Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 31(1): 271-284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37231528

RESUMO

Movement is an important animal behavior contributing to reproduction and survival. Animal movement is often examined in arenas or enclosures under laboratory conditions. We used the red flour beetle (Tribolium castaneum) to examine here the effect of the arena size, shape, number of barriers, access to the arena's center, and illumination on six movement properties. We demonstrate great differences among arenas. For example, the beetles moved over longer distances in clear arenas than in obstructed ones. Movement along the arena's perimeter was greater in smaller arenas than in larger ones. Movement was more directional in round arenas than in rectangular ones. In general, the beetles stopped moving closer to the perimeter and closer to corners (in the square and rectangular arenas) than expected by chance. In some cases, the arena properties interacted with the beetle sex to affect several movement properties. All these suggest that arena properties might also interact with experimental manipulations to affect the outcome of studies and lead to results specific to the arena used. In other words, instead of examining animal movement, we in fact examine the animal interaction with the arena structure. Caution is therefore advised in interpreting the results of studies on movement in arenas under laboratory conditions and we recommend paying attention also to barriers or obstacles in field experiments. For instance, movement along the arena's perimeter is often interpreted as centrophobism or thigmotaxis but the results here show that such movement is arena dependent.


Assuntos
Besouros , Resposta Táctica , Tribolium , Animais , Comportamento Animal , Movimento
2.
J R Soc Interface ; 20(206): 20230279, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37700707

RESUMO

Neuronal circuits are hallmarks of complex decision-making processes in the animal world. How animals without neurons process information and respond to environmental cues promises a new window into studying precursors of neuronal control and origin of the nervous system as we know it today. Robust decision making in animals, such as in chemotaxis or thermotaxis, often requires internal symmetry breaking (such as anterior-posterior (AP) axis) provided naturally by a given body plan of an animal. Here we report the discovery of robust thermotaxis behaviour in Trichoplax adhaerens, an early-divergent, enigmatic animal with no anterior-posterior symmetry breaking (apolar) and no known neurons or muscles. We present a quantitative and robust behavioural response assay in Placozoa, which presents an apolar flat geometry. By exposing T. adhaerens to a thermal gradient under a long-term imaging set-up, we observe robust thermotaxis that occurs over timescale of hours, independent of any circadian rhythms. We quantify that T. adhaerens can detect thermal gradients of at least 0.1°C cm-1. Positive thermotaxis is observed for a range of baseline temperatures from 17°C to 22.5°C, and distributions of momentary speeds for both thermotaxis and control conditions are well described by single exponential fits. Interestingly, the organism does not maintain a fixed orientation while performing thermotaxis. Using natural diversity in size of adult organisms (100 µm to a few millimetres), we find no apparent size-dependence in thermotaxis behaviour across an order of magnitude of organism size. Several transient receptor potential (TRP) family homologues have been previously reported to be conserved in metazoans, including in T. adhaerens. We discover naringenin, a known TRPM3 antagonist, inhibits thermotaxis in T. adhaerens. The discovery of robust thermotaxis in T. adhaerens provides a tractable handle to interrogate information processing in a brainless animal. Understanding how divergent marine animals process thermal cues is also critical due to rapid temperature rise in our oceans.


Assuntos
Neurônios , Resposta Táctica , Animais , Quimiotaxia , Ritmo Circadiano , Cognição
3.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37572357

RESUMO

Analyses of the contributions of genetic variants in wild strains to phenotypic differences have led to a more complete description of the pathways underlying cellular functions. Causal loci are typically identified via interbreeding of strains with distinct phenotypes in order to establish recombinant inbred lines (RILs). Since the generation of RILs requires growth for multiple generations, their genomes may contain not only different combinations of parental alleles but also genetic changes that arose de novo during the establishment of these lines. Here, we report that in the course of generating RILs between Caenorhabditis elegans strains that exhibit distinct thermotaxis behavioral phenotypes, we identified spontaneously arising variants in the ttx-1 locus. ttx-1 encodes the terminal selector factor for the AFD thermosensory neurons, and loss-of-function mutations in ttx-1 abolish thermotaxis behaviors. The identified genetic changes in ttx-1 in the RIL are predicted to decrease ttx-1 function in part via specifically affecting a subset of AFD-expressed ttx-1 isoforms. Introduction of the relevant missense mutation in the laboratory C. elegans strain via gene editing recapitulates the thermotaxis behavioral defects of the RIL. Our results suggest that spontaneously occurring genomic changes in RILs may complicate identification of loci contributing to phenotypic variation, but that these mutations may nevertheless lead to the identification of important causal molecules and mechanisms.


