Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.119
Filtrar
1.
Sci Rep ; 14(1): 7962, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575628

RESUMO

The underlying study was carried out aiming at transdermal drug delivery (TDD) of Goniothalamus macrophyllus as sono-photo-sensitizer (SPS) using microneedle (MN) arrays with iontophoresis (MN-IP), electroporation (MN-EP) in conjunction with applying photodynamic therapy (PDT), sonodynamic therapy (SDT) and sono-photodynamic therapy (SPDT) as an up-to-date activated cancer treatment modality. Study was conducted on 120 male Swiss Albino mice, inoculated with Ehrlich ascites carcinoma (EAC) divided into 9 groups. We employed three different arrays of MN electrodes were used (parallel, triangular, and circular), EP, IP with different volts (6, 9, 12 V), an infrared laser and an ultrasound (pulsed and continuous wave) as our two energy sources. Results revealed that parallel 6 V TDD@MN@IP@EP can be used as effective delivery system for G. macrophyllus from skin directly to target EAC cells. In addition MN@IP@EP@TDD G. macrophyllus is a potential SPS for SPDT treatment of EAC. With respect to normal control mice and as opposed to the EAC untreated control mice, MN@EP@IP TDD G. macrophyllus in the laser, ultrasound, and combination activated groups showed a significant increase in the antioxidant markers TAC level and the GST, GR, Catalase, and SOD activities, while decrease in lipid peroxidation oxidative stress parameter MDA levels. In addition significantly increased apoptotic genes expressions (p53, caspase (3, 9), Bax, and TNF alpha) and on the other hand decreased anti- apoptotic (Bcl-2) and angiogenic (VEGF) genes expressions. Moreover significantly ameliorate liver and kidney function decreasing ALT, AST, urea and creatinine respectively. Furthermore MN@IP@EP@TDD G. macrophyllus combined with SPDT was very effective at reducing the growth of tumors and even causing cell death according to microscopic H&E stain results. This process may be related to a sono- and/or photochemical activation mechanism. According to the findings, MN@IP@EP@TDD G. macrophyllus has a lot of potential as a novel, efficient delivery method that in combination with infrared laser and ultrasound activation SPDT demonstrated promising anticancer impact for treating cancer.


Assuntos
Carcinoma , Goniothalamus , Masculino , Animais , Camundongos , Iontoforese , Administração Cutânea , Pele/metabolismo , Eletroporação/métodos , Carcinoma/metabolismo
2.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557598

RESUMO

Genome editing technology is widely used to produce genetically modified animals, including rats. Cytoplasmic or pronuclear injection of DNA repair templates and CRISPR-Cas reagents is the most common delivery method into embryos. However, this type of micromanipulation necessitates access to specialized equipment, is laborious, and requires a certain level of technical skill. Moreover, microinjection techniques often result in lower embryo survival due to the mechanical stress on the embryo. In this protocol, we developed an optimized method to deliver large DNA repair templates to work in conjunction with CRISPR-Cas9 genome editing without the need for microinjection. This protocol combines AAV-mediated DNA delivery of single-stranded DNA donor templates along with the delivery of CRISPR-Cas9 ribonucleoprotein (RNP) by electroporation to modify 2-cell embryos. Using this novel strategy, we have successfully produced targeted knock-in rat models carrying insertion of DNA sequences from 1.2 to 3.0 kb in size with efficiencies between 42% and 90%.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Ratos , Animais , Edição de Genes/métodos , Dependovirus/genética , Eletroporação/métodos , Zigoto
3.
Lancet Gastroenterol Hepatol ; 9(5): 448-459, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513683

