STK11, NRF2, and SMARCA4. This phenotype diminishes the number of tissue-resident memory CD8+ T cells and attenuates the efficacy of ICIs.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Fator 2 Relacionado a NF-E2/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Oxirredução , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Imunoterapia , Mutação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Linfócitos T , Linfócitos T CD8-Positivos , Microambiente Tumoral/genética , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
16.
J Obstet Gynaecol ; 44(1): 2333784, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38602239

RESUMO

BACKGROUND: Cervical cancer (CC) is the second most common malignancy in women, and identifying biomarkers of CC is crucial for prognosis prediction. Here, we investigated the expression of AF4/FMR2 Family Member 3 (AFF3) in CC and its association with clinicopathological features and prognosis. METHODS: Tumour and adjacent tissues, along with clinicopathological features and follow-up information, were collected from 78 patients. AFF3 expression was assessed using quantitative real-time polymerase chain reaction and Western blotting. The correlation between AFF3 expression and CC symptoms was using chi-square test. The 5-year overall survival (OS) was analysed using the Kaplan-Meier method. The Univariate analysis of prognostic risk factors was conducted using the COX proportional hazards model, followed by multivariate COX regression analysis including variables with p < 0.01. RESULTS: AFF3 expression was downregulated in CC, and its levels were correlated with lymph node metastasis (LNM) and International Federation of Gynaecology and Obstetrics (FIGO) stage. Patients with low AFF3 expression had a lower 5-year OS rate (52.78%, 19/36). Postoperative survival was reduced in patients with histological grade 3 (G3), myometrial invasion (depth ≥ 1/2), lymphovascular space invasion, LNM, and advanced FIGO stage. Low expression of AFF3 (HR: 2.848, 95% CI: 1.144-7.090) and histological grade G3 (HR: 4.393, 95% CI: 1.663-11.607) were identified as independent prognostic risk factors in CC patients. CONCLUSION: Low expression of AFF3 and histological G3 are independent predictors of poor prognosis in CC patients, suggesting that AFF3 could serve as a potential biomarker for prognostic assessment in CC.


Cervical cancer is a significant health concern worldwide, responsible for over 300,000 deaths annually and ranking as the fourth most common cancer in women. Existing screening methods have limitations, highlighting the need for innovative therapies. In our research, we identified a specific genetic material that varied significantly among cervical cancer patients with varying survival outcomes, detected in tissue samples obtained post-surgery. Our study demonstrates the considerable potential of this marker for accurately predicting outcomes in our study population. By analysing differences in the expression of this genetic marker, we can forecast the prognosis and progression of cervical cancer. These findings offer valuable insights for advancing cervical cancer treatment strategies, potentially improving outcomes for patients. Early detection and targeted treatment based on this genetic marker could extend patients' lives and prevent fatalities by enabling timely medical intervention and management.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/patologia , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase em Tempo Real , Metástase Linfática , Proteínas Nucleares
17.
CNS Neurosci Ther ; 30(4): e14698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600891

RESUMO

AIMS: To investigate the key factors influencing glioma progression and the emergence of treatment resistance by examining the intrinsic connection between mutations in DNA damage and repair-related genes and the development of chemoresistance in gliomas. METHODS: We conducted a comprehensive analysis of deep-targeted gene sequencing data from 228 glioma samples. This involved identifying differentially mutated genes across various glioma grades, assessing their functions, and employing I-TASSER for homology modeling. We elucidated the functional changes induced by high-frequency site mutations in these genes and investigated their impact on glioma progression. RESULTS: The analysis of sequencing mutation results of deep targeted genes in integration revealed that ARID1A gene mutation occurs frequently in glioblastoma and alteration of ARID1A could affect the tolerance of glioma cells to temozolomide treatment. The deletion of proline at position 16 in the ARID1A protein affected the stability of binding of the SWI/SNF core subunit BRG1, which in turn affected the stability of the SWI/SNF complex and led to altered histone modifications in the CDKN1A promoter region, thereby affecting the biological activity of glioma cells, as inferred from modeling and protein interaction analysis. CONCLUSION: The ARID1A gene is a critical predictive biomarker for glioma. Mutations at the ARID1A locus alter the stability of the SWI/SNF complex, leading to changes in transcriptional regulation in glioma cells. This contributes to an increased malignant phenotype of GBM and plays a pivotal role in mediating chemoresistance.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Proteínas Nucleares/genética , Mutação/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
18.
Sci Rep ; 14(1): 8246, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589525