Assuntos
Proteínas de Caenorhabditis elegans , Resposta Táctica , Animais , Caenorhabditis elegans/metabolismo , Neurônios/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mutação , Animais de Laboratório
4.
Proc Natl Acad Sci U S A ; 120(28): e2301153120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399422

RESUMO

Night-migratory songbirds have a light-dependent magnetic compass sense, the mechanism of which is thought to depend on the photochemical formation of radical pairs in cryptochrome (Cry) proteins located in the retina. The finding that weak radiofrequency (RF) electromagnetic fields can prevent birds from orienting in the Earth's magnetic field has been regarded as a diagnostic test for this mechanism and as a potential source of information on the identities of the radicals. The maximum frequency that could cause such disorientation has been predicted to lie between 120 and 220 MHz for a flavin-tryptophan radical pair in Cry. Here we show that the magnetic orientation capabilities of Eurasian blackcaps (Sylvia atricapilla) are not affected by RF noise in the frequency bands 140 to 150 MHz and 235 to 245 MHz. From a consideration of its internal magnetic interactions, we argue that RF field effects on a flavin-containing radical-pair sensor should be approximately independent of frequency up to 116 MHz and that birds' sensitivity to RF disorientation should fall by about two orders of magnitude when the frequency exceeds 116 MHz. Taken together with our earlier finding that 75 to 85 MHz RF fields disrupt the magnetic orientation of blackcaps, these results provide compelling evidence that the magnetic compass of migratory birds operates by a radical pair mechanism.


Assuntos
Aves Canoras , Resposta Táctica , Animais , Aves Canoras/metabolismo , Processos Fotoquímicos , Migração Animal , Campos Magnéticos , Criptocromos/metabolismo
5.
Curr Biol ; 33(12): 2367-2382.e7, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37209680

RESUMO

The African malaria mosquito Anopheles gambiae exhibits a strong innate drive to seek out humans in its sensory environment, classically entering homes to land on human skin in the hours flanking midnight. To gain insight into the role that olfactory cues emanating from the human body play in generating this epidemiologically important behavior, we developed a large-scale multi-choice preference assay in Zambia with infrared motion vision under semi-field conditions. We determined that An. gambiae prefers to land on arrayed visual targets warmed to human skin temperature during the nighttime when they are baited with carbon dioxide (CO2) emissions reflective of a large human over background air, body odor from one human over CO2, and the scent of one sleeping human over another. Applying integrative whole body volatilomics to multiple humans tested simultaneously in competition in a six-choice assay, we reveal high attractiveness is associated with whole body odor profiles from humans with increased relative abundances of the volatile carboxylic acids butyric acid, isobutryic acid, and isovaleric acid, and the skin microbe-generated methyl ketone acetoin. Conversely, those least preferred had whole body odor that was depleted of carboxylic acids among other compounds and enriched with the monoterpenoid eucalyptol. Across expansive spatial scales, heated targets without CO2 or whole body odor were minimally or not attractive at all to An. gambiae. These results indicate that human scent acts critically to guide thermotaxis and host selection by this prolific malaria vector as it navigates towards humans, yielding intrinsic heterogeneity in human biting risk.