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma is an aggressive disease with a dismal prognosis. Stage III locally advanced pancreatic cancer is considered unresectable and current palliative chemotherapy regimens only modestly improve survival. Guidelines suggest chemoradiation or stereotactic ablative body radiotherapy (SABR) could be beneficial in certain circumstances. Other local treatments such as irreversible electroporation could enhance patient outcomes by extending survival while preserving quality of life. We aimed to compare the efficacy and safety of MRI-guided SABR versus CT-guided percutaneous irreversible electroporation following standard FOLFIRINOX chemotherapy. METHODS: CROSSFIRE was an open-label, randomised phase 2 superiority trial conducted at the Amsterdam University Medical Centre (Amsterdam, Netherlands). Eligible patients were aged 18 years or older with confirmed histological and radiological stage III locally advanced pancreatic cancer. The maximum tumour diameter was 5 cm and patients had to be pretreated with three to eight cycles of FOLFIRINOX. Patients were randomly assigned (1:1) to MRI-guided SABR (five fractions of 8 Gy delivered on non-consecutive days) or CT-guided percutaneous irreversible electroporation using a computer-generated variable block randomisation model. The primary endpoint was overall survival from randomisation, assessed in the intention-to-treat population. Safety was assessed in the per-protocol population. A prespecified interim futility analysis was done after inclusion of half the original sample size, with a conditional probability of less than 0·2 resulting in halting of the study. The trial was registered at ClinicalTrials.gov, NCT02791503. FINDINGS: Between May 1, 2016, and March 31, 2022, 68 patients were enrolled and randomly assigned to SABR (n=34) or irreversible electroporation (n=34), of whom 64 were treated according to protocol. Of the 68 participants, 36 (53%) were male and 32 (47%) were female, with a median age of 65 years (IQR 57-70). Median overall survival from randomisation was 16·1 months (95% CI 12·1-19·4) in the SABR group versus 12·5 months (10·9-17·0) in the irreversible electroporation group (hazard ratio [HR] 1·39 [95% CI 0·84-2·30]; p=0·21). The conditional probability to demonstrate superiority of either technique was 0·13; patient accrual was therefore stopped early for futility. 20 (63%) of 32 patients in the SABR group versus 19 (59%) of 32 patients in the irreversible electroporation group had adverse events (p=0·8) and five (16%) patients in the SABR group versus eight (25%) in the irreversible electroporation group had grade 3-5 adverse events (p=0·35). The most common grade 3-4 adverse events were cholangitis (two [6%] in the SABR group vs one [3%] in the irreversible electroporation group), abdominal pain (one [3%] vs two [6%]), and pancreatitis (none vs two [6%]). One (3%) patient in the SABR group and one (3%) in the irreversible electroporation group died from a treatment-related adverse event. INTERPRETATION: CROSSFIRE did not identify a difference in overall survival or incidence of adverse events between MRI-guided SABR and CT-guided percutaneous irreversible electroporation after FOLFIRINOX. Future studies should further assess the added value of local ablative treatment over chemotherapy alone. FUNDING: Adessium Foundation, AngioDynamics.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Resultado do Tratamento , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Qualidade de Vida , Eletroporação , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
4.
STAR Protoc ; 5(1): 102940, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460133

RESUMO

The use of CRISPR-Cas9 ribonucleoproteins has revolutionized manipulation of genomes. Here, we present a protocol for the electroporation of CRISPR-Cas for DNA and RNA targeting in Bos taurus zygotes. First, we describe steps for production and preparation of presumptive zygotes for electroporation. The first electroporation introduces ribonucleoproteins formed by Cas9D10A with two guide RNAs to target DNA, and the second introduces the same ribonucleoprotein complex to target DNA plus Cas13a with one guide RNA to target RNAs. For complete details on the use and execution of this protocol, please refer to Nix et al.1.


Assuntos
Sistemas CRISPR-Cas , Zigoto , Bovinos , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas , RNA/genética , Eletroporação/métodos , DNA/genética , Ribonucleoproteínas/genética
5.
Planta ; 259(4): 84, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448635

RESUMO

MAIN CONCLUSION: A novel electroporation method for genome editing was performed using plant tissue samples by direct RNPs-introduction in carnation. Genome editing is becoming a very useful tool in plant breeding. In this study, a novel electroporation method was performed for genome editing using plant tissue samples. The objective was to create a flower color mutant using the pink-flowered carnation 'Kane Ainou 1-go'. For this purpose, a ribonucleoprotein consisting of guide RNA and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) was introduced into the stem tissue to induce mutations in the anthocyanidin synthase (ANS) gene, which is involved in anthocyanin biosynthesis. As the ANS of 'Kane Ainou 1-go' has not been previously isolated, we initially isolated the ANS gene from 'Kane Ainou 1-go' for characterization. Southern hybridization analysis confirmed that the ANS gene was present in the genome as a two-allele gene with a pair of homologous sequences (ANS-1 and 2); these sequences were used as the target for genome editing. Genome editing was performed by introducing #2_single-guide RNA into the stem tissue using the ribonucleoprotein. This molecule was used because it exhibited the highest efficiency in an analysis of cleavage activity against the target sequence in vitro. Cleaved amplified polymorphic sequence analysis of genomic DNA extracted from 85 regenerated individuals after genome editing was performed. The results indicated that mutations in the ANS gene may have been introduced into two lines. Cloning of the ANS gene in these two lines confirmed the introduction of a single nucleotide substitution mutation for ANS-1 in both lines, and a single amino acid substitution in one line. We discussed the possibility of color change by the amino acid substitution, and also the future applications of this technology.