RESUMO

MicroRNAs are small RNA molecules that have a significant role in translational repression and gene silencing through binding to downstream target mRNAs. MiR-762 can stimulate the proliferation and metastasis of various types of cancer. Hippo pathway is one of the pathways that regulate tissue development and carcinogenesis. Dysregulation of this pathway plays a vital role in the progression of cancer. This study aimed to evaluate the possible correlation between miR-762, the Hippo signaling pathway, TWIST1, and SMAD3 in patients with lung cancer, as well as patients with chronic inflammatory diseases. The relative expression of miR-762, MST1, LATS2, YAP, TWIST1, and SMAD3 was determined in 50 lung cancer patients, 30 patients with chronic inflammatory diseases, and 20 healthy volunteers by real-time PCR. The levels of YAP protein and neuron-specific enolase were estimated by ELISA and electrochemiluminescence immunoassay, respectively. Compared to the control group, miR-762, YAP, TWIST1, and SMAD3 expression were significantly upregulated in lung cancer patients and chronic inflammatory patients, except SMAD3 was significantly downregulated in chronic inflammatory patients. MST1, LATS2, and YAP protein were significantly downregulated in all patients. MiR-762 has a significant negative correlation with MST1, LATS2, and YAP protein in lung cancer patients and with MST1 and LATS2 in chronic inflammatory patients. MiR-762 may be involved in the induction of malignant behaviors in lung cancer through suppression of the Hippo pathway. MiR-762, MST1, LATS2, YAP mRNA and protein, TWIST1, and SMAD3 may be effective diagnostic biomarkers in both lung cancer patients and chronic inflammatory patients. High YAP, TWIST1, SMA3 expression, and NSE level are associated with a favorable prognosis for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Via de Sinalização Hippo , Transdução de Sinais , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Crônica , Proliferação de Células/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Cell Mol Life Sci ; 81(1): 169, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589732

RESUMO

Rhes (Ras homolog enriched in the striatum), a multifunctional protein that regulates striatal functions associated with motor behaviors and neurological diseases, can shuttle from cell to cell via the formation of tunneling-like nanotubes (TNTs). However, the mechanisms by which Rhes mediates diverse functions remain unclear. Rhes is a small GTPase family member which contains a unique C-terminal Small Ubiquitin-like Modifier (SUMO) E3-like domain that promotes SUMO post-translational modification of proteins (SUMOylation) by promoting "cross-SUMOylation" of the SUMO enzyme SUMO E1 (Aos1/Uba2) and SUMO E2 ligase (Ubc-9). Nevertheless, the identity of the SUMO substrates of Rhes remains largely unknown. Here, by combining high throughput interactome and SUMO proteomics, we report that Rhes regulates the SUMOylation of nuclear proteins that are involved in the regulation of gene expression. Rhes increased the SUMOylation of histone deacetylase 1 (HDAC1) and histone 2B, while decreasing SUMOylation of heterogeneous nuclear ribonucleoprotein M (HNRNPM), protein polybromo-1 (PBRM1) and E3 SUMO-protein ligase (PIASy). We also found that Rhes itself is SUMOylated at 6 different lysine residues (K32, K110, K114, K120, K124, and K245). Furthermore, Rhes regulated the expression of genes involved in cellular morphogenesis and differentiation in the striatum, in a SUMO-dependent manner. Our findings thus provide evidence for a previously undescribed role for Rhes in regulating the SUMOylation of nuclear targets and in orchestrating striatal gene expression via SUMOylation.


Assuntos
Proteínas Nucleares , Ubiquitina , Ubiquitina/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética , Sumoilação , Expressão Gênica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
20.
Cell Commun Signal ; 22(1): 208, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566066

RESUMO

This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.


Assuntos
Doenças Musculares , Distrofia Muscular de Emery-Dreifuss , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Musculares/metabolismo , Citoesqueleto/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...