Assuntos
Anopheles , Malária , Resposta Táctica , Animais , Humanos , Odorantes , Odor Corporal , Dióxido de Carbono , Mosquitos Vetores , Feromônios Humano , Ácidos Carboxílicos
6.
Biophys J ; 122(1): 130-142, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36397670

RESUMO

During wound healing, fish keratocyte cells undergo galvanotaxis where they follow a wound-induced electric field. In addition to their stereotypical persistent motion, keratocytes can develop circular motion without a field or oscillate while crawling in the field direction. We developed a coarse-grained phenomenological model that captures these keratocyte behaviors. We fit this model to experimental data on keratocyte response to an electric field being turned on. A critical element of our model is a tendency for cells to turn toward their long axis, arising from a coupling between cell shape and velocity, which gives rise to oscillatory and circular motion. Galvanotaxis is influenced not only by the field-dependent responses, but also cell speed and cell shape relaxation rate. When the cell reacts to an electric field being turned on, our model predicts that stiff, slow cells react slowly but follow the signal reliably. Cells that polarize and align to the field at a faster rate react more quickly and follow the signal more reliably. When cells are exposed to a field that switches direction rapidly, cells follow the average of field directions, while if the field is switched more slowly, cells follow a "staircase" pattern. Our study indicated that a simple phenomenological model coupling cell speed and shape is sufficient to reproduce a broad variety of different keratocyte behaviors, ranging from circling to oscillation to galvanotactic response, by only varying a few parameters.


Assuntos
Eletricidade , Resposta Táctica , Animais , Movimento Celular/fisiologia , Forma Celular , Cicatrização
7.
Phys Rev E ; 108(6-1): 064411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243498

RESUMO

Eukaryotic cells can polarize and migrate in response to electric fields via "galvanotaxis," which aids wound healing. Experimental evidence suggests cells sense electric fields via molecules on the cell's surface redistributing via electrophoresis and electroosmosis, though the sensing species has not yet been conclusively identified. We develop a model that links sensor redistribution and galvanotaxis using maximum likelihood estimation. Our model predicts a single universal curve for how galvanotactic directionality depends on field strength. We can collapse measurements of galvanotaxis in keratocytes, neural crest cells, and granulocytes to this curve, suggesting that stochasticity due to the finite number of sensors may limit galvanotactic accuracy. We find cells can achieve experimentally observed directionalities with either a few (∼100) highly polarized sensors or many (∼10^{4}) sensors with an ∼6-10% change in concentration across the cell. We also identify additional signatures of galvanotaxis via sensor redistribution, including the presence of a tradeoff between accuracy and variance in cells being controlled by rapidly switching fields. Our approach shows how the physics of noise at the molecular scale can limit cell-scale galvanotaxis, providing important constraints on sensor properties and allowing for new tests to determine the specific molecules underlying galvanotaxis.


Assuntos
Resposta Táctica , Movimento Celular/fisiologia , Eletricidade , Eletroforese
8.
Andrologia ; 54(11): e14623, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36379719

RESUMO

Conventional sperm processing uses centrifugation has a negative effect on sperm parameters and DNA integrity. We designed and fabricated a novel microfluid device based on chemotaxis and thermotaxis, and compared it with the swim-up method. Twenty normal samples with high DNA fragmentation were included. Each sample was divided into four groups: Group 1, control, Group 2: sperm selection by thermotaxis, Group 3: sperm selection by chemotaxis, and Group 4: sperm selection with thermotaxis and chemotaxis. We used cumulus cells in a microfluid device to create chemotaxis, and, two warm stages to form a temperature gradient for thermotaxis. The spermatozoa were assessed based on the concentration, motility, and fine morphology using Motile Sperm Organelle Morphology Examination, mitochondrial membrane potential (MMP), acrosome reaction (AR), and sperm DNA fragmentation. Concentration (22.40 ± 5.39 vs. 66.50 ± 19.21; p < 0.001) and DNA fragmentation (12.30 ± 3.96% vs. 17.95 ± 2.89%; p < 0.001) after selection in the chemotaxis and thermotaxis microfluid device were significantly lower than control group. The progressive motility (93.75 ± 4.39% vs. 75.55 ± 5.86%, p < 0.001), normal morphology (15.45 ± 2.50% vs. 10.35 ± 3.36, p < 0.001), MMP (97.65 ± 1.81% vs. 94 ± 3.89%, p = 0.02), and AR status (79.20 ± 5.28% vs. 31.20 ± 5.24%, p < 0.001) in the chemotaxis and thermotaxis microfluid device were significantly increased compared to control group. According to these findings, spermatozoa that have penetrated the cumulus oophorus have better morphology and motility, as well as acrosome reactivity and DNA integrity.