Assuntos
Dianthus , Oxigenases , Humanos , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Melhoramento Vegetal , Eletroporação , Ribonucleoproteínas
6.
Dev Biol ; 510: 31-39, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490564

RESUMO

CRISPR/Cas9 became a powerful tool for genetic engineering and in vivo knockout also in the invertebrate chordate Ciona intestinalis. Ciona (ascidians, tunicates) is an important model organism because it shares developmental features with the vertebrates, considered the sister group of tunicates, and offers outstanding experimental advantages: a compact genome and an invariant developmental cell lineage that, combined with electroporation mediated transgenesis allows for precise and cell type specific targeting in vivo. A high polymorphism and the mosaic expression of electroporated constructs, however, often hamper the efficient CRISPR knockout, and an optimization in Ciona is desirable. Furthermore, seasonality and artificial maintenance settings can profit from in vitro approaches that would save on animals. Here we present improvements for the CRISPR/Cas9 protocol in silico, in vitro and in vivo. Firstly, in designing sgRNAs, prior sequencing of target genomic regions from experimental animals and alignment with reference genomes of C. robusta and C. intestinalis render a correction possible of subspecies polymorphisms. Ideally, the screening for efficient and non-polymorphic sgRNAs will generate a database compatible for worldwide Ciona populations. Secondly, we challenged in vitro assays for sgRNA validation towards reduced in vivo experimentation and report their suitability but also overefficiency concerning mismatch tolerance. Thirdly, when comparing Cas9 with Cas9:Geminin, thought to synchronize editing and homology-direct repair, we could indeed increase the in vivo efficiency and notably the access to an early expressed gene. Finally, for in vivo CRISPR, genotyping by next generation sequencing (NGS) ex vivo streamlined the definition of efficient single guides. Double CRISPR then generates large deletions and reliable phenotypic excision effects. Overall, while these improvements render CRISPR more efficient in Ciona, they are useful when newly establishing the technique and very transferable to CRISPR in other organisms.


Assuntos
Ciona intestinalis , Ciona , Animais , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Ciona/genética , Eletroporação , Edição de Genes/métodos
7.
ACS Appl Mater Interfaces ; 16(13): 16232-16242, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507798

RESUMO

The development of self-powered sterilizers has garnered significant attention in the scientific and engineering fields. However, there remains an urgent need to improve their sterilization efficiency. In this study, we present a self-powered sterilizer with superior antibacterial capability by maximizing the utilization of breakdown discharge generated by a soft-contact freestanding rotary triboelectric nanogenerator (FR-TENG). To achieve this, a collaborative optimization strategy is proposed, encompassing the structural design of the FR-TENG, the implementation of double voltage rectification, and manipulation of the gaseous phase. Through a comprehensive analysis of antibacterial rates and microscopic images, the effectiveness of the self-powered sterilizer against various types of bacteria, including Gram-positive and Gram-negative species, as well as mixed bacteria in natural seawater, is demonstrated. Further investigations into bacterial morphologies and solution compositions reveal that the synergistic effect between electroporation and the generation of reactive oxygen/nitrogen species contributes to efficient sterilization. Additionally, controlled trials and molecular dynamics simulations are conducted to quantitatively elucidate the synergistic antibacterial effect between electroporation and reactive oxygen/nitrogen species. This study highlights the effectiveness of the collaborative optimization strategy in enhancing the sterilization efficiency of self-powered sterilizers while providing valuable insights into the synergistic antibacterial mechanisms of physical and chemical sterilization.