Assuntos
Motilidade dos Espermatozoides , Resposta Táctica , Humanos , Masculino , Fragmentação do DNA , Dispositivos Lab-On-A-Chip , Sêmen , Espermatozoides
9.
Harmful Algae ; 118: 102315, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195428

RESUMO

The harmful dinoflagellate Cochlodinium polykrikoides, a species that causes mass mortality of farmed fish, uses diel vertical migration (DVM) as an ecological strategy. In summer 2018, a bloom of C. polykrikoides occurred on the southern coast of Korea when the surface water temperature exceeded 29 °C, as a result of a marine heatwave. To understand the effect of high temperature conditions on the DVM of C. polykrikoides, vertical profiles of environmental variables and the occurrence of the dinoflagellate were investigated through a 48 h field survey. In addition, a thermally stratified environment (6-12 °C difference between the surface and bottom layers) was established in a laboratory study to investigate the effect of temperature difference between water layers on the DVM of C. polykrikoides. In the field, most of the C. polykrikoides population was at a depth of 3-6 m during the day, where the water temperature was significantly lower (p < 0.01; Chi square = 57.98; Kruskal-Wallis test) than in the surface layer (0 m), and only the water temperature at 0 m was not correlated with weighted mean depth of C. polykrikoides, suggesting the usage of DVM to avoid high temperature stress. According to our field and laboratory results, there was a trend of greater DVM velocity by thermotaxis when moving from "unfavorable" water temperature (30 °C hot and 12 °C cold) to "favorable" water temperature for growth (optimal 24 °C) of C. polykrikoides. Our findings suggest that thermotaxic DVM is an important ecological strategy used by C. polykrikoides to optimize environmental conditions for growth through vertical positioning and changing migration velocity.


Assuntos
Dinoflagelados , Resposta Táctica , Animais , Proliferação Nociva de Algas , Estações do Ano , Água
10.
G3 (Bethesda) ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36102820

RESUMO

Animals integrate sensory stimuli presented at the past and present, assess the changes in their surroundings and navigate themselves toward preferred environment. Identifying the neural mechanisms of such sensory integration is pivotal to understand how the nervous system generates perception and behavior. Previous studies on thermotaxis behavior of Caenorhabditis elegans suggested that a single thermosensory neuron AFD plays an important role in integrating the past and present temperature information and is essential for the neural computation that drives the animal toward the preferred temperature region. However, the molecular mechanisms by which AFD executes this neural function remained elusive. Here we report multiple forward genetic screens to identify genes required for thermotaxis. We reveal that kin-4, which encodes the C. elegans homolog of microtubule-associated serine threonine kinase, plays dual roles in thermotaxis and can promote both cryophilic and thermophilic drives. We also uncover that a thermophilic defect of mutants for mec-2, which encodes a C. elegans homolog of stomatin, can be suppressed by a loss-of-function mutation in the gene crh-1, encoding a C. elegans homolog CREB transcription factor. Expression of crh-1 in AFD restored the crh-1-dependent suppression of the mec-2 thermotaxis phenotype, indicating that crh-1 can function in AFD to regulate thermotaxis. Calcium imaging analysis from freely moving animals suggest that mec-2 and crh-1 regulate the neuronal activity of the AIY interneuron, a postsynaptic partner of the AFD neuron. Our results suggest that a stomatin family protein can control the dynamics of neural circuitry through the CREB-dependent transcriptional regulation within a sensory neuron.


Assuntos
Proteínas de Caenorhabditis elegans , Resposta Táctica , Animais , Caenorhabditis elegans/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Receptoras Sensoriais/metabolismo , Temperatura , Microtúbulos/metabolismo , Comportamento Animal/fisiologia , Fatores de Transcrição/metabolismo
11.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994363

RESUMO

Environmental temperature is a critical factor for all forms of life, and thermal tolerance defines the habitats utilized by a species. Moreover, the evolutionary tuning of thermal perception can also play a key role in habitat selection. Yet, the relative importance of thermal tolerance and perception in environmental adaptation remains poorly understood. Thermal conditions experienced by anuran tadpoles differ among species due to the variation in breeding seasons and water environments selected by parental frogs. In the present study, heat tolerance and avoidance temperatures were compared in tadpoles from five anuran species that spatially and temporally inhabit different thermal niches. These two parameters were positively correlated with each other and were consistent with the thermal conditions of habitats. The species difference in avoidance temperature was 2.6 times larger than that in heat tolerance, suggesting the importance of heat avoidance responses in habitat selection. In addition, the avoidance temperature increased after warm acclimation, especially in the species frequently exposed to heat in their habitats. Characterization of the heat-sensing transient receptor potential ankyrin 1 (TRPA1) ion channel revealed an amphibian-specific alternatively spliced variant containing a single valine insertion relative to the canonical alternative spliced variant of TRPA1, and this novel variant altered the response to thermal stimuli. The two alternatively spliced variants of TRPA1 exhibited different thermal responses in a species-specific manner, which are likely to be associated with a difference in avoidance temperatures among species. Together, our findings suggest that the functional change in TRPA1 plays a crucial role in thermal adaptation processes.


Assuntos
Temperatura Alta , Resposta Táctica , Aclimatação/genética , Animais , Anquirinas , Anuros/genética , Aprendizagem da Esquiva
12.
Mol Hum Reprod ; 28(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35894944

RESUMO

Sperm are guided through the female reproductive tract. A temperature difference of about 2°C exists between the storage site and fertilization site of the mammalian oviduct, leading to the hypothesis that sperm can sense and swim towards the oocyte along a rising temperature gradient, known as thermotaxis. Research over the past two decades has reported that sperm feature a sophisticated thermal detection system to detect and track ambient temperature gradients. More recently, thermotaxis is expected to be added to the microfluidic isolation method based on sperm tactic responses for sperm selection. In this article, mammalian sperm thermotaxis is discussed, explaining the underlying behavioural mechanisms and molecular basis, according to the latest research. Finally, this article explores the possible application of sperm thermotaxis in ART.


Assuntos
Sêmen , Resposta Táctica , Animais , Feminino , Masculino , Mamíferos , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Resposta Táctica/fisiologia , Temperatura
13.
J Vis Exp ; (183)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35723485

RESUMO

Gravity sensation is an important and relatively understudied process. Sensing gravity enables animals to navigate their surroundings and facilitates movement. Additionally, gravity sensation, which occurs in the mammalian inner ear, is closely related to hearing - thus, understanding this process has implications for auditory and vestibular research. Gravitaxis assays exist for some model organisms, including Drosophila. Single worms have previously been assayed for their orientation preference as they settle in solution. However, a reliable and robust assay for Caenorhabditis gravitaxis has not been described. The present protocol outlines a procedure for performing gravitaxis assays that can be used to test hundreds of Caenorhabditis dauers at a time. This large-scale, long-distance assay allows for detailed data collection, revealing phenotypes that may be missed on a standard plate-based assay. Dauer movement along the vertical axis is compared with horizontal controls to ensure that directional bias is due to gravity. Gravitactic preference can then be compared between strains or experimental conditions. This method can determine molecular, cellular, and environmental requirements for gravitaxis in worms.


Assuntos
Caenorhabditis , Resposta Táctica , Animais , Gravitação , Sensação Gravitacional , Larva , Mamíferos
14.
Curr Biol ; 32(10): R464-R466, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35609543

RESUMO

The parasitic nematode Strongyloides stercoralis locates human hosts via thermal cues through unknown neural mechanisms. A new study finds that the heat-sensing neuron AFD mediates attraction to human body heat. Interestingly, this neuron also mediates thermotaxis in the nematode C. elegans.