Assuntos
Líquidos Corporais , Eletroporação , Antibacterianos/farmacologia , Nitrogênio , Oxigênio , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
8.
J Nanobiotechnology ; 22(1): 131, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532389

RESUMO

Effective intracellular DNA transfection is imperative for cell-based therapy and gene therapy. Conventional gene transfection methods, including biochemical carriers, physical electroporation and microinjection, face challenges such as cell type dependency, low efficiency, safety concerns, and technical complexity. Nanoneedle arrays have emerged as a promising avenue for improving cellular nucleic acid delivery through direct penetration of the cell membrane, bypassing endocytosis and endosome escape processes. Nanostraws (NS), characterized by their hollow tubular structure, offer the advantage of flexible solution delivery compared to solid nanoneedles. However, NS struggle to stably self-penetrate the cell membrane, resulting in limited delivery efficiency. Coupling with extra physiochemical perforation strategies is a viable approach to improve their performance. This study systematically compared the efficiency of NS coupled with polyethylenimine (PEI) chemical modification, mechanical force, photothermal effect, and electric field on cell membrane perforation and DNA transfection. The results indicate that coupling NS with PEI modification, mechanical force, photothermal effects provide limited enhancement effects. In contrast, NS-electric field coupling significantly improves intracellular DNA transfection efficiency. This work demonstrates that NS serve as a versatile platform capable of integrating various physicochemical strategies, while electric field coupling stands out as a form worthy of primary consideration for efficient DNA transfection.


Assuntos
DNA , Eletroporação , Transfecção , Membrana Celular , Terapia Genética , Polietilenoimina/química
9.
BMC Biotechnol ; 24(1): 16, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532411

RESUMO

BACKGROUND: Cytotoxic T lymphocytes (CTLs) are central players in the adaptive immune response. Their functional characterization and clinical research depend on efficient and reliable transfection. Although various methods have been utilized, electroporation remains the preferred technique for transient gene over-expression. However, the efficiency of electroporation is reduced for human and mouse primary CTLs. Lonza offers kits that effectively improve plasmid DNA transfection quality. Unfortunately, the removal of key components of the cell recovery medium considerably reduced the efficiency of their kit for CTLs. Our aim was to develop a new recovery medium to be used with Lonza's Nucleofector system that would significantly enhance transfection rates. RESULTS: We assessed the impact of different media in which the primary CTLs were placed to recover after electroporation on cell survival, transfection rate and their ability to form an immunological synapse and to perform exocytosis. We transfected the cells with pmax-GFP and large constructs encoding for either CD81-super ecliptic pHluorin or granzyme B-pHuji. The comparison of five different media for mouse and two for human CTLs demonstrated that our new recovery medium composed of Opti-MEM-GlutaMAX supplemented with HEPES, DMSO and sodium pyruvate gave the best result in cell survival (> 50%) and transfection rate (> 30 and 20% for mouse and human cells, respectively). More importantly, the functionality of CTLs was at least twice as high as with the original Lonza recovery medium. In addition, our RM significantly improved transfection efficacy of natural killer cells that are notoriously hard to electroporate. CONCLUSION: Our results show that successful transfection depends not only on the electroporation medium and pulse sequence but also on the medium applied for cell recovery. In addition, we have reduced our reliance on proprietary products by designing an effective recovery medium for both mouse and human primary CTLs and other lymphocytes that can be easily implemented by any laboratory. We expect that this recovery medium will have a significant impact on both fundamental and applied research in immunology.


Assuntos
Eletroporação , Linfócitos T Citotóxicos , Humanos , Camundongos , Animais , Eletroporação/métodos , Transfecção , Plasmídeos , DNA/genética
10.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542122

RESUMO

Gene electrotransfer (GET) of plasmids encoding interleukin 12 (IL-12) has already been used for the treatment of various types of tumors in human oncology and as an adjuvant in DNA vaccines. In recent years, we have developed a plasmid encoding human IL-12 (phIL12) that is currently in a phase I clinical study. The aim was to confirm the results of a non-clinical study in mice on pharmacokinetic characteristics and safety in a porcine model that better resembled human skin. The GET of phIL12 in the skin was performed on nine pigs using different concentrations of plasmid phIL12 and invasive (needle) or noninvasive (plate) types of electrodes. The results of our study demonstrate that the GET of phIL-12 with needle electrodes induced the highest expression of IL-12 at the protein level on day 7 after the procedure. The plasmid was distributed to all tested organs; however, its amount decreased over time and was at a minimum 28 days after GET. Based on plasmid copy number and expression results, together with blood analysis, we showed that IL-12 GET is safe in a porcine animal model. Furthermore, we demonstrated that pigs are a valuable model for human gene therapy safety studies.