Assuntos
Nematoides , Strongyloides stercoralis , Resposta Táctica , Animais , Caenorhabditis elegans/fisiologia , Humanos , Neurônios/fisiologia , Strongyloides stercoralis/fisiologia
15.
Curr Opin Neurobiol ; 74: 102541, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447377

RESUMO

Thermotaxis behavior of Caenorhabditis elegans is robust and highly plastic. A pair of sensory neurons, AFD, memorize environmental/cultivation temperature and communicate with a downstream neural circuit to adjust the temperature preference of the animal. This results in a behavioral bias where worms will move toward their cultivation temperature on a thermal gradient. Thermotaxis of C. elegans is also affected by the internal state and is temporarily abolished when worms are starved. Here I will discuss how C. elegans is able to modulate its behavior based on temperature by integrating environmental and internal information. Recent studies show that some parasitic nematodes have a similar thermosensory mechanism to C. elegans and exhibit cultivation-temperature-dependent thermotaxis. I will also discuss the common neural mechanisms that regulate thermosensation and thermotaxis in C. elegans and Strongyloides stercoralis.


Assuntos
Caenorhabditis elegans , Resposta Táctica , Animais , Comportamento Animal , Caenorhabditis elegans/fisiologia , Células Receptoras Sensoriais/fisiologia , Resposta Táctica/fisiologia , Temperatura , Sensação Térmica/fisiologia
16.
Nat Commun ; 13(1): 603, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105902

RESUMO

The collective movement of African trypanosomes on semi-solid surfaces, known as social motility, is presumed to be due to migration factors and repellents released by the parasites. Here we show that procyclic (insect midgut) forms acidify their environment as a consequence of glucose metabolism, generating pH gradients by diffusion. Early and late procyclic forms exhibit self-organising properties on agarose plates. While early procyclic forms are repelled by acid and migrate outwards, late procyclic forms remain at the inoculation site. Furthermore, trypanosomes respond to exogenously formed pH gradients, with both early and late procyclic forms being attracted to alkali. pH taxis is mediated by multiple cyclic AMP effectors: deletion of one copy of adenylate cyclase ACP5, or both copies of the cyclic AMP response protein CARP3, abrogates the response to acid, while deletion of phosphodiesterase PDEB1 completely abolishes pH taxis. The ability to sense pH is biologically relevant as trypanosomes experience large changes as they migrate through their tsetse host. Supporting this, a CARP3 null mutant is severely compromised in its ability to establish infections in flies. Based on these findings, we propose that the expanded family of adenylate cyclases in trypanosomes might govern other chemotactic responses in their two hosts.


Assuntos
Metabolismo dos Carboidratos , AMP Cíclico/metabolismo , Glucose/metabolismo , Transdução de Sinais , Resposta Táctica , Trypanosoma/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases , Animais , Sistema Digestório , Concentração de Íons de Hidrogênio , Insetos , Proteínas de Protozoários , Fosfatase Ácida Resistente a Tartarato
17.
Artigo em Inglês | MEDLINE | ID: mdl-35094127

RESUMO

A magnetic compass sense has been demonstrated in all major classes of vertebrates, as well as in many invertebrates. In mammals, controlled laboratory studies of mice have provided evidence for a robust magnetic compass that is comparable to, or exceeds, the performance of that in other animals. Nevertheless, the vast majority of laboratory studies of spatial behavior and cognition in murine rodents have failed to produce evidence of sensitivity to magnetic cues. Given the central role that a magnetic compass sense plays in the spatial ecology and cognition of non-mammalian vertebrates, and the potential utility that a global/universal reference frame derived from the magnetic field would have in mammals, the question of why responses to magnetic cues have been so difficult to demonstrate reliably is of considerable importance. In this paper, we review evidence that the magnetic compass of murine rodents shares a number of properties with light-dependent compasses in a wide variety of other animals generally believed to be mediated by a radical pair mechanism (RPM) or related quantum process. Consistent with the RPM, we summarize both published and previously unpublished findings suggesting that the murine rodent compass is sensitive to low-level radio frequency (RF) fields. Finally, we argue that the presence of anthropogenic RF fields in laboratory settings, may be an important source of variability in responses of murine rodents to magnetic cues.