Assuntos
Técnicas de Transferência de Genes , Interleucina-12 , Humanos , Animais , Camundongos , Suínos , Interleucina-12/genética , Interleucina-12/metabolismo , Transfecção , Terapia Genética/métodos , DNA/metabolismo , Plasmídeos/genética , Vacinação , Eletroporação/métodos
11.
Cancer Med ; 13(5): e7035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491833

RESUMO

BACKGROUND: Malignant liver tumors seriously endanger human health. Among different therapeutic approaches, high-frequency irreversible electroporation (H-FIRE) is a recently emerging tumor ablation technique. The objective of this study was to evaluate the feasibility and safety of ultrasound-guided percutaneous H-FIRE using four electrode needles in porcine livers. METHODS: Twelve experimental pigs underwent percutaneous H-FIRE ablation using a compound steep-pulse therapeutic device. Liver tissues adjacent to the gallbladder, blood vessels, and bile ducts were selected as the ablation targets. Pigs were randomly divided into three groups: (1) immediately after ablation (N = 4), (2) 2 days after ablation (N = 4), and (3) 7 days after ablation (N = 4). Blood routine, liver and kidney function, and myocardial enzyme levels were measured before and after ablation. Ultrasound, contrast-enhanced ultrasound (CEUS), contrast-enhanced magnetic resonance imaging (MRI), and hematoxylin-eosin staining were performed to evaluate the ablation performance. RESULTS: Ultrasound-guided percutaneous H-FIRE ablations using four electrode needles were successfully performed in all 12 experimental pigs. The general conditions of the pigs, including postoperative activities and feeding behaviors, were normal, with no significant changes compared with the preoperative conditions. The imaging features of ultrasound, CEUS, and MRI demonstrated no significant changes in the gallbladder walls, bile ducts, or blood vessels close to the ablation areas. Laboratory tests showed that liver function indices and myocardial enzymes increased temporarily after H-FIRE ablation, but decreased to normal levels at 7 days after ablation. Histopathological examinations of porcine liver specimens showed that this technique could effectively ablate the target areas without damaging the surrounding or internal vascular systems and gallbladder. CONCLUSIONS: This study demonstrated the feasibility and safety of ultrasound-guided percutaneous H-FIRE ablation in porcine livers in vivo, and proposed a four-needle method to optimize its clinical application.


Assuntos
Fígado , Ultrassonografia de Intervenção , Animais , Eletrodos , Eletroporação/métodos , Estudos de Viabilidade , Fígado/diagnóstico por imagem , Fígado/cirurgia , Suínos
12.
Biomed Phys Eng Express ; 10(3)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479001

RESUMO

We present a numerical method for studying reversible electroporation on normal and cancerous cervical cells. This microdosimetry analysis builds on a unique approach for extracting contours of free and overlapping cervical cells in the cluster from the Extended Depth of Field (EDF) images. The algorithm used for extracting the contours is a joint optimization of multiple-level set function along with the Gaussian mixture model and Maximally Stable Extremal Regions. These contours are then exported to a multi-physics domain solver, where a variable frequency pulsed electric field is applied. The trans-Membrane voltage (TMV) developed across the cell membrane is computed using the Maxwell equation coupled with a statistical approach, employing the asymptotic Smoluchowski equation. The numerical model was validated by successful replication of existing experimental configurations that employed low-frequency uni-polar pulses on the overlapping cells to obtain reversible electroporation, wherein, several overlapping clumps of cervical cells were targeted. For high-frequency calculation, a combination of normal and cancerous cells is introduced to the computational domain. The cells are assumed to be dispersive and the Debye dispersion equation is used for further calculations. We also present the resulting strength-duration relationship for achieving the threshold value of electroporation between the normal and cancerous cervical cells due to their size and conductivity differences. The dye uptake modulation during the high-frequency electric field electroporation is further advocated by a mathematical model.


Assuntos
Eletricidade , Modelos Teóricos , Membrana Celular/metabolismo , Condutividade Elétrica , Eletroporação/métodos
13.
J Vis Exp ; (205)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526071

RESUMO

During the development of the cerebral cortex, neurons and glial cells originate in the ventricular zone lining the ventricle and migrate toward the brain surface. This process is crucial for proper brain function, and its dysregulation can result in neurodevelopmental and psychiatric disorders after birth. In fact, many genes responsible for these diseases have been found to be involved in this process, and therefore, revealing how these mutations affect cellular dynamics is important for understanding the pathogenesis of these diseases. This protocol introduces a technique for time-lapse imaging of migrating neurons and glial progenitors in brain slices obtained from mouse embryos. Cells are labeled with fluorescent proteins using in utero electroporation, which visualizes individual cells migrating from the ventricular zone with a high signal-to-noise ratio. Moreover, this in vivo gene transfer system enables us to easily perform gain-of-function or loss-of-function experiments on the given genes by co-electroporation of their expression or knockdown/knockout vectors. Using this protocol, the migratory behavior and migration speed of individual cells, information that is never obtained from fixed brains, can be analyzed.


Assuntos
Neuroglia , Neurônios , Humanos , Animais , Camundongos , Imagem com Lapso de Tempo/métodos , Movimento Celular/fisiologia , Neurônios/fisiologia , Encéfalo , Córtex Cerebral , Eletroporação/métodos
14.
Methods Mol Biol ; 2772: 391-405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411831

RESUMO

Transient gene expression in plant protoplasts facilitates the analysis of hybrid genes in a fast and reproducible manner. The technique is particularly powerful when studying basic conserved biochemical processes including de novo protein synthesis, modification, assembly, transport, and turnover. Unlike individual plants, protoplast suspensions can be divided into almost identical aliquots, allowing the analysis of independent variables with uncertainties restricted to minor pipetting errors/variations. Using the examples of protein secretion and ER retention, we describe the most advanced working practice of routinely preparing, electroporating, and analyzing Nicotiana benthamiana protoplasts. A single batch of electroporation-competent protoplasts permits up to 30 individual transfections. This is ideal to assess the influence of independent variables, such as point mutations, deletions or fusions, or the influence of a co-expressed effector gene in dose-response studies.


Assuntos
Tabaco , Protoplastos , Tabaco/genética , Transporte Biológico , Transporte Proteico , Eletroporação
15.
Mol Pharm ; 21(4): 1998-2011, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412284

RESUMO

Pancreatic cancer is a deadly disease with a five-year overall survival rate of around 11%. Chemotherapy is a cornerstone in the treatment of this malignancy, but the intratumoral delivery of chemotherapy drugs is impaired by the highly fibrotic tumor-associated stroma. Irreversible electroporation (IRE) is an ablative technique for treating locally advanced pancreatic cancer. During a typical IRE procedure, high-intensity electric pulses are released to kill tumor cells through the irreversible disruption of the cytoplasm membranes. IRE also induces rapid tumor infiltration by neutrophils and offers an opportunity for neutrophil-mediated drug delivery. We herein showed that the IRE-induced neutrophil trafficking was facilitated by the upregulation of neutrophil chemotaxis and migration as well as the release of several chemoattractants. Doxorubicin-loaded bovine serum albumin nanoparticles were prepared and loaded into neutrophils at a ratio of 9.9 ± 1.2 to 11.7 ± 2.0 pg of doxorubicin per cell. The resultant formulation (NP@NEs) efficiently accumulated in the IRE-treated KPC-A377 murine pancreatic tumors with an uptake value of 10.7 ± 1.5 (percent of injected dose per gram of tissue, abbreviated as %ID/g) at 48 h after intravenous injection. In both Panc02 and KPC-A377 murine pancreatic tumor models, the combination of IRE + NP@NEs inhibited tumor growth more effectively than either monotherapy. The tumors treated with the combination also exhibited the lowest frequency of Ki67+ proliferating cells and the highest abundance of terminal deoxynucleotidyl transferase dUTP nick end labeling+ (TUNEL+) apoptotic cells among the experiment groups. Minimal treatment-associated toxicity was observed. Our findings suggest that neutrophil-mediated delivery of chemotherapy drugs is a useful tool to enhance the response of pancreatic cancer to IRE.


Assuntos
Neutrófilos , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Neoplasias Pancreáticas/patologia , Inflamação , Eletroporação/métodos , Doxorrubicina
16.
Lab Chip ; 24(7): 1957-1964, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38353261

RESUMO

Electroporation (in which the permeability of a cell membrane is increased transiently by exposure to an appropriate electric field) has exhibited great potential of becoming an alternative to adeno-associated virus (AAV)-based retina gene delivery. Electroporation eliminates the safety concerns of employing exogenous viruses and exceeds the limit of AAV cargo size. Unfortunately, several concerns (e.g., relatively high electroporation voltage, poor surgical operability and a lack of spatial selectivity of retina tissue) have prevented electroporation from being approved for clinical application (or even clinical trials). In this study, a flexible micro-electrode array for retina electroporation (FERE) was developed for retina electroporation. A suitably shaped flexible substrate and well-placed micro-electrodes were designed to adapt to the retina curvature and generate an evenly distributed electric field on the retina with a significantly reduced electroporation voltage of 5 V. The FERE provided (for the first time) a capability of controlled gene delivery to the different structural layers of retina tissue by precise control of the distribution of the electrical field. After ensuring the surgical operability of the FERE on rabbit eyeballs, the FERE was verified to be capable of transfecting different layers of retina tissue with satisfactory efficiency and minimum damage. Our method bridges the technical gap between laboratory validation and clinical use of retina electroporation.