Assuntos
Orientação , Resposta Táctica , Migração Animal , Animais , Campos Magnéticos , Magnetismo , Camundongos , Orientação/fisiologia , Roedores
18.
Artigo em Inglês | MEDLINE | ID: mdl-35019998

RESUMO

The light-dependent magnetic compass sense of night-migratory songbirds can be disrupted by weak radiofrequency fields. This finding supports a quantum mechanical, radical-pair-based mechanism of magnetoreception as observed for isolated cryptochrome 4, a protein found in birds' retinas. The exact identity of the magnetically sensitive radicals in cryptochrome is uncertain in vivo, but their formation seems to require a bound flavin adenine dinucleotide chromophore and a chain of four tryptophan residues within the protein. Resulting from the hyperfine interactions of nuclear spins with the unpaired electrons, the sensitivity of the radicals to radiofrequency magnetic fields depends strongly on the number of magnetic nuclei (hydrogen and nitrogen atoms) they contain. Quantum-chemical calculations suggested that electromagnetic noise in the frequency range 75-85 MHz could give information about the identity of the radicals involved. Here, we show that broadband 75-85 MHz radiofrequency fields prevent a night-migratory songbird from using its magnetic compass in behavioural experiments. These results indicate that at least one of the components of the radical pair involved in the sensory process of avian magnetoreception must contain a substantial number of strong hyperfine interactions as would be the case if a flavin-tryptophan radical pair were the magnetic sensor.


Assuntos
Aves Canoras , Resposta Táctica , Migração Animal , Animais , Criptocromos/metabolismo , Flavinas , Campos Magnéticos , Aves Canoras/metabolismo , Triptofano
19.
Nat Commun ; 12(1): 5949, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642318

RESUMO

Directed motility enables swimming microbes to navigate their environment for resources via chemo-, photo-, and magneto-taxis. However, directed motility competes with fluid flow in porous microbial habitats, affecting biofilm formation and disease transmission. Despite this broad importance, a microscopic understanding of how directed motility impacts the transport of microswimmers in flows through constricted pores remains unknown. Through microfluidic experiments, we show that individual magnetotactic bacteria directed upstream through pores display three distinct regimes, whereby cells swim upstream, become trapped within a pore, or are advected downstream. These transport regimes are reminiscent of the electrical conductivity of a diode and are accurately predicted by a comprehensive Langevin model. The diode-like behavior persists at the pore scale in geometries of higher dimension, where disorder impacts conductivity at the sample scale by extending the trapping regime over a broader range of flow speeds. This work has implications for our understanding of the survival strategies of magnetotactic bacteria in sediments and for developing their use in drug delivery applications in vascular networks.


Assuntos
Alphaproteobacteria/fisiologia , Campos Magnéticos , Movimento/fisiologia , Resposta Táctica/fisiologia , Biofilmes/crescimento & desenvolvimento , Condutividade Elétrica , Técnicas Analíticas Microfluídicas , Porosidade , Reologia
20.
J Exp Biol ; 224(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34713887

RESUMO

For studies on magnetic compass orientation and navigation performance in small bird species, controlled experiments with orientation cages inside an electromagnetic coil system are the most prominent methodological paradigm. These are, however, not applicable when studying larger bird species and/or orientation behaviour during free flight. For this, researchers have followed a very different approach, attaching small magnets to birds, with the intention of depriving them of access to meaningful magnetic information. Unfortunately, results from studies using this approach appear rather inconsistent. As these are based on experiments with birds under free-flight conditions, which usually do not allow exclusion of other potential orientation cues, an assessment of the overall efficacy of this approach is difficult to conduct. Here, we directly tested the efficacy of small magnets for temporarily disrupting magnetic compass orientation in small migratory songbirds using orientation cages under controlled experimental conditions. We found that birds which have access to the Earth's magnetic field as their sole orientation cue show a general orientation towards their seasonally appropriate migratory direction. When carrying magnets on their forehead under these conditions, the same birds become disoriented. However, under changed conditions that allow birds access to other (i.e. celestial) orientation cues, any disruptive effect of the magnets they carry appears obscured. Our results provide clear evidence for the efficacy of the magnet approach for temporarily disrupting magnetic compass orientation in birds, but also reveal its limitations for application in experiments under free-flight conditions.


Assuntos
Aves Canoras , Resposta Táctica , Migração Animal , Animais , Testa , Campos Magnéticos , Magnetismo , Imãs , Orientação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...