Assuntos
Eletroporação , Retina , Animais , Coelhos , Eletroporação/métodos , Eletrodos , Técnicas de Transferência de Genes , Transfecção
17.
Circ Arrhythm Electrophysiol ; 17(3): e012278, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38344845

RESUMO

BACKGROUND: Electroporation is a promising nonthermal ablation method for cardiac arrhythmia treatment. Although initial clinical studies found electroporation pulsed-field ablation (PFA) both safe and efficacious, there are significant knowledge gaps concerning the mechanistic nature and electrophysiological consequences of cardiomyocyte electroporation, contributed by the paucity of suitable human in vitro models. Here, we aimed to establish and characterize a functional in vitro model based on human-induced pluripotent stem cells (hiPSCs)-derived cardiac tissue, and to study the fundamentals of cardiac PFA. METHODS: hiPSC-derived cardiomyocytes were seeded as circular cell sheets and subjected to different PFA protocols. Detailed optical mapping, cellular, and molecular characterizations were performed to study PFA mechanisms and electrophysiological outcomes. RESULTS: PFA generated electrically silenced lesions within the hiPSC-derived cardiac circular cell sheets, resulting in areas of conduction block. Both reversible and irreversible electroporation components were identified. Significant electroporation reversibility was documented within 5 to 15-minutes post-PFA. Irreversibly electroporated regions persisted at 24-hours post-PFA. Per single pulse, high-frequency PFA was less efficacious than standard (monophasic) PFA, whereas increasing pulse-number augmented lesion size and diminished reversible electroporation. PFA augmentation could also be achieved by increasing extracellular Ca2+ levels. Flow-cytometry experiments revealed that regulated cell death played an important role following PFA. Assessing for PFA antiarrhythmic properties, sustainable lines of conduction block could be generated using PFA, which could either terminate or isolate arrhythmic activity in the hiPSC-derived cardiac circular cell sheets. CONCLUSIONS: Cardiac electroporation may be studied using hiPSC-derived cardiac tissue, providing novel insights into PFA temporal and electrophysiological characteristics, facilitating electroporation protocol optimization, screening for potential PFA-sensitizers, and investigating the mechanistic nature of PFA antiarrhythmic properties.


Assuntos
Ablação por Cateter , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/cirurgia , Antiarrítmicos/uso terapêutico , Miócitos Cardíacos/metabolismo , Eletroporação , Ablação por Cateter/métodos
18.
Sci Rep ; 14(1): 4631, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409237

RESUMO

Of all methods exercised in modern molecular biology, modification of cellular properties through the introduction or removal of nucleic acids is one of the most fundamental. As such, several methods have arisen to promote this process; these include the condensation of nucleic acids with calcium, polyethylenimine or modified lipids, electroporation, viral production, biolistics, and microinjection. An ideal transfection method would be (1) low cost, (2) exhibit high levels of biological safety, (3) offer improved efficacy over existing methods, (4) lack requirements for ongoing consumables, (5) work efficiently at any scale, (6) work efficiently on cells that are difficult to transfect by other methods, and (7) be capable of utilizing the widest array of existing genetic resources to facilitate its utility in research, biotechnical and clinical settings. To address such issues, we describe here Pressure-jump-poration (PJP), a method using rapid depressurization to transfect even difficult to modify primary cell types such as embryonic stem cells. The results demonstrate that PJP can be used to introduce an array of genetic modifiers in a safe, sterile manner. Finally, PJP-induced transfection in primary versus transformed cells reveals a surprising dichotomy between these classes which may provide further insight into the process of cellular transformation.


Assuntos
Eletroporação , Ácidos Nucleicos , Pressão Hidrostática , Transfecção , Eletroporação/métodos , Células Cultivadas
19.
Theriogenology ; 218: 111-118, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320372

RESUMO

Genetically modified pigs play a critical role in mimicking human diseases, xenotransplantation, and the development of pigs resistant to viral diseases. The use of programmable endonucleases, including the CRISPR/Cas9 system, has revolutionized the generation of genetically modified pigs. This study evaluates the efficiency of electroporation of oocytes prior to fertilization in generating edited gene embryos for different models. For single gene editing, phospholipase C zeta (PLC ζ) and fused in sarcoma (FUS) genes were used, and the concentration of sgRNA and Cas9 complexes was optimized. The results showed that increasing the concentration resulted in higher mutation rates without affecting the blastocyst rate. Electroporation produced double knockouts for the TPC1/TPC2 genes with high efficiency (79 %). In addition, resistance to viral diseases such as PRRS and swine influenza was achieved by electroporation, allowing the generation of double knockout embryo pigs (63 %). The study also demonstrated the potential for multiple gene editing in a single step using electroporation, which is relevant for xenotransplantation. The technique resulted in the simultaneous mutation of 5 genes (GGTA1, B4GALNT2, pseudo B4GALNT2, CMAH and GHR). Overall, electroporation proved to be an efficient and versatile method to generate genetically modified embryonic pigs, offering significant advances in biomedical and agricultural research, xenotransplantation, and disease resistance. Electroporation led to the processing of numerous oocytes in a single session using less expensive equipment. We confirmed the generation of gene-edited porcine embryos for single, double, or quintuple genes simultaneously without altering embryo development to the blastocyst stage. The results provide valuable insights into the optimization of gene editing protocols for different models, opening new avenues for research and applications in this field.


Assuntos
Doenças dos Suínos , Viroses , Humanos , Animais , Suínos/genética , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes/veterinária , Edição de Genes/métodos , Fertilização In Vitro/veterinária , Oócitos , Eletroporação/veterinária , Eletroporação/métodos , Viroses/veterinária , Doenças dos Suínos/genética
20.
Theriogenology ; 218: 126-136, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325149

RESUMO

In reproductive biology, understanding the effects of novel techniques on early embryo development is of paramount importance. To date, the effects of electrical activation on oocytes prior to in vitro fertilization (IVF) are not well understood. The aim of this study was to investigate the effects of oocyte electroporation prior to IVF on embryo development and to differentiate between true embryos and parthenotes by using a TPCN2 knock-out (KO) male to evaluate the presence of the KO allele in the resulting blastocysts. The study consisted of three experiments. The first one examined oocyte electroporation with and without subsequent IVF and found that electroporated oocytes had higher activation rates, increased occurrence of a single pronucleus, and no effect on sperm penetration. Cleavage rates improved in electroporated oocytes, but blastocyst rates remained constant. Genotype analysis revealed a significant increase in the proportion of parthenotes in the electroporated groups compared to the IVF control (30.2 % vs. 6.8 %). The second experiment compared two electroporation media, Opti-MEM and Nuclease-Free Duplex Buffer (DB). DB induced higher oocyte degeneration rates, and lower cleavage and blastocyst rates than Opti-MEM, while parthenogenetic formation remained consistent (60.0 and 48.5 %). In the third experiment, the timing of electroporation relative to IVF was evaluated (1 h before IVF, immediately before IVF and 7 h after IVF). Electroporation immediately before IVF resulted in higher activation rates and different pronuclear proportions compared to the other timing groups. The penetration rate was higher in the immediate electroporation group, and cleavage rate improved in all electroporated groups compared to the control. Blastocyst rates remained constant. Genotyping revealed no significant differences in parthenote proportions among the timing groups, but these were higher than the control (56.25 %, 63.89 %, 51.61 %, 2.44 %, respectively), and showed higher mutation rates when electroporation was performed 7 h after IVF. Overall, this comprehensive study sheds light on the potential of electroporation for creating genetically modified embryos and the importance of media selection and timing in the process, the best media being the Opti-MEM and the more efficient timing regarding mutation rate, 7 h post-IVF, even when the parthenote formation did not differ among electroporated groups. Further studies are needed to reduce the parthenogenetic activation while maintaining high mutation rates to optimize the use of this procedure for the generation of gene-edited pig embryos by oocyte/zygote electroporation.


Assuntos
Edição de Genes , Sêmen , Masculino , Animais , Suínos , Edição de Genes/veterinária , Partenogênese , Oócitos/fisiologia , Desenvolvimento Embrionário/fisiologia , Eletroporação/veterinária , Eletroporação/métodos , Blastocisto/fisiologia , Fertilização In Vitro/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...